Vortex tubes, spirals, and large-eddy simulation of turbulence

  • D. I. Pullin
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 71)


Progress in the quantitative modelling of turbulence using vortex-based models of the fine scales is reviewed. Recent work on the calculation of the spectrum of a passive scalar convecting and diffusing within a stretched-spiral vortex is briefly described. This is followed by a discussion of the application of ideas from the study of the vortex structure of the small scales of turbulence to the development of subgrid models for the large-eddy simulation (LES) of turbulent flows at large Reynolds numbers. Examples are given including the LES of rotating and non-rotating plane channel flow and of the mixing of a passive scalar by forced isotropic turbulence.


Axial Velocity Rotation Number Suction Side Vortex Tube Passive Scalar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batchelor, G.K. 1959 Small-scale variation of converted quantities like temperature in turbulent fluid, part I general discussion and the case of small conductivity. J. Fluid Mech.5, 113–133.MathSciNetzbMATHADSCrossRefGoogle Scholar
  2. Dimotakis, P.E. 2000 The mixing transition in turbulent flows. J.Fluid Mech., 409, 69–98.CrossRefMathSciNetzbMATHADSGoogle Scholar
  3. Gibson C.H. & Schwarz, W.H. 1963 The universal equilibrium spectra of turbulent velocity and scalar fields. J. Fluid Mech.16, 365–384.ADSzbMATHCrossRefGoogle Scholar
  4. He, G.W., Doolen, G.D. & Chen, S.Y. 1998 Calculations of longitudinal and transverse velocity structure functions using a vortex model of isotropic turbulence. Phys. Fluids11 3743–3748.MathSciNetADSCrossRefGoogle Scholar
  5. Kambe, T. & Hatakeyama N. 2000 Statistical laws and vortex structures in fully developed turbulence. Fluid Dyn. Res.27, 247–267.CrossRefADSGoogle Scholar
  6. Kristoffersen, R. & Andersson, H.I. 1993 Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech.256, 163–197.ADSzbMATHCrossRefGoogle Scholar
  7. Leonard, A. 1974 Energy cascade in large-eddy simulations of turbulent fluid flows. In Advances in Geophysics (ed. F.N. Frankiel, R.E. Munn), pp. 237–248. Academic (New York).Google Scholar
  8. Lesieur, M. & Métais, O. 1996 New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid Mech.28 45–82.CrossRefADSGoogle Scholar
  9. Lundgren, T.S. 1982 Strained spiral vortex model for turbulent fine structure. Phys Fluids25, 2193–2203.CrossRefzbMATHADSGoogle Scholar
  10. Métais, O. & Lesieur, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech., 239 157–194.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. Misra, A. & Pullin, D.I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids, 9, 2443–2454.CrossRefMathSciNetADSzbMATHGoogle Scholar
  12. Overholt, M.R. & Pope, S.B. 1996 Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Phys. Fluids8 3128–3148.CrossRefADSzbMATHGoogle Scholar
  13. Porter, D.H., Woodward P.R. & Pouquet A. 1996 Inertial range structures in decaying compressible turbulent flows. Phys. Fluids10 237–245MathSciNetADSCrossRefGoogle Scholar
  14. Pullin, D.I. 2000 A vortex-based model for the subgrid flux of a passive scalar. Phys.Fluids, 12 2311–2319.CrossRefMathSciNetADSGoogle Scholar
  15. Pullin, D.I. & Lundgren, T.S. 2001 Axial motion and scalar transport in stretched spiral vortices. Phys. Fluids, 13 2553–2563.CrossRefADSGoogle Scholar
  16. Pullin, D.I. & Saffman, P.G. 1998 Vortex dynamics in turbulence. Ann. Rev. Fluid Mech., 30, 31–51.CrossRefMathSciNetADSGoogle Scholar
  17. Tennekes, H. & Lumley, J.L. 1974 A first course in turbulence, The MIT PressGoogle Scholar
  18. Voelkl, T. 2000 A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation of incompressible flow. PhD Thesis, California Institute of TechnologyGoogle Scholar
  19. Voelkl, T., Pullin D.I. fe Chan, D.C. 2000 A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids, bf 12, 1810–1825.Google Scholar
  20. Wei, T. & Willmarth, W.W. 1989 Reynolds-number effects on the structure of a turbulent channel flow J. Fluid Mech.204, 57–95.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • D. I. Pullin
    • 1
  1. 1.Graduate Aeronautical LaboratoryCalifornia Institute of TechnologyPasadena

Personalised recommendations