Advertisement

Simulation of vortex sheet roll-up: chaos, azimuthal waves, ring merger

  • Robert Krasny
  • Keith Lindsay
  • Monika Nitsche
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 71)

Abstract

This article reviews some recent simulations of vortex sheet roll-up using the vortex blob method. In planar and axisymmetric flow, the roll-up is initially smooth but irregular small-scale features develop later in time due to the onset of chaos. A numerically generated Poincaré section shows that the vortex sheet flow resembles a chaotic Hamiltonian system with resonance bands and a heteroclinic tangle. The chaos is induced by a self-sustained oscillation in the vortex core rather than external forcing. In three-dimensional flow, an adaptive treecode algorithm is applied to reduce the CPU time from O(N 2) to O(N log N), where N is the number of particles representing the sheet. Results are presented showing the growth of azimuthal waves on a vortex ring and the merger of two vortex rings.

Keywords

Vortex Ring Vortex Core Vortex Sheet Resonance Band Axisymmetric Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C. R. 1985 A vortex method for flows with slight density variations. Comput. Phys.61, 417–444.MathSciNetzbMATHADSCrossRefGoogle Scholar
  2. Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech.143, 1–21.MathSciNetzbMATHADSCrossRefGoogle Scholar
  3. Barnes, J. & Hut, P. 1986 A hierarchical O(N log N) force-calculation algorithm. Nature324, 446–449.ADSCrossRefGoogle Scholar
  4. Chorin, A. J. & Bernard, P. S. 1973 Discretization of a vortex sheet, with an example of roll-up, J. Comput. Phys.13, 423–429.CrossRefADSGoogle Scholar
  5. Cottet, G.-H. & Koumoutsakos, P. D. 2000 Vortex Methods: Theory and Practice. Cambridge University Press.Google Scholar
  6. Draghicescu, C. & Draghicescu, M. 1995 A fast algorithm for vortex blob interactions, J. Comput. Phys.116, 69–78.CrossRefMathSciNetzbMATHADSGoogle Scholar
  7. Greengard, L. & Rokhlin, V. 1987 A fast algorithm for particle simulations, J.Comput. Phys.73, 325–348.CrossRefMathSciNetADSzbMATHGoogle Scholar
  8. Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag.Google Scholar
  9. Kida, S. 1981 Motion of an elliptic vortex in a uniform shear flow. J.Phys. Soc. Jpn.50, 3517–3520.ADSCrossRefGoogle Scholar
  10. Kida, S. & Takaoka, M. 1994 Vortex reconnection, Annu. Rev. Fluid Mech.26, 169–189.CrossRefMathSciNetADSGoogle Scholar
  11. Krasny, R. 1987 Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech.184, 123–155.ADSCrossRefGoogle Scholar
  12. Krasny, R. & Nitsche, M. 2001 The onset of chaos in vortex sheet flow. J. Fluid Mech.454, 47–69.MathSciNetADSCrossRefGoogle Scholar
  13. Lim, T. T. & Nickels, T. B. 1995 Vortex rings. In Fluid Vortices (ed. S. I. Green), pp. 95–153. Kluwer.Google Scholar
  14. Lindsay, K. & Krasny, R. 2001 A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J.Comput. Phys.172, 879–907.CrossRefMathSciNetADSzbMATHGoogle Scholar
  15. Moore, D. W. 1972 Finite amplitude waves on aircraft trailing vortices, Aero. Quart.23, 307–314.Google Scholar
  16. Moore, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. Roy. Soc. Land. A 365, 105–119.zbMATHADSCrossRefGoogle Scholar
  17. Nitsche, M. & Krasny, R. 1994 A numerical study of vortex ring formation at the edge of a circular tube, J.Fluid Mech.276, 139–161.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.Google Scholar
  19. Rom-Kedar, V., Leonard, A. & Wiggins, S. 1990 An analytical study of transport, mixing and chaos in an unsteady vortical flow. J.Fluid Mech.314, 347–394.MathSciNetADSCrossRefGoogle Scholar
  20. Rosenhead, L. 1930 The spread of vorticity in the wake behind a cylinder, Proc. Roy. Soc. Land.A127, 590–612.ADSCrossRefGoogle Scholar
  21. Schatzle, P. R. 1987 An experimental study of fusion of vortex rings, Ph.D. Thesis, California Institute of Technology.Google Scholar
  22. Shariff, K. & Leonard, A. 1992 Vortex rings. Ann. Rev. Fluid Mech.24, 235–297.CrossRefMathSciNetADSGoogle Scholar
  23. Tryggvason, G., Dahm, W. J. A. & Sbeih, K. 1991 Fine structure of vortex sheet rollup by viscous and inviscid simulations, ASME J. Fluid Engin.113, 31–36.CrossRefGoogle Scholar
  24. Wiggins, S. 1992 Chaotic Transport in Dynamical Systems. Springer-Verlag.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Robert Krasny
    • 1
  • Keith Lindsay
    • 2
  • Monika Nitsche
    • 3
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Climate and Global Dynamics BoulderNational Center for Atmospheric ResearchUSA
  3. 3.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations