Skip to main content

The Concept of Compartmentalization in Signaling by Reactive Oxygen Species

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finkel, T. 1998. Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253.

    Article  CAS  PubMed  Google Scholar 

  2. Thannickal, V. J. and B. L. Fanburg. 2000. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–1028.

    CAS  PubMed  Google Scholar 

  3. Droge, W. 2002, Free radicals in the physiological control of cell function. Phvsiol Rev 82:47–95.

    CAS  Google Scholar 

  4. Smith, F. D. and J. D. Scott. 2002. Signaling complexes: junctions on the intracellular information super highway. Curr Biol 12:R32–40.

    CAS  PubMed  Google Scholar 

  5. Freeman, B. A. and J. D. Crapo. 1982. Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426.

    CAS  PubMed  Google Scholar 

  6. Tyler, D, D. 1975. Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J 147:493–504.

    CAS  PubMed  Google Scholar 

  7. Lee, H. C. and Y. H. Wei. 2000. Mitochondrial role in life and death of the cell. J Biomed Sci 7:2–15.

    CAS  PubMed  Google Scholar 

  8. Cai, J. and D. P. Jones. 1998. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 273:11401–11404.

    CAS  PubMed  Google Scholar 

  9. Li, A. E., H. Ito, Rovira, II, K. S. Kim, K. Takeda, Z. Y. Yu, V. J. Ferrans and T. Finkel. 1999. A role for reactive oxygen species in endothelial cell anoikis. Circ Res 85:304–310.

    CAS  PubMed  Google Scholar 

  10. Chandel, N. S. and P. T. Schumacker. 1999. Cells depleted of mitochondrial DNA (rho0) yield insight into physiological mechanisms. FEBS Lett 454:173–176.

    Article  CAS  PubMed  Google Scholar 

  11. von Harsdorf, R., P. F. Li and R. Dietz. 1999. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941.

    Google Scholar 

  12. Banki, K., E. Hutter, N. J. Gonchoroff and A. Perl. 1999. Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J Immunol 162:1466–1479.

    CAS  PubMed  Google Scholar 

  13. Sidoti-de Fraisse, C., V. Rincheval, Y. Risler, B. Mignotte and J. L. Vayssiere. 1998. TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 17:1639–1651.

    Google Scholar 

  14. Singh, I., K. Pahan, M. Khan and A. K. Singh. 1998. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J Biol Chem 273:20354–20362.

    CAS  PubMed  Google Scholar 

  15. Wissing, D., H. Mouritzen and M. Jaattela. 1998. TNF-induced mitochondrial changes and activation of apoptotic proteases are inhibited by A20. Free Radic Biol Med 25:57–65.

    Article  CAS  PubMed  Google Scholar 

  16. Chandel, N. S., E. Maltepe, E. Goldwasser, C. E. Mathieu, M. C. Simon and P. T. Schumacker. 1998. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95:11715–11720.

    Article  CAS  PubMed  Google Scholar 

  17. Duranteau, J., N. S. Chandel, A. Kulisz, Z. Shao and P. T. Schumacker. 1998. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273:11619–11624.

    Article  CAS  PubMed  Google Scholar 

  18. Kulisz, A., N. Chen, N. S. Chandel, Z. Shao and P. T. Schumaker. 2002. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 282:L1324–1329.

    CAS  PubMed  Google Scholar 

  19. Boveris, A., N. Oshino and B. Chance. 1972. The cellular production of hydrogen peroxide. Biochem J 128:617–630.

    CAS  PubMed  Google Scholar 

  20. Tolbert, N. E. and E. Essner. 1981. Microbodies: peroxisomes and glyoxysomes. J Cell Biol 91:271s–283s.

    Article  CAS  PubMed  Google Scholar 

  21. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, eds 2002. Molecular Biology of the Cell, Garland Science, New York

    Google Scholar 

  22. Poole, B. 1975. Diffusion effects in the metabolism of hydrogen peroxide by rat liver peroxisomes. J Theor Biol 51:149–167.

    Article  CAS  PubMed  Google Scholar 

  23. Capdevila, J., L. Parkhill, N. Chacos, R. Okita, B. S. Masters and R. W. Estabrook. 1981. The oxidative metabolism of arachidonic acid by purified cytochromes P-450. Biochem Biophys Res Commun 101:1357–1363.

    Article  CAS  PubMed  Google Scholar 

  24. Bauskin, A. R., I. Alkalay and Y. Ben-Neriah. 1991. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell 66:685–696.

    Article  CAS  PubMed  Google Scholar 

  25. Hwang, C., A. J. Sinskey and H. F. Lodish. 1992. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502.

    CAS  PubMed  Google Scholar 

  26. Pahl, H. L. and P. A. Baeuerle. 1997. The ER-overload response: activation of NF-κB. Trends Biochem Sci 22:63–67.

    Article  CAS  PubMed  Google Scholar 

  27. Bader, M., W. Muse, D. P. Ballou, C. Gassner and J. C. Bardwell. 1999. Oxidative protein folding is driven by the electron transport system. Cell 98:217–227.

    Article  CAS  PubMed  Google Scholar 

  28. Halliwell, B. and J. M. C. Gutteridge. 1989. Free Radicals in Biology and Medicine, Oxford University Press, New York.

    Google Scholar 

  29. Nose, K., M. Shibanuma, K. Kikuchi, H. Kageyama, S. Sakiyama and T. Kuroki. 1991. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 201:99–106.

    Article  CAS  PubMed  Google Scholar 

  30. Lo, Y. Y. and T. F. Cruz. 1995. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270:11727–11730.

    CAS  PubMed  Google Scholar 

  31. Puri, P. L, M. L. Avantaggiati, V. L. Burgio, P. Chirillo, D. Collepardo, G. Natoli, C. Balsano and M. Levrero. 1995. Reactive oxygen intermediates (ROIs) are involved in the intracellular transduction of angiotensin II signal in C2C12 cells. Ann N Y Acad Sci 752:394–405.

    CAS  PubMed  Google Scholar 

  32. Choi, H. S. and D. D. Moore. 1993. Induction of c-fos and c-jun gene expression by phenolic antioxidants. Mol Endocrinol 7:1596–1602.

    Article  CAS  PubMed  Google Scholar 

  33. Yoshioka, K., T. Deng, M. Cavigelli and M. Karin. 1995. Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc Natl Acad Sci U S A 92:4972–4976.

    CAS  PubMed  Google Scholar 

  34. Abate, C., L. Patel, F. J. Rauscher, 3rd and T. Curran. 1990. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249:1157–1161.

    CAS  PubMed  Google Scholar 

  35. Xanthoudakis, S., G. Miao, F. Wang, Y. C. Pan and T. Curran. 1992. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. Embo J 11:3323–3335.

    CAS  PubMed  Google Scholar 

  36. Nakamura, H., K. Nakamura and J. Yodoi. 1997. Redox regulation of cellular activation. Annu Rev Immunol 15:351–369.

    Article  CAS  PubMed  Google Scholar 

  37. Hirota, K., M. Matsui, S. Iwata, A. Nishiyama, K. Mori and J. Yodoi. 1997. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 94:3633–3638.

    Article  CAS  PubMed  Google Scholar 

  38. Hirota, K., M. Murata, Y. Sachi, H. Nakamura, J. Takeuchi, K. Mori and J. Yodoi. 1999. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-κB. J Biol Chem 274:27891–27897.

    CAS  PubMed  Google Scholar 

  39. Rainwater, R., D. Parks, M. E. Anderson, P. Tegtmeyer and K. Mann. 1995. Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15:3892–3903.

    CAS  PubMed  Google Scholar 

  40. Pearson, G. D. and G. F. Merrill. 1998. Deletion of the Saccharomyces cercvisiae TRR1 gene encoding thioredoxin reductase inhibits p53-dependent reporter gene expression. J Biol Chem 273:5431–5434.

    Article  CAS  PubMed  Google Scholar 

  41. Akamatsu, Y., T. Ohno, K. Hirota, H. Kagoshima, J. Yodoi and K. Shigesada. 1997. Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. J Biol Chem 272:14497–14500.

    Article  CAS  PubMed  Google Scholar 

  42. Knoepfel, L., C. Steinkuhler, M. T. Carri and G. Rotilio. 1994. Role of zinc-coordination and of the glutathione redox couple in the redox susceptibility of human transcription factor Spl. Biochem Biophys Res Commun 201:871–877.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, X., N. H. Bishopric, D. J. Discher, B. J. Murphy and K. A. Webster. 1996. Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol Cell Biol 16:1035–1046.

    CAS  PubMed  Google Scholar 

  44. Myrset, A. H., A. Bostad, N. Jamin, P. N. Lirsac, F. Toma and O. S. Gabrielsen. 1993. DNA and redox state induced conformational changes in the DNA-binding domain of the Myb oncoprotein. Embo J 12:4625–4633.

    CAS  PubMed  Google Scholar 

  45. Huang, R. P. and E. D. Adamson. 1993. Characterization of the DNA-binding properties of the early growth response-1 (Egr-1) transcription factor: evidence for modulation by a redox mechanism. DNA Cell Biol 12:265–273.

    CAS  PubMed  Google Scholar 

  46. Droge, W., K. Schulze-Osthoff, S. Mihm, D. Gaiter, H. Schenk, H. P. Eck, S. Roth and H. Gmunder. 1994. Functions of glutathione and glutathione disulfide in immunology and immunopathology. Faseb J 8:1131–1138.

    CAS  PubMed  Google Scholar 

  47. Sen, C. K., S. Khanna, A. Z. Reznick, S. Roy and L. Packer. 1997. Glutathione regulation of tumor necrosis factor-alpha-induced NF-κB activation in skeletal muscle-derived L6 cells. Biochem Biophys Res Commun 237:645–649.

    Article  CAS  PubMed  Google Scholar 

  48. Esposito, F., V. Agosti, G. Morrone, F. Morra, C. Cuomo, T. Russo, S. Venuta and F. Cimino. 1994. Inhibition of the differentiation of human myeloid cell lines by redox changes induced through glutathione depletion. Biochem J 301:649–653.

    CAS  PubMed  Google Scholar 

  49. Henschke, P. N. and S. J. Elliott. 1995. Oxidized glutathione decreases luminal Ca2+ content of the endothelial cell ins(1,4,5)P3-sensitive Ca2− store. Biochem J 312:485–489.

    CAS  PubMed  Google Scholar 

  50. Das, S. K., A. C. White and B. L. Fanburg. 1992. Modulation of transforming growth factor-beta 1 antiproliferative effects on endothelial cells by cysteine, cystine, and N-acetylcysteine. J clin Invest 90:1649–1656.

    CAS  PubMed  Google Scholar 

  51. White, A. C., S. K. Das and B. L. Fanburg. 1992. Reduction of glutathione is associated with growth restriction and enlargement of bovine pulmonary artery endothelial cells produced by transforming growth factor-beta 1. Am J Respir Cell Mol Biol 6:364–368.

    CAS  PubMed  Google Scholar 

  52. Cantin, A. M., P. Larivee and R. O. Begin. 1990. Extracellular glutathione suppresses human lung fibroblast proliferation. Am J Respir Cell Mol Biol 3:79–85.

    CAS  PubMed  Google Scholar 

  53. Rigacci, S., T. lantomasi, P. Marraccini, A. Berti, M. T. Vincenzini and G. Ramponi. 1997. Evidence for glutathione involvement in platelet-derived growth-factor-mediated signal transduction. Biochem J 324:791–796.

    CAS  PubMed  Google Scholar 

  54. Saitoh, M., H. Nishitoh, M. Fujii, K. Takeda, K. Tobiume, Y. Sawada, M. Kawabata, K. Miyazono and H. Ichijo. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. Embo J 17:2596–2606.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, H., H. Nishitoh, H. Ichijo and J. M. Kyriakis. 2000. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20:2198–2208.

    CAS  PubMed  Google Scholar 

  56. McKelvey, T. G., M. E. Hollwarth, D. N. Granger, T. D. Engerson, U. Landler and H. P. Jones. 1988. Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. Am J Physiol 254:G753–760.

    CAS  PubMed  Google Scholar 

  57. Parks, D. A., T. K. Williams and J. S. Beckman. 1988. Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am J Physiol 254:G768–774.

    CAS  PubMed  Google Scholar 

  58. Yoshikawa, T., Y. Minamiyama, Y. Naito and M. Kendo. 1994. Antioxidant properties of bromocriptine, a dopamine agonist. J Neurochem 62:1034–1038.

    CAS  PubMed  Google Scholar 

  59. Offen, D., I. Ziv, H. Panel, L. Wasserman, R. Stein, E. Melamed and A. Barzilai. 1997. Dopamine-induced apoptosis is inhibited in PC 12 cells expressing Bcl-2. Cell Mol Neurobiol 17:289–304.

    Article  CAS  PubMed  Google Scholar 

  60. Meier, B., H. H. Radeke, S. Selle, M. Younes, H. Sies, K. Resch and G. G. Habermehl. 1989. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J 263:539–545.

    CAS  PubMed  Google Scholar 

  61. Satriano, J. A., M. Shuldiner, K. Hora, Y. Xing, Z. Shan and D. Schlondorff. 1993. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G. Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J Clin Invest 92:1564–1571.

    CAS  PubMed  Google Scholar 

  62. Griendling, K. K., C. A. Minieri, J. D. Ollerenshaw and R. W. Alexander. 1994. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148.

    CAS  PubMed  Google Scholar 

  63. Thannickal, V. J. and B. L. Fanburg. 1995. Activation of an H2O2-generling NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 270:30334–30338.

    CAS  PubMed  Google Scholar 

  64. Krieger-Brauer, H. I. and H. Kather. 1995. Antagonistic effects of different members of the fibroblast and platelet-derived growthfactor families on adipose conversion and NADPH-dependent H2O2 generation in 3T3 L1-cells. Biochem J 307:549–556.

    CAS  PubMed  Google Scholar 

  65. Sundaresan, M., Z. X. Yu, V. J. Ferrans, K. Irani and T. Finkel. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299.

    CAS  PubMed  Google Scholar 

  66. Bae, Y. S., S. W. Kang, M. S. Seo, I. C. Baines, E. Tekle, P. B. Chock and S. G. Rhee. 1997. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EOF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221.

    Article  CAS  PubMed  Google Scholar 

  67. Jones, S. A., V. B. O’Donnell, J. D. Wood, J. P. Broughton, E. J. Hughes and O. T. Jones. 1996. Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol 271:H1626–1634.

    CAS  PubMed  Google Scholar 

  68. Fukui, T., N. Ishizaka, S. Rajagopalan, J. B. Laursen, Q. T. Capers, W. R. Taylor, D. G. Harrison, H. de Leon, J. N. Wilcox and K. K. Griendling. 1997. p22 mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 80:45–51.

    CAS  PubMed  Google Scholar 

  69. Hiran, T. S., P. J. Moulton and J. T. Hancock. 1997. Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med 23:736–743.

    Article  CAS  PubMed  Google Scholar 

  70. Bayraktutan, U., N. Draper, D. Lang and A. M. Shah. 1998. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res 38:256–262.

    CAS  PubMed  Google Scholar 

  71. Moulton, P. J., M. B. Goldring and J. T. Hancock. 1998. NADPH oxidase of chondrocytes contains an isoform of the gp91phox subunit. Biochem J 329:449–451.

    CAS  PubMed  Google Scholar 

  72. Meyer, J. W., J. A. Holland, L. M. Ziegler, M. M. Chang, G. Beebe and M. E. Schmitt. 1999. Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells: a potential atherogenic source of reactive oxygen species. Endothelium 7:11–22.

    CAS  PubMed  Google Scholar 

  73. Lavigne, M. C., H. L. Malech, S. M. Holland and T. L. Leto. 2001. Genetic requirement of p47phox for superoxide production by murine microglia. Faseb J 15:285–287.

    CAS  PubMed  Google Scholar 

  74. Bayraktutan, U., L. Blayney and A. M. Shah. 2000. Molecular characterization and localization of the NAD(P)H oxidase components gp91-phox and p22-phox in endothelial cells. Arterioscler Thromb Vase Biol 20:1903–1911.

    CAS  Google Scholar 

  75. Zafari, A. M., M. Ushio-Fukai, M. Akers, Q. Yin, A. Shah, D. G. Harrison, W. R. Taylor and K. K. Griendling. 1998. Role of NADH/NADPH H2O2 oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32:488–495.

    CAS  PubMed  Google Scholar 

  76. Marumo, T., V. B. Schini-Kerth, R. P. Brandes and R. Busse. 1998. Glucocorticoids inhibit superoxide anion production and p22 phoxmRNA expression in human aortic smooth muscle cells. Hypertension 32:1083–1088.

    CAS  PubMed  Google Scholar 

  77. De Keulenaer, G. W., R. W. Alexander, M. Ushio-Fukai, N. Ishizaka and K. K. Griendling. 1998. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 329:653–657.

    PubMed  Google Scholar 

  78. Suh, Y. A., R. S. Arnold, B. Lassegue, J. Shi, X. Xu, D. Sorescu, A. B. Chung, K. K. Griendling and J. D. Lambeth. 1999. Cell transformation by the superoxide-generating oxidase Moxl. Nature 401:79–82.

    CAS  PubMed  Google Scholar 

  79. Arbiser, J. L., J. Petros, R. Klafter, B. Govindajaran, E. R. McLaughlin, L. F. Brown, C. Cohen, M. Moses, S. Kilroy, R. S. Arnold and others. 2002. Reactive oxygen generated by Nox 1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 99:715–720.

    Article  CAS  PubMed  Google Scholar 

  80. Lambeth, J. D., G. Cheng, R. S. Arnold and W. A. Edens. 2000. Novel homologs of gp91phox. Trends Biochem Sci 25:459–461.

    Article  CAS  PubMed  Google Scholar 

  81. Geiszt, M., J. B. Kopp, P. Varnai and T. L. Leto. 2000. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97:8010–8014.

    Article  CAS  PubMed  Google Scholar 

  82. Cheng, G., Z. Cao, X. Xu, E. G. van Meir and J. D. Lambeth. 2001. Homologs of gp91phox cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140.

    Article  CAS  PubMed  Google Scholar 

  83. Diekmann, D., A. Abo, C. Johnston, A. W. Segal and A. Hall. 1994. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533.

    CAS  PubMed  Google Scholar 

  84. De Leo, F. R., K. V. Ulman, A. R. Davis, K. L. Jutila and M. T. Quinn. 1996. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem 271:17013–17020.

    PubMed  Google Scholar 

  85. Dang, P. M., A. R. Cross and B. M. Babior. 2001. Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67phox and cytochrome b558. Proc Natl Acad Sci U S A 98:3001–3005.

    CAS  PubMed  Google Scholar 

  86. Kheradmand, F., E. Werner, P. Tremble, M. Symons and Z. Werb. 1998. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280:898–902.

    Article  CAS  PubMed  Google Scholar 

  87. Cool, R. H., E. Merten, C. Theiss and H. Acker. 1998. Rac1, and not Rac2, is involved in the regulation of the intracellular hydrogen peroxide level in HepG2 cells. Biochem J 332:5–8.

    CAS  PubMed  Google Scholar 

  88. Joneson, T. and D. Bar-Sagi. 1998. A Racl effector site controlling mitogenesis through superoxide production. J Biol Chem 273:17991–17994.

    CAS  PubMed  Google Scholar 

  89. Sundaresan, M., Z. X. Yu, V. J. Ferrans, D. J. Sulciner, J. S. Gutkind, K. Irani, P. J. Goldschmidt-Clermont and T. Finkel. 1996. Regulation of reactive-oxygen-species generation in fibroblasts by Racl. Biochem J 318:379–382.

    CAS  PubMed  Google Scholar 

  90. Irani, K., Y. Xia, J. L. Zweier, S. J. Sollott, C. J. Der, E. R. Fearon, M. Sundaresan, T. Finkel and P. J. Goldschmidt-Clermont. 1997. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts [see comments]. Science 275:1649–1652.

    Article  CAS  PubMed  Google Scholar 

  91. Thannickal, V. J., R. M. Day, S. G. Klinz, M. C. Bastien, J. M. Larios and B. L. Fanburg. 2000. Ras-dependent and-independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta 1. Faseb J 14:1741–1748.

    Article  CAS  PubMed  Google Scholar 

  92. Touyz, R. M. and E. L. Schiffrin. 1999. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 34:976–982.

    CAS  PubMed  Google Scholar 

  93. Wen, Y., S. Scott, Y. Liu, N. Gonzales and J. L. Nadler. 1997. Evidence that angiotensin II and lipoxygenase products activate c-Jun NH2-terminal kinase. Circ Res 81:651–655.

    CAS  PubMed  Google Scholar 

  94. Mills, E. M., K. Takeda, Z. X. Yu, V. Ferrans, Y. Katagiri, H. Jiang, M. C. Lavigne, T. L. Leto and G. Guroff. 1998. Nerve growth factor treatment prevents the increase in superoxide produced by epidermal growth factor in PC12 cells. J Biol Chem 273:22165–22168.

    CAS  PubMed  Google Scholar 

  95. Bonizzi, G., J. Piette, S. Schoonbroodt, R. Greimers, L. Havard, M. P. Merville and V. Bours. 1999. Reactive oxygen intermediate-dependent NF-κB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity. Mol Cell Biol 19:1950–1960.

    CAS  PubMed  Google Scholar 

  96. Kagan, H. M. and P. C. Trackman. 1991. Properties and function of lysyl oxidase [see comments]. Am J Respir Cell Mol Biol 5:206–210.

    CAS  PubMed  Google Scholar 

  97. Ushio-Fukai, M., R. W. Alexander, M. Akers and K. K. Griendling. 1998. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273:15022–15029.

    CAS  PubMed  Google Scholar 

  98. Viedt, C., U. Soto, H. I. Krieger-Brauer, J. Fei, C. Elsing, W. Kubler and J. Kreuzer. 2000. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 20:940–948.

    CAS  PubMed  Google Scholar 

  99. Fanburg, B. L. and S. L. Lee. 1997. A new role for an old molecule: serotonin as a mitogen. Am J Physiol 272:L795–806.

    CAS  PubMed  Google Scholar 

  100. Lee, S. L., W. W. Wang, G. A. Finlay and B. L. Fanburg. 1999. Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am J Physiol 277:L282–291.

    CAS  PubMed  Google Scholar 

  101. Lee, S. L., A. R. Simon, W. W. Wang and B. L. Fanburg. 2001. H2O2 signals 5-HT-induced ERK MAP kinase activation and mitogenesis of smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 281:L646–652.

    CAS  PubMed  Google Scholar 

  102. Lee, S. L., W. W. Wang, J. J. Lanzillo and B. L. Fanburg. 1994. Serotonin produces both hyperplasia and hypertrophy of bovine pulmonary artery smooth muscle cells in culture. Am J Physiol 266:L46–52.

    CAS  PubMed  Google Scholar 

  103. Piek, E., C. H. Heldin and P. Ten Dijke. 1999. Specificity, diversity, and regulation in TGF-beta superfamily signaling. Faseb J 13:2105–2124.

    CAS  PubMed  Google Scholar 

  104. Massague, J. 1996. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 85:947–950.

    Article  CAS  PubMed  Google Scholar 

  105. Leof, E. B., J. A. Proper, A. S. Goustin, G. D. Shipley, P. E. DiCorleto and H. L. Moses. 1986. Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci U S A 83:2453–2457.

    CAS  PubMed  Google Scholar 

  106. Battegay, E. J., E. W. Raines, R. A. Seifert, D. F. Bowen-Pope and R. Ross. 1990. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63:515–524.

    Article  CAS  PubMed  Google Scholar 

  107. Rosenbaum, J., S. Blazejewski, A. M. Preaux, A. Mallat, D. Dhumeaux and P. Mavier. 1995. Fibroblast growth factor 2 and transforming growth factor beta 1 interactions in human liver myofibroblasts. Gastroenterology 109:1986–1996.

    Article  CAS  PubMed  Google Scholar 

  108. Thannickal, V. J., K. D. Aldweib, T. Rajan and B. L. Fanburg. 1998. Upregulated expression of fibroblast growth factor (FGF) receptors by transforming growth factorbetal (TGF-betal) mediates enhanced mitogenic responses to FGFs in cultured human lung fibroblasts. Biochem Biophys Rex Commun 251:437–441.

    CAS  Google Scholar 

  109. Thannickal, V. J., P. M. Hassoun, A. C. White and B. L. Fanburg. 1993. Enhanced rate of H2O2 release from bovine pulmonary artery endothelial cells induced by TGF-beta 1. Am J Physiol 265:L622–626.

    CAS  PubMed  Google Scholar 

  110. Ohba, M., M. Shibanuma, T. Kuroki and K. Nose. 1994. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126:1079–1088.

    Article  CAS  PubMed  Google Scholar 

  111. Shibanuma, M., T. Kuroki and K. Nose. 1991. Release of H2O2 and phosphorylation of 30 kilodalton proteins as early responses of cell cycle-dependent inhibition of DNA synthesis by transforming growth factor beta 1. Cell Growth Differ 2:583–591.

    CAS  PubMed  Google Scholar 

  112. Kayanoki, Y., S. Higashiyama, K. Suzuki, M. Asahi, S. Kawata, Y. Matsuzawa and N. Taniguchi. 1999. The requirement of both intracellular reactive oxygen species and intracellular calcium elevation for the induction of heparin-binding EGF-like growth factor in vascular endothelial cells and smooth muscle cells. Biochem Biophys Res Commun 259:50–55.

    Article  CAS  PubMed  Google Scholar 

  113. Sanchez, A., A. M. Alvarez, M. Benito and I. Fabregat. 1996. Apoptosis induced by transforming growth factor-beta in fetal hepatocyte primary cultures: involvement of reactive oxygen intermediates. J Biol Chem 271:7416–7422.

    CAS  PubMed  Google Scholar 

  114. Islam, K. N., Y. Kayanoki, H. Kaneto, K. Suzuki, M. Asahi, J. Fujii and N. Taniguchi. 1997. TGF-betal triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radio Biol Med 22:1007–1017.

    CAS  Google Scholar 

  115. Junn, E., K. N. Lee, H. R. Ju, S. H. Han, J. Y. Im, H. S. Kang, T. H. Lee, Y. S. Bae, K. S. Ha, Z. W. Lee and others. 2000. Requirement of hydrogen peroxide generation in TGF-beta 1 signal transduction in human lung fibroblast cells: involvement of hydrogen peroxide and Ca2+ in TGF-beta 1-induced IL-6 expression. J Immunol 165:2190–2197.

    CAS  PubMed  Google Scholar 

  116. Chiu, C., D. A. Maddock, Q. Zhang, K. P. Souza, A. R. Townsend and Y. Wan. 2001. TGF-beta-induced p38 activation is mediated by Rac1-regulated generation of reactive oxygen species in cultured human keratinocytes. Int J Mol Med 8:251–255.

    CAS  PubMed  Google Scholar 

  117. Thannickal, V. J., K. D. Aldweib and B. L. Fanburg. 1998. Tyrosine phosphorylation regulates H2O2 production in lung fibroblasts stimulated by transforming growth factor beta1. J Biol Chem 273:23611–23615.

    Article  CAS  PubMed  Google Scholar 

  118. Kayanoki, Y., J. Fujii, K. Suzuki, S. Kawata, Y. Matsuzawa and N. Taniguchi. 1994. Suppression of antioxidative enzyme expression by transforming growth factor-beta 1 in rat hepatocytes. J Biol Chem 269:15488–15492.

    CAS  PubMed  Google Scholar 

  119. Arsalane, K., C. M. Dubois, T. Muanza, R. Begin, F. Boudreau, C. Asselin and A. M. Cantin. 1997. Transforming growth factor-betal is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549: transcriptional effect on the GSH ratelimiting enzyme gamma-glutamylcysteine synthetase. Am J Respir Cell Mol Biol 17:599–607.

    CAS  PubMed  Google Scholar 

  120. Jardine, H., W. MacNee, K. Donaldson and I. Rahman. 2002. Molecular mechanism of transforming growth factor (TGF)-betal-induced glutathione depletion in alveolar epithelial cells. Involvement of AP-l/ARE and Fra-1. J Biol Chem 277;21158–21166

    Article  CAS  PubMed  Google Scholar 

  121. De Bleser, P. J., G. Xu, K. Rombouts, V. Rogiers and A. Geerts. 1999. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells. J Biol Chem 274:33881–33887.

    PubMed  Google Scholar 

  122. Lafon, C., C. Mathieu, M. Guerrin, O. Pierre, S. Vidal and A. Valette. 1996. Transforming growth factor beta1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and bcl-2. Cell Growth Differ 7:1095–1104.

    CAS  PubMed  Google Scholar 

  123. Langer, C., J. M. Jurgensmeier and G. Bauer. 1996. Reactive oxygen species act at both TGF-beta-dependent and-independent steps during induction of apoptosis of transformed cells by normal cells. Exp Cell Res 222:117–124.

    Article  CAS  PubMed  Google Scholar 

  124. Bauer, G. 1996. Elimination of transformed cells by normal cells: a novel concept for the control of carcinogenesis. Histol Histopathol 11:237–255.

    CAS  PubMed  Google Scholar 

  125. Sanchez, A., A. M. Alvarez, M. Benito and I. Fabregat. 1997. Cycloheximide prevents apoptosis, reactive oxygen species production, and glutathione depletion induced by transforming growth factor beta in fetal rat hepatocytes in primary culture. Hepatology 26:935–943.

    CAS  PubMed  Google Scholar 

  126. Haufel, T., S. Dormann, J. Hanusch, A. Schwieger and G. Bauer. 1999. Three distinct roles for TGF-beta during intercellular induction of apoptosis: a review. Anticancer Res 19:105–111.

    CAS  PubMed  Google Scholar 

  127. Barcellos-Hoff, M. H. and T. A. Dix. 1996. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10:1077–1083.

    Article  CAS  PubMed  Google Scholar 

  128. Jurgensmeier, J. M., J. Panse, R. Schafer and G. Bauer. 1997. Reactive oxygen species as mediators of the transformed phenotype. Int J Cancer 70:587–589.

    CAS  PubMed  Google Scholar 

  129. Garcia-Trevijano, E. R., M. J. Iraburu, L. Fontana, J. A. Dominguez-Rosales, A. Auster, A. Covarrubias-Pinedo and M. Rojkind. 1999. Transforming growth factor betal induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells. Hepatology 29:960–970.

    CAS  PubMed  Google Scholar 

  130. Svegliati-Baroni, G., S. Saccomanno, H. van Goor, P. Jansen, A. Benedetti and H. Moshage. 2001. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver 21:1–12.

    CAS  PubMed  Google Scholar 

  131. Poli, G. 2000. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med 21:49–98.

    CAS  PubMed  Google Scholar 

  132. Larios, J. M., R. Budhiraja, B. L. Fanburg and V. J. Thannickal. 2001. Oxidative protein cross-linking reactions involving L-tyrosine in transforming growth factor-beta 1-stimulated fibroblasts. J Biol Chem 276:17437–17441.

    Article  CAS  PubMed  Google Scholar 

  133. Assoian, R. K. and M. A. Schwartz. 2001. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr Opin Genet Dev 11:48–53.

    Article  CAS  PubMed  Google Scholar 

  134. Lee, S. L., W. W. Wang and B. L. Fanburg. 1997. Association of Tyr phosphorylation of GTPase-activating protein with mitogenic action of serotonin. Am J Physiol 272:C223–230.

    CAS  PubMed  Google Scholar 

  135. Lee, S. L., W. W. Wang and B. L. Fanburg. 1998. Superoxide as an intermediate signal for serotonin-induced mitogenesis. Free Radic Biol Med 24:855–858.

    PubMed  Google Scholar 

  136. Meng, T. C., T. Fukada and N. K. Tonks. 2002. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399.

    Article  CAS  PubMed  Google Scholar 

  137. Thannickal, V. J., J. M. Larios and B. L. Fanburg. 2001. H2O2 production by myofibroblasts is dependent on Src kinase(s) and actin cytoskeletal regulation. Chest 120:32S–33S

    Article  Google Scholar 

  138. Serini, G., M. L. Bochaton-Piallat, P. Ropraz, A. Geinoz, L. Borsi, L. Zardi and G. Gabbiani. 1998. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta 1. J Cell Biol 142:873–881.

    Article  CAS  PubMed  Google Scholar 

  139. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier and R. A. Brown. 2002. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Thannickal, V.J., Fanburg, B. (2003). The Concept of Compartmentalization in Signaling by Reactive Oxygen Species. In: Forman, H.J., Fukuto, J., Torres, M. (eds) Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles. Springer, Dordrecht. https://doi.org/10.1007/0-306-48412-9_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-48412-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1117-7

  • Online ISBN: 978-0-306-48412-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics