Skip to main content

Insulin-like Growth Factor Axis Elements in Breast Cancer Progression

  • Chapter
Growth Factors and their Receptors in Cancer Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 2))

  • 163 Accesses

Abstract

Insulin-like growth factors (IGF) exhibit very potent mitogenic activity, promote cell survival, and have insulin-like functions essential for embryogenesis and postnatal growth physiology. Attention has recently focused on the role of IGF in neoplastic transformation, growth, and dissemination in several cancer types, including human breast cancer. Neoplastic cells are characterized by relative growth autonomy, a consequence of the constitutive expression of IGF and their receptors involved in autocrine loops. This chapter will focus on the molecular mechanisms underlying IGF action in tumourigenesis, in particular its chemoattractant activity and its relevance in tumour motility, both of which lead to invasion. Several of the IGF-induced cellular changes will be highlighted, such as cell polarizatiom, adhesion and detachment, as well as proteolysis induction. Finally, we will summarize the significance of IGF system components as prognostic markers in human breast cancer, and discuss the possible therapeutic considerations encompassed by these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salmon W, Daughaday W. A hormonally controlled serum factor which stimulates sulphate incorporation by cartilage in vitro. J. Lab. Clin. Med. 1957; 49:825–836

    PubMed  CAS  Google Scholar 

  2. Froesch E, Burgi H, Ramseier E, Bally P, Labhart A. Antibody suppressible and non suppressible insulin-like activities in human serum and their physiologic significance. An insulin assay with adipose tissue of increased precision and specificity. J. Clin. Invest. 1963; 42:1816–1834

    PubMed  CAS  Google Scholar 

  3. Dulak N, Temin H. Multiplication-stimulating activity for chicken embryo fibroblasts from rat livercell conditioned medium: A family of small polypeptides. J. Cell. Physiol. 1973; 81:161–170

    PubMed  CAS  Google Scholar 

  4. Rinderknecht E, Humbel R. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol.Chem. 1978; 253:2769–2776

    PubMed  CAS  Google Scholar 

  5. Rinderknecht E, Humbel R. Primary structure of human insulin-like growth factor-II. FEBS Lett 1978;89:283–286

    Article  PubMed  CAS  Google Scholar 

  6. Iwai M, Kobayashi M, Tamura K, Ishii Y, Yamada H, Niwa M. Direct identification of disulfide bond linkages in human insulin-like growth factor I (IGF-I) by chemical synthesis. J. Biochem. 1989; 106:949–951

    PubMed  CAS  Google Scholar 

  7. Dull T, Gray A, Hayflick J, Ullrich A. Insulin-like growth factor-II precursor gene reorganization in relation toinsulin gene family. Nature 1984; 310:777–781

    Article  PubMed  CAS  Google Scholar 

  8. Sara V, Hall K. Insulin-like growth factors and their binding proteins. Physiol. Rev. 1990; 70:591–614

    PubMed  CAS  Google Scholar 

  9. Gowan L, Hampton B, Hill D, Schlueter R, Perdue J. Purification and characterization of a unique high molecular weight form of insulin-like growth factor II. Endocrinology 1991; 121:449–458

    Google Scholar 

  10. Perdue J, LeBon T, Kato J, Hampton B, Fujita-Yamaguchi Y. Binding specificities and transducing function of the different molecular weight forms of insulin-like growth factor-II (IGF-II) on IGF-I receptors. Endocrinology 1991; 129:3101–3108

    PubMed  CAS  Google Scholar 

  11. Lund P, Moats-Staats B, Hynes M, Simmons J, Jansen M, D’Ercole A, Van Wyk J. Somatomedin-C/insulin-like growth factor-I and insulin-like growth factor-II mRNAs in rat fetal and adult tissues. J. Biol. Chem. 1986; 261:14539–14544

    PubMed  CAS  Google Scholar 

  12. Brown A, Graham D, Nissley S, Hill D, Strain A, Rechler M. Developmental regulation of insulin-like growth factor II mRNA in different rat tissues. J. Biol. Chem. 1986; 261:13144–13150

    PubMed  CAS  Google Scholar 

  13. Rotwein P, Pollock K, Didier D, Krivi G. Organization and sequence of the human insulin-like growth factor I gene. Alternative RNA processing produces two insulin-like growth factor I precursor peptides. J. Biol. Chem. 1986; 261:4828–4832

    PubMed  CAS  Google Scholar 

  14. Jansen M, Van Schail F, Van Tol H, Van den Brande J, Sussenbach J. Nucleotide sequences of cDNAs encoding precursors of human insulin-like growth factor II (IGF-II) and an IGF-II variant. FEBS Lett. 1985; 179:243–246

    Article  PubMed  CAS  Google Scholar 

  15. Cascieri M, Bayne M. “Identification of the domains of IGF-I which interact with the IGF receptors and binding proteins.” In Molecular and Cellular Biology of Insulin-like Growth Factors and their Receptors. D. LeRoith and M. Raizada Eds. New York: Plenum Press, 1989

    Google Scholar 

  16. De Vroede M, Rechler M, Nissley S, Joshi S, Thompson-Burke G, Katsoyanis P. Hybrid molecules containing the B-domain of insulin-like growth factor I are recognized by carrier proteins of the growth factor. Proc. Natl. Acad. Sci. U.S.A. 1985; 82:3010–3014

    PubMed  Google Scholar 

  17. Bayne M, Applebaum J, Chicchi G, Hayes N, Green B, Cascieri M. Structural analogs of insulin-like growth factor-I with reduced affinity for serum binding proteins and the Type-2 insulin-like growth factor receptor. J. Biol. Chem. 1988; 263:6233–6237

    PubMed  CAS  Google Scholar 

  18. Cascieri M, Chicchi G, Applebaum J, Hayes N, Green B, Bayne M. Mutants of insulin-like growth factor I with reduced affinity for Type I insulin-like growth factor receptor. Biochemistry 1988; 27:3229–3233

    Article  PubMed  CAS  Google Scholar 

  19. Bayne M, Applebaum J, Underwood D, Chicchi G, Green B, Hayes N, Cascieri M. The C-region of human insulin-like growth factor (IGF)I is required for high affinity binding to the type-1 IGF receptor. J. Biol. Chem. 1989; 264:11004–11008

    PubMed  CAS  Google Scholar 

  20. Bayne M, Applebaum J, Chicchi G, Miller E, Cascieri M. The roles of tyrosine 24, 31 and 60 in the high affinity binding of insulin-like growth factor-I to the type 1 insulin-like growth factor receptor. J. Biol. Chem. 1990; 265:15648–15652

    PubMed  CAS  Google Scholar 

  21. Clemmons D, Dehoff M, Busby W, Bayne M, Cascieri M. Competition for binding to insulin-like growth factor (IGF) binding protein-2, 3, 4 and 5 by the IGFs and the IGF analogs. Endocrinology 1992; 131:890–895

    Article  PubMed  CAS  Google Scholar 

  22. Oh Y, Müller H, Lee D-D, Fielder P, Rosenfeld R. Characterization of the affinities of insulin-like growth factor (IGF)-binding proteins 1-4 for IGF-I, IGF-II, IGF-I/insulin hybrid, and IGF-I analogs. Endocrinology 1993; 132:1337–1344

    Article  PubMed  CAS  Google Scholar 

  23. Cooke R, Harvey T, Campbell I. Solution structure of human insulin-like growth factor 1: A nuclear magnetic resonance and restrained molecular dynamics study. Biochemistry 1991; 30:5484–5491

    Article  PubMed  CAS  Google Scholar 

  24. Clemmons D, Cascieri M, Camacho-Hubner C, McCusker R, Bayne M. Discrete alterations of the insulin-like growth factor I molecule which alter its affinity for insulin-like growth factor binding proteins result in changes in bioactivity. J. Biol. Chem. 1990; 265:12210–12216

    PubMed  CAS  Google Scholar 

  25. Mañes S, Kremer L, Albar JP, Mark C, Llopis R, Martínez-A. C. Functional epitope mapping of insulin-like growth factor-I by anti-IGF-I monoclonal antibodies. Endocrinology 1997; 138:905–915

    PubMed  Google Scholar 

  26. Oh Y. IGFBPs and neoplastic models. New concepts for roles of IGFBPs in regulation of cancer cell growth. Endocrine 1997; 7:111–113

    PubMed  CAS  Google Scholar 

  27. Jones JC, Clemmons DR. Insulin-like growth factors and their binding proteins:biological actions. Endocrine Reviews 1995; 16: 3–34

    Article  PubMed  CAS  Google Scholar 

  28. Yamanaka Y, Wilson E, Rosenfeld R, Oh Y. Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J. Biol. Chem. 1997; 272:30729–30734

    Article  PubMed  CAS  Google Scholar 

  29. Zapf J, Waldvogel M, Froesch R. Binding of non-suppressible insulin-like activity to human serum: Evidence for a carrier protein. Arch. Biochem. Biophys. 1975; 168:638–645

    PubMed  CAS  Google Scholar 

  30. Hall K, Takano K, Fryklund L, Sievertsson H. Somatomedins. Adv. Metab. Disord. 1975; 8:19–46

    PubMed  CAS  Google Scholar 

  31. Cohen K, Nissley S. The serum half-life of somatomedin activity: Evidence for growth hormone dependence. Acta Endocrinol. 1976; 83:243–258

    PubMed  CAS  Google Scholar 

  32. Furlanetto R. The somatomedin C binding protein: evidence for a heterologous subunit structure. J. Clin. Endocrinol. Metab. 1980; 54:223–228

    Google Scholar 

  33. Martin J, Baxter R. Insulin-like growth factor binding protein from human plasma: Purification and characterization. J. Biol. Chem. 1986; 261:8754–8760

    PubMed  CAS  Google Scholar 

  34. Baxter R, Martin J. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: Determination by reconstitution and affinity-labeling. Proc. Natl. Acad. Sci. USA 1989; 86:6898–6902

    PubMed  CAS  Google Scholar 

  35. Bar R, Boes M, Dake B, Sandra A, Bayne M, Cascieri M, Booth B. Tissue localization of perfused endothelial cell IGF binding protein is markedly altered by association with IGF-I. Endocrinology 1990; 127:3243–3245

    PubMed  CAS  Google Scholar 

  36. Bach L, Rechler M. Insulin-like growth factor binding proteins. Diabetes Rev. 1995; 3:38–61

    Google Scholar 

  37. Pratt S, Pollak M. Insulin-like growth factor binding protein 3 (IGF-Bp3) inhibits estrogen-stimulated breast cancer cell proliferation. Biochem. Biophys. Res. Commun. 1994; 198:292–297

    Article  PubMed  CAS  Google Scholar 

  38. Ritvos O, Ranta T, Jalkanen J, Suikkari A, Voutilainen R, Bohn H, Rutanen E. Insulin-like growth factor (IGF) binding protein from human decidua inhibits the binding and biological action of IGF-I in cultured choriocarcinoma cells. Endocrinology 1988;1122:2150–2157

    Google Scholar 

  39. Rutanen E, Pekonen F, Mäkinen T. Soluble 34 K binding protein inhibits the binding of insulin-like growth factor I to its cell receptors in human secretory phase endometrium: evidence for autocrine/paracrine regulation of growth factor action. J. Clin. Endocrinol. Metab. 1988; 66:173–180

    PubMed  CAS  Google Scholar 

  40. Elgin RG, Busby WH, Clemmons DR. An insulin-like growthfactor (IGF) binding protein enhances the biological response to IGF-I. Proc.Natl.Acad.Sci. USA 1987; 84:3254–3258

    PubMed  CAS  Google Scholar 

  41. Blum W, Jenne E, Reppin F, Kietzmann K, Ranke M, Bierich J. Insulin-like growth factor I (IGF-I)-binding protein complex is a better mitogen than free IGF-I. Endocrinology 1989; 125:766–772

    PubMed  CAS  Google Scholar 

  42. Clemmons D, Elgin R, Han V, Casella S, D’Ercole A, Van Wyk J. Cultured fibroblasts monolayers secrete a protein that modulates the binding of somatomedin C/indulin-like growth factor I. Mol. Endocrinol. 1986; 1:339–347

    Google Scholar 

  43. Clemmons DR, Jones JI, Busby WH, Wright G. Role of insulin-like growth factor binding proteins in modifying IGF actions. Ann. N.Y. Acad. Sci. 1993; 692:10–21

    PubMed  CAS  Google Scholar 

  44. McCusker R, Camacho-Hubner C, Bayne M, Cascieri M, Clemmons D. Insulin-like growth factor (IGF) binding to human fibroblast and glioblastoma cells: The modulating effect of cell released IGF binding proteins. J. Cell. Physiol. 1990; 144:244–253

    Article  PubMed  CAS  Google Scholar 

  45. McCusker R, Busby W, Dehoff M, Camacho-Hubner C, Clemmons D. Insulin-like growth factor (IGF) binding to cell monolayer is directly modulated by the addition of IGF binding proteins. Endocrinology 1991; 129:939–949

    PubMed  CAS  Google Scholar 

  46. Chen J, Shao Z, Sheikh M, Hussain A, LeRoith D, Roberts C, Fontana J. Insulin-like growth factor-binding protein enhancement of insulin-like growth factor-I (IGF-I)-mediated DNA synthesis and IGF-I binding in a human breast carcinoma cell line. J. Cell. Physiol. 1994; 158:69–78

    Article  PubMed  CAS  Google Scholar 

  47. Hodgson D. Free-ligand accelerated dissociation of insulin-like growth factor 1 (IGF-1) from the type I IGF receptor is reduced by insulin-like growth factor binding protein 3. Regul. Pept. 2000; 90:33–37

    Article  PubMed  CAS  Google Scholar 

  48. DeMellow J, Baxter R. Growth hormone-dependent insulin-like growth factor (IGF) binding protein both inhibits and potentiates IGF-I stimulated DNA synthesis in human skin fibroblasts. Biochem. Biophys. Res. Commun. 1988; 156:199–204

    PubMed  Google Scholar 

  49. Conover CA, Perry JE, Tindall DJ. Endogenous cathepsin-D mediated hydrolysis of insulin-like growth factor binding proteins in cultured human prostatic carcinoma cells. J. Clin. Endocrinol. Metab. 1995; 80:987–993

    Article  PubMed  CAS  Google Scholar 

  50. Fowlkes J, Thrailkill K, Serra D, Suzuki K, Nagase H. Matrix metalloproteinases as insulin-like growth factor binding protein-degrading proteinases. Prog. Growth Factor Res 1995; 6:255–263

    Article  PubMed  CAS  Google Scholar 

  51. Mañes S, Mira E, Barbacid M, Ciprés A, Fernández-Resa P, Buesa J, Mérida I, Aracil M, Márquez G, Mártinez-A. C. Identification of insulin-like growth factor binding protein-1 as a potential physiological substrate for human stromelysin-3. J. Biol. Chem. 1997; 272:25706–25712

    PubMed  Google Scholar 

  52. Claussen M, Kubler B, Wendland M, Neifer K, Schmidt B, Zapf J, Braulke T. Proteolysis of insulin-like growth factors (IGF) and IGF binding proteins by cathepsin D. Endocrinology 1997; 138:3797–3803

    Article  PubMed  CAS  Google Scholar 

  53. Long L, Navab R, Brodt P. Regulation of the Mr 72,000 type IV collagenase by the type I insulin-like growth factor receptor. Cancer Res 1998; 58:3243–3247

    PubMed  CAS  Google Scholar 

  54. Emonard H, Remacle A, Noel A, Grimaud J-A, Stetler-Stevenson W, Foidart J-M. Tumour cell surface-associated binding site for the Mr 72,000 type IV collagenase. Cancer Res 1992; 52:5845–5848

    PubMed  CAS  Google Scholar 

  55. Brooks P, Strömblad S, Sanders L, von Schalscha T, Aimes R, Stetler-Stevenson W, Quigley J, Cheresh D. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3 Cell 1996; 85:683–693

    Article  PubMed  CAS  Google Scholar 

  56. Mira E, Mañes S, Lacalle R, Marquez G, Martinez-A. C. IGF-I-triggered cell migration and invasion is mediated by the matrix metalloproteinase MMP-9. Endocrinology 1998; 140:1657–1664

    Google Scholar 

  57. Conover C, Clarkson J, Bale L. Factors regulating insulin-like growth factor-binding protein-3 binding, processing and potentiation of insulin-like growth factor action. Endocrinology 1996; 137:2286–2292

    PubMed  CAS  Google Scholar 

  58. Gill Z, Perks C, Newcomb P, Holly J. Insulin-like growth factor-binding Protein (IGFBP-3) predisposes breast cancer cells to programmed cell death in a non-IGF-dependent manner. J. Biol. Chem. 1997; 272:25602–25607

    Article  PubMed  CAS  Google Scholar 

  59. Oh Y. IGF-independent regulation of breast cancer growth by IGF binding proteins. Breast Cancer Res Treat 1998; 47:283–293

    Article  PubMed  CAS  Google Scholar 

  60. Cohen P, Lamson G, Okajima T, Rosenfeld R. Transfection of the human insulin-like growth factor binding protein-3 gene into Balb/c fibroblasts inhibits cellular growth. Mol. Endocrinol. 1993;7:380–386

    Article  PubMed  CAS  Google Scholar 

  61. Valentinis B, Bhala A, DeAngelis T, Baserga R, Cohen P. The human insulin-like growth factor (IGF) binding protein-3 inhibits the growth of fibroblasts with a targeted disruption of the IGF-I receptor gene. Mol. Endocrinol. 1995; 9:361–367

    Article  PubMed  CAS  Google Scholar 

  62. Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995; 377:646–649

    Article  PubMed  CAS  Google Scholar 

  63. Swisshelm K, Ryan K, Tsuchiya K, Sager R. Enhanced expression of an insulin growth factor-like binding protein (mac25) in senescent human mammary epithelial cells and induced expression with retinoic acid. Proc. Natl. Acad. Sci. U.S.A. 1995; 92:4472–4476

    PubMed  CAS  Google Scholar 

  64. Lammers R, Gray A, Schlessinger J, Ullrich A. Differential signaling potential of insulin-and IGF-1-receptor cytoplasmic domains. EMBO J. 1989; 1989:1369–1375

    Google Scholar 

  65. Flier J, Usher P, Moses A. Monoclonal antibody to the type insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: Clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1986; 83:664–668

    PubMed  CAS  Google Scholar 

  66. Czech M. Signal transmission by the Insulin-like growth factors. Cell 1989; 59:235–238

    Article  PubMed  CAS  Google Scholar 

  67. Ullrich A, Gray A, Tam A, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986; 5:2503–2512

    PubMed  CAS  Google Scholar 

  68. Massagué J, Czech M. The subunit structures of two distinct receptors for insulin-like growth factor I and II and their relationship to the insulin receptor. J. Biol. Chem. 1982; 257:5038–5041

    PubMed  Google Scholar 

  69. Kasuga M, Sasaki N, Kahn C, Nissley S, Rechler M. Antireceptor antibodies as probes of insulin-like growth factor receptor structure. J. Clin. Invest. 1983; 72:1459–1469

    PubMed  CAS  Google Scholar 

  70. Jacobs S, Kull F, Earp H, Svoboda M, Van Wyk J, Cuatrecasas P. Somatomedin-C stimulates the phosphorylation of the β-subunit of its own receptor. J. Biol. Chem. 1983; 258:9581–9584

    PubMed  CAS  Google Scholar 

  71. Rubin J, Shia M, Pilch P. Stimulation of tyrosine-specific phosphorylation in vitro by insulin-like growth factor I. Nature 1983; 305:438–440

    Article  PubMed  CAS  Google Scholar 

  72. Frattali A, Pessin J. Relationship between alpha subunit ligand occupancy abd beta subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors. J. Biol. Chem. 1993; 268:7393–7400

    PubMed  CAS  Google Scholar 

  73. Kato H, Faria T, Stannard B, Roberts C, LeRoith D. Role of tyrosine kinase activity in signal transduction by the insulin-like growth factor-I (IGF-I) receptor. J. Biol. Chem. 1993; 268:2655–2661

    PubMed  CAS  Google Scholar 

  74. Kornfeld S. Structure and function of the mannose-6-phosphate/ insulin-like growth factor-II receptors. Annu. Rev. Biochem. 1992; 61:307–330

    Article  PubMed  CAS  Google Scholar 

  75. Morgan D, Edman J, Standring D, Fried V, Smith M, Roth R, Rutter W. Insulin-like growth factor-II receptor as a multifunctional binding protein. Nature 1987;329:301–307

    Article  PubMed  CAS  Google Scholar 

  76. Kiess W, Haskell J, Lee L, Greenstein L, Miller B, Aarons A, Rechler M, Nissley S. An antibody that blocks insulin-like growth factor (IGF) binding to the type II IGF receptor is neither an agonist nor an inhibitor of IGF-stimulated biologic responses in L6 myoblasts. J. Biol. Chem. 1987; 262:12745–12751

    PubMed  CAS  Google Scholar 

  77. Lau M, Stewart C, Liu Z, Bhatt H, Rotwein P, Stewart C. Loss of the imprinted IGF2/cation-independent mannose-6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994; 8:2953–2963

    PubMed  CAS  Google Scholar 

  78. Shier P, Watt V. Primary structure of a putative receptor for a ligand of the insulin family. J. Biol. Chem. 1989; 264:14605–14608

    PubMed  CAS  Google Scholar 

  79. Zhang B, Roth R. The insulin receptor-related receptor. Tissue expression, ligand binding specificity, and signaling capabilities. J. Biol. Chem. 1992; 267:18320–18328

    PubMed  CAS  Google Scholar 

  80. Stewart C, Rotwein P. Growth, differentiation, and survival: Multiple physiological functions for insulin-like growth factors. Physiol. Rev. 1996; 76:1005–1026

    PubMed  CAS  Google Scholar 

  81. Leof E, Walker W, Van Wyk J, Pledger W. Epidermal growth factor (EGF) and somatomedin C regulate G1 progression in competent BALB/c 3T3 cells. Exp. Cell. Res. 1982; 141:107–115

    Article  PubMed  CAS  Google Scholar 

  82. Sell C, Rubini M, Rubin R, Liu J-P, Efstratiadis A, Baserga R. Simian virus 40 large tumour antigen is unable to transform mouse embryonic fibroblastslacking type 1 insulin-like growth factor receptor. Proc. Natl. Acad. Sci. U.S.A. 1993:90:11217–11221

    PubMed  CAS  Google Scholar 

  83. Palmiter R, Norstedt G, Gelinas R, Hammer R, Brinster R. Metallothionein-human GH fusion genes stimulate growth of mice. Science 1983; 222:809–814

    PubMed  CAS  Google Scholar 

  84. Mathews L, Hammer R, Behringer R, D’Ercole A, Bell G, Brinster R, Palmifer R. Growth enhancement of transgenic mice expressing insulin-like growth factor-I. Endocrinology 1988; 123:2827–2833

    PubMed  CAS  Google Scholar 

  85. DeChiara T, Efstratiadis A, Robertson E. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 1990; 345:78–80

    Google Scholar 

  86. DeChiara T, Robertson E, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991; 64:849–859

    Google Scholar 

  87. Wang Z, Fung M, Barlow D, Wagner E. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 1994; 372:464–467

    Article  PubMed  CAS  Google Scholar 

  88. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993; 75:73–82

    Article  PubMed  CAS  Google Scholar 

  89. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-I) and type-1 IGF receptor (IgfIr). Cell 1993; 75:59–72

    Article  PubMed  CAS  Google Scholar 

  90. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA. IGF-I is required for normal embryonic growth in mice. Genes & Development 1993; 7:2609–2617

    CAS  Google Scholar 

  91. Araki E, Lipes M, Patti M, Bruning J, Haag B, Johnson R, Kahn C. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 1994; 372:186–190

    Article  PubMed  CAS  Google Scholar 

  92. Withers D, Gutierrez J, Towery H, Burks D, Ren J, Previs S, Zhang Y, Bernal D, Pons S, Shulman G, Bonner-Weir S, White M. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391:900–904

    PubMed  CAS  Google Scholar 

  93. DeMellow SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: Inhibition of death by insulin-like growth factor I and cAMP. Proc. Natl. Acad. Sci. U.S.A. 1993; 90:10989–10993

    Google Scholar 

  94. Harrington EA, Bennett MR, Fanidi A, Evan GI. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 1994; 13:3286–3295

    PubMed  CAS  Google Scholar 

  95. Hueber A, Zornig M, Lyon D, Suda T, Nagata S, Evan G. Requeriment for the CD95 receptor ligand pathway in c-Myc-induced apoptosis. Science 1997; 278:1305–1309

    Article  PubMed  CAS  Google Scholar 

  96. Jung Y, Miura M, Yuan J. Suppression of interleukin-1 beta-converting enzyme-mediated cell death by insulin-like growth factor. J. Biol. Chem. 1996; 271:5112–5117

    PubMed  CAS  Google Scholar 

  97. Heck S, Lezoualc’h F, Engert S, Behl C. Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor κB. J. Biol. Chem. 1999; 274:9828–9835

    Article  PubMed  CAS  Google Scholar 

  98. Kaliman P, Canicio J, Testar X, Palacin M, Zorzano A. Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-κB and inducible nitric-oxide synthase define a common myogenic signaling pathway. J. Biol. Chem. 1999; 274:17437–17444

    Article  PubMed  CAS  Google Scholar 

  99. Hsu D, Knudson P, Zapf A, Rolband G, Olefsky J. NPXY motif in the insulin-like growth factor-I receptor is required for efficient ligand-mediated receptor internalization and biological signalling. Endocrinology 1994; 134:744–750

    Article  PubMed  CAS  Google Scholar 

  100. White M, Kahn C. The insulin signalling system. J. Biol. Chem. 1994; 269:1–4

    PubMed  CAS  Google Scholar 

  101. Lavan B, Lane W, Lienhard G. The 60 kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem. 1997; 272:11439–11443

    Article  PubMed  CAS  Google Scholar 

  102. Fantin V, Lavan B, Wang Q, Jenkins N, Gilbert D, Copeland N, Keller S, Lienhard G. Cloning, tissue expression, and chromosomal location of the mouse insulin receptor substrate 4 gene. Endocrinology 1999; 140:1329–1337

    Article  PubMed  CAS  Google Scholar 

  103. Kulkarni R, Bruning J, Daniels M, Ning J, Flier S, Hanahan D, Kahn C. Altered function of insulin receptor substrate-1-deficient mouse islets and cultured β lines. J. Clin. Invest. 1999; 104:R69–R75

    PubMed  CAS  Google Scholar 

  104. Withers D, Burks D, Towery H, Altamuro S, Flin C, White M. Irs-2 coordinates Igf-1 receptor-mediated b-cell development and peripheral insulin signalling. Nat. Genet. 1999; 23:32–40

    PubMed  CAS  Google Scholar 

  105. Liu S, Wang Q, Lienhard G, Keller S. Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J. Biol. Chem. 1999; 274:18093–18099

    PubMed  CAS  Google Scholar 

  106. Fantin V, Wang Q, Lienhard G, Keller S. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 2000; 278:E127–E133

    PubMed  CAS  Google Scholar 

  107. Uchida T, Myers M, White M. IRS-4 mediates activation of PKB/Akt during insulin stimulation without inhibition of apoptosis. Mol. Cell. Biol. 2000; 20:126–138

    Article  PubMed  CAS  Google Scholar 

  108. Petley T, Graff K, Jiang W, Yang H and Florini, J. Variation among cell types in the signaling pathways by which IGF-I stimulates specific cellular responses. Horm. Metab. Res. 1999; 31:70–76

    PubMed  CAS  Google Scholar 

  109. Wang L, Myers M, Sun X, Aaronson S, White M. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells. Science 1993; 261:1591–1594

    PubMed  CAS  Google Scholar 

  110. Myers M, Grammer T, Wang L, Sun X, Pierce J, Blenis J, White M. Insulin receptor substrate-1 mediates phosphatidylinositol 3’-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. J. Biol. Chem. 1994; 269:28783–28789

    PubMed  CAS  Google Scholar 

  111. Argetsinger L, Hsu G, Myers M, Billestrup N, White M, Carter-Su C. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosine phosphorylation of insulin receptor substrate-1. J. Biol. Chem. 1995; 270:14685–14692

    PubMed  CAS  Google Scholar 

  112. Ihle J. Cytokine receptor signalling. Nature 1995; 377:591–594

    Article  PubMed  CAS  Google Scholar 

  113. Vuori K, Ruoslahti E. Association of insulin receptor substrate-1 with integrins. Science 1994; 266:1576–1578

    PubMed  CAS  Google Scholar 

  114. Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C. Gastrin stimulates tyrosine phosphorylation of insulin receptor substrate-1 and its association with Grb2 and the phosphatidylinositol 3-kinase. J. Biol. Chem. 1996; 271:26356–26361

    PubMed  CAS  Google Scholar 

  115. Benz C. Transcription factors and breast cancer. Endocrine-Related Cancer 1998; 5:271–282

    CAS  Google Scholar 

  116. Surmacz E, Guvakova, MA, Nolan, MK, Nicosia, RF and Sciacca, L. Type I insulin-like growth factor receptor function in breast cancer. Breast. Cancer Res. Treat. 1998; 47:255–267

    Article  PubMed  CAS  Google Scholar 

  117. Stewart A, Johnson M, May F, Westley B. Role of insulin-ike growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J. Biol. Chem. 1990; 265:21172–21178

    PubMed  CAS  Google Scholar 

  118. Lee A, Jackson J, Gooch J, Hilsenbeck S, Coronado-Heinsohn E, Osborne C, Yee D. Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol. Endocrinol. 1999; 5:787–796

    Google Scholar 

  119. Westley B, Clayton, SJ, Daws, MR, Molloy, CA and May, FE. Interactions between the oestrogen and insulin-like growth factor signaling pathways in the control of breast epithelial cell proliferation. Biochem. Soc. Symp. 1998; 63

    Google Scholar 

  120. Mathieu M, Vignon F, Capony F, Rochefort H. Estradiol downregulates the mannose-6-phosphate/IGFII receptor gene and induces cathepsin D in breast cancer cells: a receptor saturation mechanism to increase the secretion of lysosomal pro-enzymes. Mol Endocrinol 1991; 5:815–822

    PubMed  CAS  Google Scholar 

  121. Smith C. Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biol. Reprod. 1998; 58:627–632

    PubMed  CAS  Google Scholar 

  122. Aronica S, Katzenellenbogen B. Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin growth factor-I. Mol. Endocrinol. 1993; 7:743–752

    Article  PubMed  CAS  Google Scholar 

  123. Lee A, Weng C, Jackson J, Yee D. Activation of estrogen receptor-mediated gene transcription by IGF-I in human breast cancer cells. J. Endocrinol. 1997; 152:39–47

    PubMed  CAS  Google Scholar 

  124. Huynh H, Yang X, Pollak M. Estradiol and antiestrogens regulate a growth inhibitory insulin-like growth factor binding protein 3 autocrine loop in human breast cancer cells. J. Biol Chem. 1996; 271:1016–1021

    PubMed  CAS  Google Scholar 

  125. Perlino E, Tommasi S, Moro L, Bellizzi A, Ersilia M, Casavola V, Reshkin S. TGF-β1 and IGF-I expression are differentially regulated by serum in metastatic and non-metastatic human breast cancer cells. Int. J. Oncol. 2000; 16:155–160

    PubMed  CAS  Google Scholar 

  126. Ford C, Skiba N, Bae H, Daaka Y, Reuveny E, Shekter L, Rosal R, Weng G, Yang C, Iyengar R, Miller R, Jan L, Lefkowitz R, Hamm H. Molecular basis for interactions of G protein betagamma subunits with effectors. Science 1998; 280:1271–1274

    Article  PubMed  CAS  Google Scholar 

  127. Aral H, Tsou C, Charo I. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: Evidence that directed migration is mediated by βγ dimers released by activation of Gai-coupled receptors. Proc. Natl. Acad. Sci. USA 1997; 94:14495–14499

    Google Scholar 

  128. Neptune E, Bourne H. Receptors induce chemotaxis by releasing the βγ subunit of Gi, not by activating Gq or Gs. Proc. Natl. Acad. Sci. USA 1997; 94:14489–14494

    Article  PubMed  CAS  Google Scholar 

  129. Neptune E, Iiri T, Bourne H. Gαi is not required for chemotaxis mediated by Gi-coupled receptors. J. Biol. Chem. 1999; 274:2824–2828

    Article  PubMed  CAS  Google Scholar 

  130. Linseman D, Benjamin C, Jones D. Convergence of angiotensin II and the platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J. Biol. Chem. 1995; 270:12563–12568

    PubMed  CAS  Google Scholar 

  131. Daub H, Weiss F, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996; 379:557–560

    Article  PubMed  CAS  Google Scholar 

  132. Rao G, Delafontaine P, Runge M. Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1 and phospholipase C-gamma 2 in rat aortic smooth muscle cells. J. Biol. Chem. 1995; 270:27871–27875

    Article  PubMed  CAS  Google Scholar 

  133. Luttrell L, van Biesen T, Hawes B, Koch W, Touhara K, Lefkowitz R. G beta gamma subunits mediate mitogen-activated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J. Biol. Chem. 1995; 270:16495–16498

    PubMed  CAS  Google Scholar 

  134. Kanzaki M, Nie L, Shibata H, Kojima I. Activation of a calcium-permeable cation channel CD20 expressed in Balb/c 3T3 cells by insulin-like growth factor-I. J. Biol. Chem. 1997; 272:4964–4969

    Article  PubMed  CAS  Google Scholar 

  135. Uehara T, Tokumitsu Y, Nomura Y. Pertussis toxin-sensitive and insensitive intracellular signalling pathways in undifferentiated 3T3-L1 cells stimulated by insulin converge with phosphatidylinositol 3-kinase upstream of the Ras mitogen-activated protein kinase cascade. Eur. J. Biochem. 1999; 259:801–808

    Article  PubMed  CAS  Google Scholar 

  136. Stracke M, Engel J, Wilson L, Rechler M, Liotta L, Schiffmann E. The type I insulin-like growth factor receptor is a motility receptor in human melanoma cells. J. Biol. Chem. 1989; 264:21544–21549

    PubMed  CAS  Google Scholar 

  137. Langlois D, Hinsch K, Saez J, Begeot M. Stimulatory effect of insulin and insulin-like growth factor I on Gi proteins and angiotensin-II-induced phosphoinositide breakdown in cultured bovine adrenal cells. Endocrinology 1990; 126:1867–1872

    PubMed  CAS  Google Scholar 

  138. Siebler T, Kiess W, Linder B, Kessler U, Schwarz H, Nissley S. Pertussis toxin sensitive G-proteins are not involved in the mitogenic signaling pathway of insulin-like growth factor-I in normal rat kidney epithelial (NRKE) cells. Regul. Pept. 1996; 62:65–71

    Article  PubMed  CAS  Google Scholar 

  139. Clapham D, Neer E. G protein beta gamma subunits. Annu. Rev. Pharmacol. Toxicol. 1997; 37:167–203

    Article  PubMed  CAS  Google Scholar 

  140. Sánchez-Margalet V, González-Yanes C, Santos-Alvarez J, Najib S. Insulin activates Gαi 1, 2 protein in rat hepatoma (HTC) cell membranes. Cell Mol. Life Sci. 1999; 55:142–147

    PubMed  Google Scholar 

  141. Hallak H, Seiler A, Green J, Ross B, Rubin R. Association of heterotrimeric Gi with the insulin-like growth factor-I receptor. Release of Gβγ subunits upon receptor activation. J. Biol. Chem. 2000; 275:2255–2258

    Article  PubMed  CAS  Google Scholar 

  142. Mira E, Lacalle R, González M, Gómez-Moutón C, Abad J, Bernad A, Martínez-A C, Mañes S. A role for chemokine receptor transactivation in growth factor signaling. (Submitted for publication)

    Google Scholar 

  143. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A. EGF receptor transactivation by G-protein-coupled receptorsrequires metalloproteinase cleavage of proHB-EGF. Nature 1999; 402:884–888

    PubMed  CAS  Google Scholar 

  144. Ward S, Bacon K, Westwick J. Chemokines and T lymphocytes: more than attraction. Immunity 1998; 9:1–11

    Article  PubMed  CAS  Google Scholar 

  145. Cordon-Cardo C, Prives C. At the crossroads of inflammation and tumourigenesis. J. Exp. Med. 1999; 190:1367–1370

    Article  PubMed  CAS  Google Scholar 

  146. Mack M, Luckow B, Nelson P, Cihak J, Simmons G, Clapham P, Signoret N, Marsh M, Strangassinger M, Borlat F, Wells T, Schlöndorff D, Proudfoot A. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: A novel inhibitory mechanism of HIV infectivity. J. Exp. Med. 1998; 187: 1215–1224

    Article  PubMed  CAS  Google Scholar 

  147. Simmons G, Clapham P, Picard L, Offord R, Rosenkilde M, Schwartz T, Buser R, Wells T, Proudfoot A. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 1997; 276:276–279

    Article  PubMed  CAS  Google Scholar 

  148. Liu R, Paxton W, Choe S, Ceradini D, Martin S, Horuk R, MacDonald M, Stuhlmann H, Koup R, Landau N. Homozygous defect in HIV-1 coreceptor accounts for resistence of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86:367–377

    PubMed  CAS  Google Scholar 

  149. Samson M, Libert F, Doranz B, Rucker J, Liesnard C, Farber C, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth R, Collman R, Doms R, Vassart G, Parmentier M. Resistence to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature 1996; 382:722–725

    Article  PubMed  CAS  Google Scholar 

  150. Benkirane M, Jin D, Chun R, Koup R, Jeang K. Mechanism of transdominant inhibition of CCR5-mediatedHIV-1 infection by cer5Δ32. Biol. Chem. 1997; 272:30603–30606

    CAS  Google Scholar 

  151. Sgroi D, Teng S, Robinson G, LeVangie R, Hudson J, Jr, Elkahloun A. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 1999; 59:5656–5661

    PubMed  CAS  Google Scholar 

  152. Luboshits G, Shina S, Kaplan O, Engelberg S, Nass D, Lifshitz-Mercer B, Chaitchik S, Keydar I, Ben-Baruch A. Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res. 1999; 59:4681–4687

    PubMed  CAS  Google Scholar 

  153. Kim J, Yu W, Kovalski K, Ossowski L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 1998; 94:353–362

    Article  PubMed  CAS  Google Scholar 

  154. Quigley J, Armstrong P. Tumour cell intravasation Alu-cidated: the chick embryo opens the window. Cell 1998; 94:281–284

    Article  PubMed  CAS  Google Scholar 

  155. Mañes S, Llorente M, Lacalle RA, Gómez-Mouton C, Kremer L, Mira E, Martínez-A. C. The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J.Biol. Chem. 1999; 274:6935–6945

    PubMed  Google Scholar 

  156. Krontiris T, Cooper G. Transforming activity of human tumour DNAs. Proc. Natl. Acad. Sci. USA 1981; 78:1181–1184

    PubMed  CAS  Google Scholar 

  157. Pulciani S, Santos E, Lauver A, Long L, Robbins K, Barbacid M. Oncogenesin human tumour cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. Proc. Natl. Acad. Sci. USA 1982; 79:2845–2549

    PubMed  CAS  Google Scholar 

  158. Santos E, Tronick S, Aaronson S, Pulciani S, Barbacid M. T24 human bladder carcinoma oncogens is an activated form of the normal human homologue of BALB-and Harvey-MSV transforming genes. Nature 1982; 298:343–347

    Article  PubMed  CAS  Google Scholar 

  159. Harada S, Nishimoto I. Possible requirement of serum progression factors for transformation of BALB/c 3T3 fibroblasts byv-ras p21. FEBS Lett. 1991; 295:59–62

    Article  PubMed  CAS  Google Scholar 

  160. Falco J, Taylor W, Di Fiore P, Weissman B, Aaronson S. Interactions of growth factors and retroviral oncogenes with mitogenic signal transduction pathways of Balb/MK keratinocytes. Oncogene 1988; 2:573–578

    PubMed  CAS  Google Scholar 

  161. Lemoni N, Mayall E, Wyllie F, Williams D, Goyns M, Stringer B, Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumourigenesis. Oncogene 1989; 4:159–164

    Google Scholar 

  162. Bond J, Wyllie F, Rowson J, Radulescu A, Wynford-Thomas D. In vitro reconstitution of tumour initiation in a human epithelium. Oncogene 1994; 9:281–290

    PubMed  CAS  Google Scholar 

  163. Thomas G, Williams D, Williams E. Reversibility of the malignant phenotype in monoclonal tumours in the mouse. Br. J. Cancer 1991; 63:213–216

    PubMed  CAS  Google Scholar 

  164. Kaleko M, Rutter W, Miller A. Overexpression of the human insulin-like growth factor I receptor promotes ligand dependent neoplastic transformation. Mol. Cell. Biol. 1990; 10:464–473

    PubMed  CAS  Google Scholar 

  165. Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, DeAngelis T, Rubin R, Efstratiadis A, Baserga R. Effect of an u l lmutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol. Cell. Biol. 1994; 14:3604–3612

    PubMed  CAS  Google Scholar 

  166. Morrione A, DeAngelis T, Baserga R. Failure of the bovine papillomavirus to transform mouse embryo fibroblasts with a targeted disruption of the insulin-like growth factor I receptor genes. J. Virol. 1995; 69:5300–5303

    PubMed  CAS  Google Scholar 

  167. Coppola D, Ferber A, Miura M, Sell C, D’Ambrosio C, Rubin R, Baserga R. A functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol. Cell. Biol. 1994; 14:4588–4595

    PubMed  CAS  Google Scholar 

  168. Christofori G, Naik P, Hanahan D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumourogenesis. Nature 1994; 369:414–417

    Article  PubMed  CAS  Google Scholar 

  169. Trojan J, Blossey B, Johnson T, Rudin S, Tykocinski M, Ilan J, Ilan J. Loss of tumourigenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of insulin-like growth factor I. Proc. Natl. Acad. Sci. U.S.A. 1992; 89:4874–4878

    PubMed  CAS  Google Scholar 

  170. Trojan J, Johnson T, Rudin S, Blossey B, Kelley K, Shevelev A, Abdul-Karim F, Anthony D, Tykocinski M, Ilan J, Ilan J. Gene therapy of murine teratocarcinoma: separate functions for insulin-like growth factors I and-II in immunogenicity and differentiation. Proc. Natl. Acad. U.S.A. 1994; 91:6088–6092

    CAS  Google Scholar 

  171. Shapiro D, Jones B, Shapiro L, Dias P, Houghton P. Antisense-mediated reduction in insulin-like growth factor-I receptor expression suppresses the malignant phenotype of a human alveolar rhabdomyosarcoma. J. Clin. Invest. 1994; 94:1235–1242

    PubMed  CAS  Google Scholar 

  172. Resnicoff M, Sell C, Rubini M, Coppola D, Ambrose D, Baserga R, Rubin R. Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumourigenic and induce regression of wild-type tumours. Cancer Res. 1994; 54:2218–2222

    PubMed  CAS  Google Scholar 

  173. Resnicoff M, Coppola D, Sell C, Rubin R, Ferrone S, Baserga R. Growth inhibition of human melanoma cells in nude mice by antisense strategies to the type 1 insulin-like growth factor receptor. Cancer Res. 1994; 54:4848–4850

    PubMed  CAS  Google Scholar 

  174. Resnicoff M, Abraham D, Yutanawiboonchai W, Rotman H, Kajstura J, Rubin R, Zoltick P, Baserga R. The insulin-like growth factor I receptor protects tumour cells from apoptosis in vivo. Cancer Res. 1995; 55:2463–2469

    PubMed  CAS  Google Scholar 

  175. Lee C, Wu S, Gabrivolich D, Chen H, Nadaf-Rahrov S, Ciernick I, Carbone D. Antitumour effects of an adenovirus expressing antisense insulin-like growth I receptor on human lung cancer cell lines. Cancer Res. 1996; 56:3038–3041

    PubMed  CAS  Google Scholar 

  176. Burfein P, Chernicky C, Rininsland F, Ilan J, Ilan J. Antisense RNA to type I insulin-like growth factor receptor suppresses tumour growth and prevents invasion by rat prostate cancer cells in vivo. Proc. Natl. Acad. Sci. U.S.A. 1996; 93:7263–7268

    Google Scholar 

  177. Baserga R. The insulin-like growth factor I receptor: A key to tumour growth? Cancer Res. 1995; 55:249–252

    PubMed  CAS  Google Scholar 

  178. Arteaga C, Kitten L, Coronado E, Jacobs S, Kull F, Allred D, Osborne C. Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cell in athymic mice. J. Clin. Invest. 1989; 84:1418–1423

    PubMed  CAS  Google Scholar 

  179. Arteaga C. Intereference of the IGF system as a strategy to inhibit breast cancer growth. Breast Cancer Res. Treat. 1992; 22:101–106

    Article  PubMed  CAS  Google Scholar 

  180. Prager D, Li HL, Asa H, Melmed S. Dominant negative inhibition of tumourigenesis in vivo by human insulin-like growth factor-I receptor mutant. Proc. Natl. Acad. Sci. USA 1994; 91:2181–2185

    PubMed  CAS  Google Scholar 

  181. Resnicoff M, Ambrose D, Coppola D, Rubin R. Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Lab. Invest. 1993; 69:756–760

    PubMed  CAS  Google Scholar 

  182. Chernicky C, Yi L, Tan H, Gan S, Ilan J. Treatment of human breast cancer cells with antisense RNA to the type I insulin-like growth factor receptor inhibits cell growth, suppresses tumourigenesis, alters the metastatic potential, and prolongs survival in vivo. Cancer Gene Ther 2000; 7:384–395

    Article  PubMed  CAS  Google Scholar 

  183. Long L, Rubin r, Baserga R, Brodt P. Loss of metastatic phenotype in murine carcinoma cells expressing an antisense RNA to the insulin-like growth factor receptor. Cancer Res 1995; 55:1006–1009

    PubMed  CAS  Google Scholar 

  184. Dunn S, M E, Sharp N, Reiss K, Solomon G, Hawkins R, Baserga R, Barrett J. A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res 1998; 58:3353–3361

    PubMed  CAS  Google Scholar 

  185. Tartare S, Mothe I, Kowalski-Chauvel A, Breittmayer J-P, Ballotti R, Van Obberghen E. Signal transduction by a chimeric insulin-like growth factor-1 (IGF-1) receptor having the carboxyl-terminal domain of the insulin receptor. J. Biol. Chem. 1994; 269:11449–11455

    PubMed  CAS  Google Scholar 

  186. Kato H, Faria T, Stannard B, Roberts C, LeRoith D. Essential role of tyrosine residues 1131, 1135 and 1136 of the insulin-like growth factor-I (IGF-I) receptor in IGF-I action. Mol. Endocrinol. 1994; 8:40–50

    Article  PubMed  CAS  Google Scholar 

  187. Li S, Ferber A, Miura M, Baserga R. Mitogenicity and transforming activity of the insulin-like growth factor receptor with mutations in the tyrosine kinase domain. J. Biol. Chem. 1994; 269:32558–32564

    PubMed  CAS  Google Scholar 

  188. O’Connor R, Kauffmann-Zeh A, Liu Y, Lehar S, Evan G, Baserga R, Blattler W. Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol. Cell Biol. 1997; 17:427–435

    Google Scholar 

  189. Surmacz E, Sell C, Swantek J, Kato H, Roberts C, LeRoith D, Baserga R. Dissociation of mitogenesis and transforming activity by C-terminal truncation of the insulin-like growth factor-I receptor. Exp. Cell Res. 1995; 218:370–380

    Article  PubMed  CAS  Google Scholar 

  190. Miura M, Surmacz E, Burgaud J, Baserga R. Different effects on mitogenesis and transformation of a mutation at tyrosine 1251 of the insulin-like growth factor I receptor. J. Biol. Chem. 1995; 270:22639–22644

    PubMed  CAS  Google Scholar 

  191. Li S, Resnicoff M, Baserga R. Effect of mutations at serines 1280–1283 on the mitogenic and transforming activities of the insulin-like growth factor I receptor. J. Biol. Chem. 1996; 271:12254–12260

    PubMed  CAS  Google Scholar 

  192. Peterson J, Jelinek T, Kaleko M, Siddle K, Weber M. Phosphorylation and activation of the IGF-I receptor in src-transformed cells. J. Biol. Chem. 1994; 269:27315–27321

    PubMed  CAS  Google Scholar 

  193. Baserga R. Oncogenes and the strategy of growth factors. Cell 1994; 79:927–930

    Article  PubMed  CAS  Google Scholar 

  194. Lu K, Campisi J. Ras proteins are essential and selective for the action of insulin-like growth factor 1 late in the G1 phase of the cell cycle in BALB/c murine fibroblasts. Proc. Natl. Acad. Sci. USA 1992; 89:3889–3893

    PubMed  CAS  Google Scholar 

  195. Dawson T, Radulescu A, Wynford-Thomas D. Expression of mutant p21 ras induces insulin-like growth factor 1 secretion in thyroid epithelial cells. Cancer Res. 1995; 55:915–920

    PubMed  CAS  Google Scholar 

  196. Porras A, Hernandez E, Benito M. Ras proteins mediate induction of uncoupling protein, IGF-I, and IGF-I receptor in rat fetal brown adipocyte cell lines. DNA Cell Biol. 1996; 15:921–928

    PubMed  CAS  Google Scholar 

  197. Porcu P, Ferber A, Pietrzkowski Z, Roberts C, Adamo M, LeRoith D, Baserga R. The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulin-like growth factor 1 with its receptor. Mol. Cell. Biol. 1992; 12:3883–3889

    Google Scholar 

  198. Travali S, Reiss K, Ferber A, Petralia S, Mercer W, Calabreta B, Baserga R. Constitutively expressed c-myb abrogates the requirement for insulin-like growth factor 1 in 3T3 fibroblasts. Mol. Cell. Biol. 1991; 11:731–736

    PubMed  CAS  Google Scholar 

  199. Werner H, Shen-Orr Z, Rauscher III F, Morris J, Roberts C, LeRoith D. Inhibition of cellular proliferation by the Wilms’ tumour suppressor WT1 is associated with suppression of insulin-like growth factor I receptor gene expression. Mol. Cell. Biol. 1995; 15:3516–3522

    PubMed  CAS  Google Scholar 

  200. Werner H, Hernandex-Sanchez C, Karneili E, LeRoith D. The regulation of IGF-1 receptor gene expression. Int. J. Biochem. Cell Biol. 1995; 27:987–994

    Article  PubMed  CAS  Google Scholar 

  201. Werner H, Karnieli E, Rauscher III F, Roberts C, LeRoith D. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc. Natl. Acad. Sci. U.S.A. 1996; 93:8318–8323

    PubMed  CAS  Google Scholar 

  202. Zhang L, Kashanchi F, Zhan Q, Brady J, Fornace A, Seth P, Helman L. Regulation of insulin-like growth factor II P3 promoter by p53: A potential mechanism for tumourigenesis. Cancer Res. 1996; 56:1367–1373

    PubMed  CAS  Google Scholar 

  203. Hartman A, Blaszyk H, Kovach J, Sommer S. The molecular epidemiology of p53 gene mutations in human breast cancer. Trends in Genetics 1997; 13:27–33

    Google Scholar 

  204. Daughaday W, Deuel T. Tumour secretion of growth factors. Endocrinol. Metab. Clin. N. Am 1991; 20:539–563

    CAS  Google Scholar 

  205. Zapf J, Futo E, Peter M, Froesch E. Can “big” insulin-like growth factor II in serum of tumour patients account for the development of extrapancreatic tumour hypoglycemia. J. Clin. Invest. 1992; 90:2574–2584

    PubMed  CAS  Google Scholar 

  206. Baxter R, Daughaday W. Impaired formation of the ternary insulin-like growth factor-binding protein complex in patients with hypoglycemia due to nonislet cell tumours. J. Clin. Endocrinol. Metab. 1991; 73:696–702

    PubMed  CAS  Google Scholar 

  207. DeSouza A, Hankins G, Washington M, Fine R, Orton T, Jirtle R. Frequent lost of heterozygosity on 6q at the mannose-6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumours. Oncogene 1995; 10:1725–1729

    PubMed  Google Scholar 

  208. Lemamy G, Roger P, mani J, Robert M, Rochefort H, Brouillet J. High-affinity antibodies from hen’s-egg yolks against human mannose-6-phosphate/insulin-like growth-factor-II receptor (M6P/IGFII-R): characterization and potential use in clinical cancer studies. Int. J. Cancer 1999; 80:896–902

    Article  PubMed  CAS  Google Scholar 

  209. O’Gorman D, Costello M, Weiss J, Firth S, Scott C. Decreased insulin-like growth factor-II/mannose 6-phosphate receptor expression enhances tumourigenicity in JEG-3 cells. Cancer Res. 1999; 59:5692–5694

    Google Scholar 

  210. Oates A, Schumaker L, Jenkins S, Pearce A, DaCosta S, Arun B, MJ E. The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R), a putative breast tumour suppresor gene. Breast Cancer Res Treat 1998; 47:269–281

    Article  PubMed  CAS  Google Scholar 

  211. D’Ercole A, Stiles A, Underwood L. Tissue concentrations of somatomedin C: Further evidence for multiple sites of synthesis and paracrine or autocrine mechanism of action. Proc. Natl. Acad. Sci. U.S.A. 1984; 81:935–939

    Google Scholar 

  212. Quinn K, Treston A, Unsworth E, Miller M-J, Vos M, Grimley C, Battey J, Mulshine J, Cuttitta F. Insulin-like growth factor expression in human cancer cell lines. J. Biol. Chem. 1996; 271:11477–11483

    PubMed  CAS  Google Scholar 

  213. Macaulay V, Everard MJ, Teale JD, Trott PA, Van Wyk JJ, Smith IE, Millar JL. Autocrine function for insulin-like growth factor I in human small cell lung cancer cell lines and fresh tumour cells. Cancer Res. 1990; 50:2511–2517

    PubMed  CAS  Google Scholar 

  214. Bennington J, Strathearn M, Williams R, Spencer E. “Autocrine stimulation by IGF-I of renal cell carcinoma growth in vitro.” In Modern concepts of Insulin-like Growth Factors, E. Spencer, Ed. New York, Elsevier Science Publishing Co. Inc., 1991

    Google Scholar 

  215. Macaulay VM. Insulin-like growth factors and cancer. Br. J. Cancer 1992; 65:311–320

    PubMed  CAS  Google Scholar 

  216. Lu K, Levine R, Campisi J. c-ras-Ha gene expression is regulated by insulin or insulin-like growth factor and by epidermal growth factor in murine fibroblasts. Mol. Cell. Biol. 1989; 9:3411–3417

    PubMed  CAS  Google Scholar 

  217. Gebauer G, Jager W, Lang N. mRNA expression of components of the insulin-like growth factor system in breast cancer cell lines, tissues, and metastatic breast cancer cells. Anticancer Res. 1998; 18:1191–1195

    PubMed  CAS  Google Scholar 

  218. Rasmussen A, Cullen, KJ. Paracrine/autocrine regulation of breast cancer by the insulin-like growth factors. Breast Cancer Res. Treat 1998; 47:219–233

    Article  PubMed  CAS  Google Scholar 

  219. Dunn S, Hardman R, Kari F, Barrett J. Insulin-like growth factor-I alters drug sensitivity of human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs. Cancer Res 1997; 57:6795–6797

    Google Scholar 

  220. Trojan J, Johnson T, Rudin S, Ilan J, Tykocinski M, Ilan J. Treatment and prevention of rat glioblastoma by immunizing C6 cells expressing antisense insulin-like growth factor I RNA. Science 1993; 259:94–96

    PubMed  CAS  Google Scholar 

  221. Baserga R, Resnicoff M, D’Ambrosio C, Valentinis B. The role of the IGF-I receptor in apopotosis. Vit. Horm. 1997; 53:65–98

    CAS  Google Scholar 

  222. Dawson T, Wynford-Thomas D. Does autocrine growth factor secretion form part of a mechanism which paradoxically protects against tumour development? Br. J. Cancer 1995; 71:1136–1141

    PubMed  CAS  Google Scholar 

  223. Yang X, Beamer W, Huynh H, Pollak M. Reduced growth of human breast cancer xenografts in host homozygous for the lit mutation. Cancer Res. 1996; 56:1509–1511

    Google Scholar 

  224. Rogler C, Yang D, L R, Donohoe J, Alt E, Chand C, Rosenfeld R, Neely K, Hintz R. Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J. Biol. Chem. 1994; 269:13779–13784

    PubMed  CAS  Google Scholar 

  225. Bates P, Fisher R, Ward A, Richardson L, Hill D, Graham C. Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br. J. Cancer 1995; 72:1189–1193

    PubMed  CAS  Google Scholar 

  226. DiGiovanni J, Bol D, Wilker E, Beltrán L, Carbajal S, Moats S, Ramirea A, Jorcano J, Kiguchi K. Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumour promotion. Cancer Res 2000; 60:1561–1570

    Google Scholar 

  227. Bengtsson B. Acromegaly and neoplasia. J. Pediatr. Endocr. 1993; 6:73–78

    CAS  Google Scholar 

  228. Hunter D, Willet W. Diet, body size and breast cancer. Epid. Rev. 1993; 15:110–132

    CAS  Google Scholar 

  229. Giovannucci E, Rimm E, Stampfer M, Colditz G, Willett W. Height, body weight, and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 1997; 6:557–563

    PubMed  CAS  Google Scholar 

  230. Albanes D, Jones D, Schatzkin A, Micozzi M, Taylor P. Adult stature and risk of cancer. Cancer Res. 1988; 48:1658–1662

    PubMed  CAS  Google Scholar 

  231. Leon D, Smith G, Shipley M, Strachan D. Adult height and mortality in London: early life, socioeconomic confounding, or shrinkage? J. Epidemiol. Community Health 1995;49: 5–9

    PubMed  CAS  Google Scholar 

  232. Hankinson S, Willett W, Colditz G, Hunter D, Michaud D, Deroo B, Rosner B, speizer F, Pollak M. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 1998; 351:1393–1396

    Article  PubMed  CAS  Google Scholar 

  233. Chan J, Stampfer M, Giovannucci E, Gann P, Ma J, Wilkinson P, Hennekens C, Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998; 279:563–566

    Article  PubMed  CAS  Google Scholar 

  234. Rosen C. Serum insulin-like grwoth factors and insulin-like growth factor binding proteins: clinical implications. Clin. Chem. 1999; 45:1384–1390

    PubMed  CAS  Google Scholar 

  235. Peyrat J, Bonneterre J, Hecquet B, Vennin P, Louchez M, Fournier C, Lefebvre J, Demaille A. Plasma insulin-like growth factor-I (IGF-I) concentrations in human breast cancer. Eur. J. Cancer 1993; 29A:492–497

    PubMed  CAS  Google Scholar 

  236. Giani C, Cullen K, Campani K, Rasmussen A. IGF-II mRNA and protein are expressed in the stroma of invasive breast cancers: an in situ and immunohistochemistry study. Breast Cancer Res. Treat. 1996; 41:43–50

    Article  PubMed  CAS  Google Scholar 

  237. Pollak M, Hankinson S, Deroo B, Michaud D, Willett W, Speizer F. Relationship of circulating insulin-like growth factor-I level to breast cancer risk. Proceedings of the Fourth International Symposium on Insulin-Like Growth Factors, Tokyo, Japan 1997

    Google Scholar 

  238. Giovannucci E. Insulin-like growth factor-I, binding protein-3 and risk of cancer. Horm. Res. 1999; 51:34–41

    Article  PubMed  CAS  Google Scholar 

  239. Ruan W, Catanese V, Wieczorek R, Feldman m, Kleinberg D. Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 1995; 36:1296–1302

    Google Scholar 

  240. Toropainen E, Lipponen P, Syrjanen K. Expression of insulin-like growth factor I (IGF-I) in female breast cancer as related to established prognostic factors and long-term prognosis. Eur. J. Cancer 1995; 31A:1443–1448

    PubMed  CAS  Google Scholar 

  241. Pollack M, Huynh H, Lefebvre S. Tamoxifen reduces serum insulin-like growth factor I. Breast Cancer Res. Treat. 1992; 22:91–100

    Google Scholar 

  242. Bhatavedar J, Patel D, Karelia N, Vora H, Ghosh N, Shah N, Balar D, Trivedi S. Tumour markers in patients with advanced breast cancer as prognosticators: A preliminary study. Breast Cancer Res. Treat. 1994; 30:293–297

    Google Scholar 

  243. Toropainen E, Lipponen P, Syrjanen K. Expression of insulin-like growth factor II in human breast cancer as related to establised prognostic factors and long-term prognosis. Anticancer Res. 1995; 15:2669–2674

    PubMed  CAS  Google Scholar 

  244. Yee D, Sharma J, Hilsenbeck S. Prognostic significance of insulin-like growth factor-binding protein expression in axillary lymph node-negative breast cancer. J. Natl. Cancer Inst. 1994; 84:1785–1789

    Google Scholar 

  245. Bohlke K, Cramer D, Trichopoulos D, Mantzoros C. Insulin-like growth factor-I in relation to premenopausal ductal carcinoma in situ of the breast. Epidemiology 1998; 9:570–573

    PubMed  CAS  Google Scholar 

  246. Yu H, Levesque M, Khosravi M, Papanastasiou-Diamandi A, Clark G, Diadamandis E. Insulin-like growth factor-binding protein-3 and breast cancer survival. Int. J. Cancer 1998; 79:624–628

    Article  PubMed  CAS  Google Scholar 

  247. Rocha R, Hilsenbeck S, Jackson J, Lee A, Figueroa J, Yee D. Insulin-like growth factor binding protein-3 (BP3) mRNA and protein expression are correlated in primary breast cancer tissue; higher levels are detected in tumours with poor prognostic features. J. Natl. Cancer Inst. 1996; 88:601–606

    PubMed  CAS  Google Scholar 

  248. Rocha R, Hilsenbeck S, Jackson J, Van Den Berg C, Weng C-N, Lee A, Yec D. Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: Correlation with clinical parameters and disease-free survival. Clin. Cancer Res. 1997; 3:103–109

    PubMed  CAS  Google Scholar 

  249. Yu H, Diamandis E, Levesque M, Giai M, Roagna R, Ponzone R, Sismondi P, Monne M, Croce CM. Prostate specific antigen in breast cancer, benign breast disease and normal breast tissue. Breast Cancer Res. Treat. 1996; 40:171–178

    Article  PubMed  CAS  Google Scholar 

  250. Yu H, Levesque M, Clark G, Diamandis E. Prognostic value of prostate-specific antigen for women with breast cancer: A large United States cohort study. Clin. Cancer Res. 1997; 4:1489–1497

    Google Scholar 

  251. Peyrat J-P, Bonneterre J, Beuscart R, Djiane J, Demaille A. Insulin-like growth factor I receptors in human breast cancer and their relationship to estradiol and progesterone receptors. Cancer Res. 1988; 48:6429–6433

    PubMed  CAS  Google Scholar 

  252. Pekonen F, Partanen S, Makinen T, Rutanen E. Receptors for epidermal growth factor and insulin-like growth factor I and their relation to steroid receptors in human breast cancer. Cancer Res. 1988; 48:1343–1347

    PubMed  CAS  Google Scholar 

  253. Foekens J, Portengen H, Janssen M, Klijn J. Insulin-like growth factor-1 receptors and insulin-like growth factor-1-like activity in human primary breast cancer. Cancer 1989; 63:2139–2147

    PubMed  CAS  Google Scholar 

  254. Bonneterre J, Peyrat J, Beuscart R, Demaille A. Prognostic significance of insulin-like growth factor I receptors in human breast cancer. Cancer Res. 1990; 50:6931–6935

    PubMed  CAS  Google Scholar 

  255. Papa V, Gliozzo B, Clark G, McGuire W, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine I, Pezzino V. Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res. 1993; 53:3736–3740

    PubMed  CAS  Google Scholar 

  256. Peyrat J, Bonneterre J. Typel IGF receptor in human breast disease. Breast Cancer Res. Treat. 1992; 22:59–67

    Article  PubMed  CAS  Google Scholar 

  257. Railo M, Smitten K, Pekonen F. The prognostic value of insulin-like growth factor-1 in breast cancer patients. Eur. J. Cancer 1994; 30A:307–311

    PubMed  CAS  Google Scholar 

  258. Turner B, Haffty B, Narayanan L, Yuan J, Havre P, Gumbs A, Kaplan L, Burgaud J, Carter D, Baserga R, Glazer P. Insulin-like growth factor-1 receptor overexpression mediated cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 1997; 57:3079–3083

    PubMed  CAS  Google Scholar 

  259. LeRoith D, Werner H, Beitner-Johnson D, Roberts C. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr. Rev. 1995; 16:143–163

    Google Scholar 

  260. Pollak M. IGF-I physiology and breast cancer. Recent Results Cancer Res 1998; 152:63–70

    PubMed  CAS  Google Scholar 

  261. Ellis M, Jenkins, S, Manfelt, J, Redington, ME, Taylor, M, Leek, R, Siddle, K and Harris, A. Insulin-like growth factors in human breast cancer. Breast Cancer Res. Treat. 1998; 52:175–184

    Article  PubMed  CAS  Google Scholar 

  262. Berns E, Klijn J, van Staveren I, Portengen H, Foekens J. Sporadic amplification of the insulin-like growth factor 1 receptor gene in human breast cancer. Cancer Res. 1992; 52:1036–1039

    PubMed  CAS  Google Scholar 

  263. Martin-Du Pan R. Are the hormones of youth carcinogenic? Ann Endocrinol (Paris) 1999; 60:392–397

    CAS  Google Scholar 

  264. Colletti R, Roberts J, Devlin J, Copeland K. Effect of tamoxifen on plasma insulin-like growth factor I in patients with breast cancer. Cancer Res. 1989; 49:1882–1884

    PubMed  CAS  Google Scholar 

  265. Pollak M, Constantino J, Polychronakos C, Blauer S, Guyda H, Redmond C, Fisher B, Margolese R. Effect of tamoxifen on serum insulin like growth factor 1 levels in stage 1 breast cancer patients. J. Natl. Cancer Inst. 1990; 82:1693–1697

    PubMed  CAS  Google Scholar 

  266. Friedl A, Jordan V, Pollak M. Suppression of serum IGF-I levels in breast cancer patients during adjuvant tamoxifen therapy. Eur. J. Cancer 1993; 29A:1368–1372

    PubMed  CAS  Google Scholar 

  267. Tannenbaum G, Gurd W, Lapointe M, Pollak M. Tamoxifen attenuates pulsatile growth hormone secretion: mediation in part by somatostatin. Endocrinol. 1992; 130:3395–3401

    Article  CAS  Google Scholar 

  268. Huynh H, Tetenes E, Wallace L, Pollak M. In vivo inhibition of insulin-like growth factor-I gene expression by tamoxifen. Cancer Res. 1993; 53:1727–1730

    PubMed  CAS  Google Scholar 

  269. Pollak M. Endocrine effects of IGF-I on normal and and transformed breast epithelial cells: potential relevance to strategies for breast cancer treatment prevention. Breast Cancer Res. Treat. 1998; 47:209–217

    Article  PubMed  CAS  Google Scholar 

  270. Lippman S, Lotan R. Advances in the development of retinoids as chemopreventive agents. J. Nutr. 2000; 130:479S–482S

    PubMed  CAS  Google Scholar 

  271. Yang L, Tin-U C, Wu K, Brown P. Role of retinoid receptors in the prevention and treatment of breast cancer. J. Mammary Gland Biol. Neoplasia 1999; 4:377–388

    Article  PubMed  CAS  Google Scholar 

  272. Gucev Z, Oh Y, Kelley K, Rosenfeld K. Insulin-like growth factor binding protein 3 mediates retinoic acid and transforming growth factor beta 2-induced growth inhibition in human breast cancer cells. Cancer Res. 1996; 56:1545–1550

    PubMed  CAS  Google Scholar 

  273. Oh Y, Muller H, Ng L, Rosenfeld R. Transforming growth factor-induced cell growth inhibition in human breast cancer cells is mediated through insulin-like growth factor-binding protein-3 action. J. Biol. Chem. 1995; 270:13589–13592

    PubMed  CAS  Google Scholar 

  274. Rozen F, Yang X, Huynh H, Pollak M. Antiproliferative action of vitamin-D-related compounds and insulin-like growth factor binding protein 5 accumulation. J. Natl. Cancer Inst. 1997; 89:652–656

    Article  PubMed  CAS  Google Scholar 

  275. Pollak M. Enhancement of the anti-neoplastic effects of tamoxifen by somatostatin analogues. Digestion 1996; 57:29–33

    PubMed  CAS  Google Scholar 

  276. Bontenbal M, Foekens J, Lamberts S, de Jong F, van Putten W, Braun H, Burghouts J, van der Linden G, Klijn J. Feasibility, endocrine and anti-tumour effects of a triple endocrine therapy with tamoxifen, a somatostatin analogue and an antiprolactin in post-menopausal metastatic breast cancer: a randomized study with long-term follow-up. Br. J. Cancer 1998; 77:115–122

    PubMed  CAS  Google Scholar 

  277. Rischke H, Staib-Sebler E, Mose S, Adams S, Herrmann G, Bottcher H, M L. Metastatic breast carcinoma with neuroendocrine differentiation— its combined therapy with tamoxifen and the somatostatin analog octreotide. Dtsch. Med. Wochenschr. 1999; 124:182–186

    PubMed  CAS  Google Scholar 

  278. Huynh H, Pollak M. Enhancement of tamoxifen-induced suppression of insulin-like growth factor I gene expression and serum level by a somastatin analogue. Biochem. Biophys. Res. Comm. 1994; 203:253–259

    Article  PubMed  CAS  Google Scholar 

  279. Ingle J, Suman V, Kardinal C, Krook J, Mailliard J, Veeder M, Loprinzi C, Dalton R, Hartmann L, Conover C, Pollak M. A randomized trial of tamoxifen alone or combined with octreotide in the treatment of women with metastatic breast carcinoma. Cancer 1999; 85:1284–1292

    Article  PubMed  CAS  Google Scholar 

  280. Juul A. Determination of insulin-like growth factor-i in the monitoring of growth hormone treatment with respect to efficacy of treatment and side effects, should potential risks of cardiovascular disease and cancer be considered? Horm. Res. 1999; 51: 141–148

    PubMed  CAS  Google Scholar 

  281. Shim MaC, P. IGFs and human cancer: implications regarding the risk of growth hormone therapy. Horm. Res. 1999; 51:42–51

    Article  PubMed  CAS  Google Scholar 

  282. Kohn E, Liotta L. Molecular insights into cancer invasion: Strategies for prevention and intervetion. Cancer Res. 1995; 55:1856–1862

    PubMed  CAS  Google Scholar 

  283. Birchmeier W, Weidner K, Behrens J. Molecular mechanisms leading to loss of differentiation and gain of invasiveness in epithelial cells. J. Cell. Sci. 1993; 17:159–164

    CAS  Google Scholar 

  284. Lauffenburger D, Horwitz A. Cell migration: a physically integrated molecular process. Cell 1996; 84:359–369

    Article  PubMed  CAS  Google Scholar 

  285. Tapson V, Boni Schnetzler M, Pilch P, Center D, Berman J. Structural and functional characterization of the human T lymphocyte receptor for insulin-like growth factor I in vitro. J. Clin. Invest. 1988; 82:950–957

    PubMed  CAS  Google Scholar 

  286. Shoji S, Ertl R, Linder J, Koizumi S, Duckworth W, Rennard S. Bronchial epithelial cells respond to insulin and insulin-like growth factor-I as a chemoattractant. Am. J. Respir. Cell. Mol. Biol. 1990; 2:553–557

    PubMed  CAS  Google Scholar 

  287. Grant M, Jerdan J, Merimee T. Insulin-like growth factor-I modulates endothelial cell chemotaxis. J. Clin. Endocrinol. Metab. 1987; 65:370–371

    PubMed  CAS  Google Scholar 

  288. Jones J, Prevette T, Gockerman A, Clemmons D. Ligand ocupancy of the αvβ3 integrin is neccessary for smooth muscle cells to migrate in response to insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 1996; 93:2482–2487

    PubMed  CAS  Google Scholar 

  289. Stracke M, Engel J, Wilson L, Rechler M, Liotta L, Schiffmann E. The type-1 insulin-like growth factor receptor is a motility receptor in human melanoma cells. J. Biol. Chem. 1989; 264:21554–21549

    Google Scholar 

  290. Doerr M, Jones J. The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J. Biol. Chem. 1996; 271:2443–2447

    PubMed  CAS  Google Scholar 

  291. Brooks P, Klemke R, Schön S, Lewis J, Schwartz M, Cheresh D. Insulin-like growth factor receptor cooperates with integrin αvβ5 to promote tumour cell dissemination in vivo. J. Clin. Invest. 1997; 99:1390–1398

    PubMed  CAS  Google Scholar 

  292. Kadowaki T, Koyasu S, Nishida E, Sakai H, Takaku F, Yahara I, Kasuga M. Insulin-like growth factors, insulin, and epidermal growth factor cause rapid cytoskeletal reorganization in KB cells. Clarification of the roles of type I insulin-like growth factor receptors and insulin receptors. J. Biol. Chem. 1986; 261:16141–16147

    PubMed  CAS  Google Scholar 

  293. Abercrombie M, Heaysman J, Pegrum S. The locomotion of fibroblasts in culture. II. “Ruffling”. Exp. Cell. Res. 1970; 60:437–444

    Article  PubMed  CAS  Google Scholar 

  294. Ridley A. Membrane ruffling and signal transduction. Bioessays 1994; 16:321–327

    Article  PubMed  CAS  Google Scholar 

  295. Williams M, Hughes P, O’Toole T, Ginsberg M. The inner world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol 1994; 4:109–112

    Article  PubMed  CAS  Google Scholar 

  296. Clark E, Brugge J. Integrins and signal transduction pathways: the road taken. Science 1995; 268:233–239

    PubMed  CAS  Google Scholar 

  297. Yamada K, Geiger B. Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 1997; 9:76–85

    Article  PubMed  CAS  Google Scholar 

  298. Schlaepfer D, Hunter T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell. Biol. 1998; 8:151–157

    Article  PubMed  CAS  Google Scholar 

  299. Zetter BR. Adhesion molecules in tumour metastasis. Semin. Cancer Biol. 1993; 4:219–229

    PubMed  CAS  Google Scholar 

  300. Varner JA, Cheresh DA. Integrins and cancer. Curr. Opin. Cell Biol. 1996; 8:724–730

    Article  PubMed  CAS  Google Scholar 

  301. Marshall JF, Hart IR. The role of αv-integrins in tumour progression and metastasis. Semin. Cancer Biol. 1996; 7:129–138

    Article  PubMed  CAS  Google Scholar 

  302. Filardo E, Brooks P, Deming S, Damsky C, Cheresh D. Requeriment of the NPXY motif in the integrin β3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo. J. Cell. Biol. 1995; 130:441–450

    Article  PubMed  CAS  Google Scholar 

  303. Klemke R, Yebra E, Bayna E, Cheresh D. Receptor tyrosine kinase signaling required for integrin αvβ5-directed cell motility but not adhesion on vitronectin. J. Cell Biol. 1994; 127:850–866

    Article  Google Scholar 

  304. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T, Aizawa S. Reduced cell motility and enhanced focal contact formation in cells from FAK-deficient mice. Nature 1995; 377:539–544

    PubMed  CAS  Google Scholar 

  305. Leventhal P, Shelden E, Kim B, Feldman E. Tyrosine phosphorylation of paxillin and focal adhesion kinase during insulin-like growth factor-I-stimulated lamellipodial advance. J. Biol. Chem. 1997; 272:5214–5218

    PubMed  CAS  Google Scholar 

  306. Freedman V, Shin S. Cellular tumourigenicity in nude mice: Correlation with cell growth in semisolid medium. Cell 1974; 3:355–359

    Article  PubMed  CAS  Google Scholar 

  307. Schwartz M. Integrins, oncogenes and anchorage independence. J. Cell Biol. 1997; 139:575–578

    Article  PubMed  CAS  Google Scholar 

  308. Keely P, Parise L, Juliano R. Integrins and GTPases in tumour cell growth, motility and invasion. Trends Cell Biol 1998; 8:101–106

    Article  PubMed  CAS  Google Scholar 

  309. Khawaja A, Rodriguez-Viciana P, Wennstrom S, Warne P, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase-B/AKT cellular survival pathway. EMBO J. 1997; 16:2783–2793

    Google Scholar 

  310. Rodríguez-Viciana P, Warne P, Khawaja A, Marte B, Pappin D, Das P, Waterfield M, Ridley A, Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of actin cytoskeleton by ras. Cell 1997; 89:457–467

    PubMed  Google Scholar 

  311. Lin T, Chen Q, Howe A, Juliano R. Cell anchorage permits signal transduction between ras and its downstream kinases. J. Biol. Chem. 1997; 272:8849–8852

    PubMed  CAS  Google Scholar 

  312. Baron V, Calléja V, Ferrari P, Alengrin F, Van Obberghen E. p125Fak focal adhesion kinase is a substrate for the insulin and insulin-like growth factor-I tyrosine kinase receptor. J. Biol. Chem. 1998; 273:7162–7168

    Article  PubMed  CAS  Google Scholar 

  313. Mańes S, Mira E, Gómez-Mouton C, Zhao Z, Lacalle R, Martínez-A C. Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol. Cel. Biol. 1999; 19:3125–3135

    Google Scholar 

  314. Giancotti F, Ruoslahti E. Integrin signaling. Science 1999; 285:1028–1032

    Article  PubMed  CAS  Google Scholar 

  315. Blakesley V, Koval A, Stannard B, Scrimgeour A, LeRoith D. Replacement of tyrosine 1251 in the carboxyl terminus of the insulin-like growth factor-I receptor disrupts the actin cytoskeleton and inhibits proliferation and anchorage-independent growth. J. Biol. Chem. 1998; 273:18411–18422

    Article  PubMed  CAS  Google Scholar 

  316. Rodríguez-Fernandez J, Geiger B, Salomon D, Ben-Ze’ev A. Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility and anchorage-dependent growth of 3T3 cells. J. Cell Biol. 1993; 122:1285–1294

    PubMed  Google Scholar 

  317. Westmeyer A, Ruhnau K, Wegner A, Jockusch B. Antibody mapping of functional domains in vinculin. EMBO J. 1990; 9:2071–2078

    PubMed  CAS  Google Scholar 

  318. Hughes P, Renshaw M, Pfaff M, Forsyth J, Keivens V, Schwartz M, Ginsberg M. Suppression of integrin activation: A novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 1997; 88:521–530

    Article  PubMed  CAS  Google Scholar 

  319. Qi J, Ito N, Claesson-Welsh L. Tyrosine phosphatase SHP-2 is involved in regulation of platelet-derived growth factor-induced migration. J. Biol. Chem. 1999; 274:14455–14463

    PubMed  CAS  Google Scholar 

  320. Yu D, Qu C, Henegariu O, Lu X, Feng G. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration and focal adhesion. J. Biol. Chem. 1998; 273:21125–21131

    PubMed  CAS  Google Scholar 

  321. Schneller M, Vuori K, Ruoslahti E. Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBOJ. 1997; 16:5600–5607

    CAS  Google Scholar 

  322. Parent C, Blacklock B, Froehlich W, Murphy D, Devreotes P. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 1998; 95:81–91

    Article  PubMed  CAS  Google Scholar 

  323. Meili R, Ellsworth C, Lee S, Reddy T, Ma H, Firtel R. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 1999; 18:2092–2105

    Article  PubMed  CAS  Google Scholar 

  324. Schrick K, Garvik B, Hartwell L. Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone. Genetics 1997; 147:19–32

    PubMed  CAS  Google Scholar 

  325. Zigmond S. Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature 1974; 249:450–452

    Article  PubMed  CAS  Google Scholar 

  326. Sullivan S, Daukas G, Zigmond S. Asymmetric distribution of chemotactic peptide receptor on polymorphonuclear leukocytes. J. Cell Biol. 1984; 99:1461–1467

    PubMed  CAS  Google Scholar 

  327. Lawson M, Maxfield P. Ca2+ and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 1995; 377:75–79

    Article  PubMed  CAS  Google Scholar 

  328. Schmidt C, Horwitz A, Lauffenburger D, Sheetz M. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J. Cell Biol. 1993; 123:977–991

    Article  PubMed  CAS  Google Scholar 

  329. Walter R, Marasco W. Localization of chemotactic peptide receptors on rabbit neutrophils. Exp. Cell. Res. 1984; 154:613–618

    Article  PubMed  CAS  Google Scholar 

  330. Schmitt M, Bultmann B. Fluorescent chemotactic peptide as tools to identify the f-Met-Leu-Phe receptor on human granulocytes. Biochem. Soc. Trans. 1990; 18:219–222

    PubMed  CAS  Google Scholar 

  331. McKay D, Kusel J, Wilkinson P. Studies of chemotactic factor-induced polarity in human neutrophils. Lipid mobility, receptor redistribution and the time-sequence of polarization. J. Cell Sci. 1991; 100:473–479

    PubMed  CAS  Google Scholar 

  332. Nieto M, Frade J, Sancho D, Mellado M, Martínez-A. C, Sánchez-Madrid F. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med. 1997; 186:153–158

    Article  PubMed  CAS  Google Scholar 

  333. Vicente-Manzanares M, Montoya M, Mellado M, Frade J, del Pozo M, Nieto M, de Landazuri M, Martínez-A. C, Sanchez-Madrid F. The chemokine SDF-1 alpha triggers a chemotactic response and induces cell polarization in human B lymphocytes. Eur. J. Immunol. 1998; 28:2197–21207

    PubMed  CAS  Google Scholar 

  334. Xiao Z, Zhang N, Murphy D, Devreotes P. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J. Cell Biol. 1997; 139:365–374

    Article  PubMed  CAS  Google Scholar 

  335. Servant G, Weiner O, Neptune E, Sedat J, Bourne H. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell 1999; 10:1163–1178

    PubMed  CAS  Google Scholar 

  336. Izzard C, Lochner L. Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. J. Cell Sci. 1980; 42:81–116

    PubMed  CAS  Google Scholar 

  337. Regen C, Horwitz A. Dynamics of beta 1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol. 1992; 119:1347–59

    Article  PubMed  CAS  Google Scholar 

  338. Mañes S, Mira E, Gómez-Moutón C, Lacalle R, Keller P, Labrador J, Martínez-A C. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 1999; 18:6211–6220

    PubMed  Google Scholar 

  339. Fambrough D, McClure K, Kazlauskas A, Lander E. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999; 97:727–741

    Article  PubMed  CAS  Google Scholar 

  340. Nieto M, Rodriguez-Fernandez J, Navarro F, Sancho D, Frade J, Mellado M, Martinez-A. C, Cabanas C, Sanchez-Madrid F. Signaling through CD43 induces natural killer cell activation, chemokine release, and PYK-2 activation. Blood 1999; 94:2767–2777

    PubMed  CAS  Google Scholar 

  341. Gruss H, Scott C, Rollins B, Brach M, Herrmann F. Human fibroblasts express functional IL-2 receptors formed by the IL-2R alpha-and beta-chain subunits: association of IL-2 binding with secretion of the monocyte chemoattractant protein-1. J. Immunol. 1996; 157:851–857

    PubMed  CAS  Google Scholar 

  342. Liotta L, Mandler R, Murano G, Katz D, Gordon R, Chiang P, Schiffmann E. Tumour cell autocrine motility factor. Proc. Natl. Acad. Sci. U.S.A. 1986; 83:3302–3306

    PubMed  CAS  Google Scholar 

  343. Betsuyaku T, Liu F, Senior R, Haug J, Brown E, Jones S, Matsushima K, Link D. A functional granulocyte colony-stimulating factor receptor is required for normal chemoattractant-induced neutrophil activation. J. Clin. Inves. 1999; 103:825–832

    CAS  Google Scholar 

  344. Rodriguez-Boulan E, Nelson W. Morphogenesis of the polarized epithelial cell phenotype. Science 1989; 245:718–725

    PubMed  CAS  Google Scholar 

  345. Dotti C, Simons K. Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell 1990; 62:63–72

    Article  PubMed  CAS  Google Scholar 

  346. Simons K, Wandinger-Ness A. Polarized sorting in epithelia. Cell 1990; 62:207–210

    Article  PubMed  CAS  Google Scholar 

  347. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387:569–572

    Article  PubMed  CAS  Google Scholar 

  348. Ledesma M, Simons K, Dotti C. Neuronal polarity: Essential role of protein-lipid complexes in axonal sorting. Proc. Natl. Acad. Sci. U.S.A. 1998; 95:3966–3971

    Article  PubMed  CAS  Google Scholar 

  349. Ledesma M, Brügger B, Bünning C, Wieland F, Dotti C. Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein-lipid complexes. EMBO J. 1999; 18:1761–1771

    Article  PubMed  CAS  Google Scholar 

  350. Brown D, Rose J. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68:533–544

    PubMed  CAS  Google Scholar 

  351. Müsch A, Xu H, Shields D, Rodriguez-Boulan E. Transport of vesicular stomatitis virus to the cell surface is signal mediated in polarized and nonpolarized cells. J. Cell Biol. 1996; 133:543–558

    PubMed  Google Scholar 

  352. Yoshimori T, Keller P, Roth M, Simons K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J. Cell Biol. 1996; 133:247–256

    Article  PubMed  CAS  Google Scholar 

  353. Keller P, Simons K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 1998; 140:1357–1367

    Article  PubMed  CAS  Google Scholar 

  354. Friedrichson T, Kurzchalia T. Microdomains of GPI-anchored proteins in living cells revealed by cross linking. Nature 1998; 394:802–805

    PubMed  CAS  Google Scholar 

  355. Varma R, Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 1998; 394:798–801

    PubMed  CAS  Google Scholar 

  356. Montixi C, Langlet C, Bernard A, Thimonier J, Dubois C, Wurbel M, Chauvin J, Pierres M, He H. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 1998; 17:5334–5348

    Article  PubMed  CAS  Google Scholar 

  357. Xavier R, Brennan T, Li Q, McCormack C, Seed B. Membrane compartimentalization is required for efficient T cell activation. Immunity 1998; 8:723–732

    Article  PubMed  CAS  Google Scholar 

  358. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999; 283:680–682

    Article  PubMed  CAS  Google Scholar 

  359. Brückner K, Labrador J, Scheiffele P, Herb A, Seeburg P, Klein R. Ephrin B ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 1999; 22:511–524

    PubMed  Google Scholar 

  360. Keski-Oja J, Koli K, Lohi J, Laiho M. Growth factors in the regulation of plasminogen-plasmin system in tumour cells. Semin. Thromb. Hemost 1991; 17:231–239

    PubMed  CAS  Google Scholar 

  361. Santamaría I, Velasco G, Cazorla M, Fueyo A, Campo E, López-Otín C. Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Cancer Res 1998; 58:1624–1630

    PubMed  Google Scholar 

  362. Vizoso F, Sanchez L, Diez-Itza I, Merino A, López-Otín C. Pepisnogen C is a new prognostic marker in primary breast cancer. J. Clin. Oncol. 1995; 13:54–61

    PubMed  CAS  Google Scholar 

  363. López-Otín C, Diamandis E. Breast and prostate cancer: an analysis of common epidemiological, genetic, and biochemical features. Endocr. Rev 1998; 19:365–396

    PubMed  Google Scholar 

  364. Friedl P, Noble P, Walton P, Laird D, Chauvin P, Tabah R, Black M, Zanker K. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 1995; 55:4557–4560

    PubMed  CAS  Google Scholar 

  365. Friedl P, Zanker K, Brocker E. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 1998; 43:369–378

    Article  PubMed  CAS  Google Scholar 

  366. Iocono J, Krummel T, Keefer K, Allison G, Paul H. Repeated additions of hyaluronan alters granulation tissue deposition in sponge implants in mice. Wound Repair Regen. 1998; 6:442–448

    Article  PubMed  CAS  Google Scholar 

  367. Matrisian LM. The matrix-degrading metalloproteinases. BioEssays 1992; 14:455–463

    Article  PubMed  CAS  Google Scholar 

  368. Basset P, Bellocq J, Wolf C, Stoll I, Hutin P, Limacher J, Podhajcer O, Chenard M, Rio M, Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 1990; 348:699–704

    Article  PubMed  CAS  Google Scholar 

  369. Freije J, Díez-Itza I, Balbín M, Sánchez L, Blasco r, Tolivia J, López-Otín C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J. Biol. Chem. 1994; 269:16766–16773

    PubMed  CAS  Google Scholar 

  370. Puente X, Pendas A, Llano E, Velasco G, López-Otín C. Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res 1996; 56:944–949

    PubMed  CAS  Google Scholar 

  371. Birkedal-Hansen H. Proteolytic remodeling of extracelular matrix. Curr. Opin. Cell Biol. 1995; 7:728–735

    Article  PubMed  CAS  Google Scholar 

  372. Sternlicht M, Bissell M, Werb Z. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumour promoter. Oncogene 2000; 19:1102–1113

    Article  PubMed  CAS  Google Scholar 

  373. Himelstein BP, Canete-Soler R, Bernhard EJ, Dilks DW, Muschel RJ. Metalloproteinases in tumour progression: the contribution of MMP-9. Invasion Metastasis 1994–95; 14:246–258

    PubMed  CAS  Google Scholar 

  374. Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc. Natl. Acad. Sci. USA 1994; 91:4293–4297

    PubMed  CAS  Google Scholar 

  375. Lee O, Bae S, Bae M, Lee Y, Moon E, Cha H, Knon Y, Kim K. Identification of angiogenic properties of insulin-like growth factor II in vitro angiogenesis models. Br. J. Cancer 2000; 82:385–391

    Article  PubMed  CAS  Google Scholar 

  376. Matrisian L. Metalloproteinases and their inhibitors in tissue remodeling. Trends Genet. 1990; 6:121–125

    Article  PubMed  CAS  Google Scholar 

  377. Martin D, Fowlkes J, Babic B, Khokha R. Insulin-like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1. J. Cell Biol. 1999; 146:881–892

    Article  PubMed  CAS  Google Scholar 

  378. Liotta L, Steeg P, Stetler-Stevenson W. Cancer metastasis and angiogenesis. an imbalance of positive and negative regulation. Cell 1991; 64:327–336

    Article  PubMed  CAS  Google Scholar 

  379. Höyhtyä M, fridman R, Komarek D, Porter-Jordan K, Stetler-Stevenson W, Liotta L, Liang C-M. Immunohistochemical localization of matrix metalloproteinase 2 and its specific inhibitor TIMP-2 in neoplastic-tissues with monoclonal antibodies. Int. J. Cancer 1994; 56:500–505

    PubMed  Google Scholar 

  380. Visscher D, Höyhtyä M, Ottosen S, Liang C-M, Sarkar F, Crissman J, Fridman R. Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the stroma of breast carcinomas correlates with tumour recurrence. Int. J. Cancer 1994; 59:339–344

    PubMed  CAS  Google Scholar 

  381. Corcoran M, Stetler-Stevenson W. Tissue inhibitor of metalloproteinase-2 stimulates fibroblast proliferation via a cAMP-dependent mechanism. J. Biol. Chem 1995; 270:13453–13459

    PubMed  CAS  Google Scholar 

  382. Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH. Cooperative signalling by α3β1 and α4β1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J. Cell Biol. 1995; 129:867–879

    Article  PubMed  CAS  Google Scholar 

  383. Riikonen T, Westermarck J, Koivisto L, Broberg A, Kähäri V-M, Heino J. Integrin α2β1 is a positive regulator of collagenase (MMP-1) and collagen α1 (I) gene expression. J. Biol. Chem. 1995; 270:13548–13552

    PubMed  CAS  Google Scholar 

  384. Bafetti LM, Young TN, Itoh Y, Stack MS. Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J. Biol. Chem. 1998; 273:143–149

    Article  PubMed  CAS  Google Scholar 

  385. Imai K, Shikata H, Okada Y. Degradation of vitronectin by matrix metalloproteinases-1,-2,-3,-7 and-9. FEBS Letters 1995; 369:249–251

    Article  PubMed  CAS  Google Scholar 

  386. Look M, Foekens J. Clinical relevance of the urokinase plasminogen activator system in breast cancer. APMIS 1999; 107:150–159

    PubMed  CAS  Google Scholar 

  387. Guy C, Cardiff R, Muller W. Induction of mammary tumours by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatis disease. Mol Cell Biol 1992; 12:954–961

    PubMed  CAS  Google Scholar 

  388. Bugge T, Lund L, Kombrinck K, Nielsen B, Holmbäck K, Drew A, Flick M, Witte D, Dano, K, Degen J. Reduced metastasis of mammary cancer in plasminogen-deficient mice. Oncogene 1998; 16:3097–3104

    Article  PubMed  CAS  Google Scholar 

  389. Grondahl-Hansen J, Christensen I, Rosenquist C, Brunner N, Mouridsen H, Dano, K, Blichert-Toft M. High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carciomas are associated with poor prognosis. Cancer Res. 1993; 53:2513–2521

    PubMed  CAS  Google Scholar 

  390. Grondahl-Hansen J, Peters H, van Putten W, Look M, Pappot H, Ronne E, Dano K, Klijn J, Brunner N, Foekens J. Prognostic significance of the receptor for urokinase plasminogen activator in breast cancer. Clin. Cancer Res. 1995; 1:1079–1087

    PubMed  CAS  Google Scholar 

  391. Vaupel P, Thews O, Kelleher D, Hoeckel M. Oxygenation of human tumours: Evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements. Cancer Res 1991; 51:3316–3322

    PubMed  CAS  Google Scholar 

  392. Maity A, Solomon D. Both increased stability and transcription contribute to the induction of the urokinase plasminogen activator receptor (uPAR) message by hypoxia. Exp. Cell. Res. 2000; 255:250–257

    Article  PubMed  CAS  Google Scholar 

  393. Pyke c, Graem N, Ralfkiaer E, Ronne E, Hoyer-Hansen G, Brünner N, Dano K. Receptor for urokinase is present in tumours-associated macrophages in ductal breast carcinoma. Cancer Res. 1993; 53:1911–1915

    PubMed  CAS  Google Scholar 

  394. Nielsen B, Sehested M, Timshel S, Pyke C, Dano K. Messenger RNA for urokinase plasminogen activator is expressed in myofibroblasts adjacent to cancer cells in human breast cancer. Lab. Invest. 1996; 74:168–177

    PubMed  CAS  Google Scholar 

  395. Dunn S, Torres J, Nihei N, Barrett J. The insulin-like growth factor-1 elevates urokinase-type plasminogen activator-1 in human breast cancer cells: a new avenue for breast cancer therapy. Mol. Carcinog. 2000; 27:10–17

    Article  PubMed  CAS  Google Scholar 

  396. Ree A, Bjornland K, Brunner n, Johansen H, Pedersern K, Aasen A, Fodstad O. Regulation of tissue-degrading factors and in vitro invasiveness in progression of breast cancer cells. Clin. Exp. Metastasis 1998; 16:205–215

    PubMed  CAS  Google Scholar 

  397. Loskutoff D, Curriden S, Hu G, Deng G. Regulation of cell adhesion by PAI-I. APMIS 1999; 107:54–61

    PubMed  CAS  Google Scholar 

  398. Lah T, Kokalj-Kunovar M, Strukelj B, Pungercar J, Barlic-Maganja D, Drobnic-Kosorok M, Kastelic L, Babnik J, Golouh R, Turk V. Stefins amd lysosomal cathepsins B, L and D in human breast carcinoma. Int. J. Cancer 1992; 50:36–44

    PubMed  CAS  Google Scholar 

  399. Poole A, Tiltman J, Recklies A, Stoker T. Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature 1978; 273:545–547

    Article  PubMed  CAS  Google Scholar 

  400. De Leon D, Issa N, Nainani S, Asmerom Y. Reversal of cathepsin D routing modulation in MCF-7 breast cancer cells expressing antisense insulin-likegrowth factor II(IGF-II). Horm. Metab. Res. 1999;31:142–147

    PubMed  Google Scholar 

  401. Rochefort H, Liaudet-Coopman E. Cathepsin D in cancer metastasis. APMIS 1999; 107: 86–95

    PubMed  CAS  Google Scholar 

  402. Frosch B, Berquin I, Emmert-Buck M, Moin K, Sloane B. Molecular regulation, membrane association and secretion of tumour cathepsin B. APMIS 1999;107:28–37

    PubMed  CAS  Google Scholar 

  403. Griffiths J. Are cancer cells acidic? Br. J. Cancer 1991; 64:425–427

    PubMed  CAS  Google Scholar 

  404. Folkman T. Tumour angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971; 285:1182–1186

    PubMed  CAS  Google Scholar 

  405. Pluda J. Tumour-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin. Oncol. 1997; 24:203–218

    PubMed  CAS  Google Scholar 

  406. Holmgren L, O’Reilly M, Folkman J. Dormancy of micrometastases: balanced proliferation andapoptosis in the presence of angiogenesis suppression. Nat. Med. 1995; 1:117–118

    Article  Google Scholar 

  407. Folkman J, Watson K, Ingber D, al e. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339:58–61

    Article  PubMed  CAS  Google Scholar 

  408. Schweigerer L, Neufeld G, Friedman J, ale. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 1987; 325:257–259

    Article  PubMed  CAS  Google Scholar 

  409. Hamada J, Cavanaugh P, Lotan O, al e. Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for matastasis. Br. J. Cancer 1992; 66:349–354

    PubMed  CAS  Google Scholar 

  410. O’Reilly M, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumours in mice. Nat. Med. 1996; 2:689–692

    Google Scholar 

  411. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66:1095–1104

    Article  PubMed  CAS  Google Scholar 

  412. Jouanneau J, Moens G, Bourgeois Y, Poupon M, Thiery J. A minority of carcinoma cells producing acidic fibroblast growth factor induces a community effect for tumour progression. Proc. Natl. Acad. Sci. USA 1994; 91:286–290

    PubMed  CAS  Google Scholar 

  413. Folkman J. What is the evidence that tumours are angiogenesis dependent? J. Natl. Cancer Inst. 1990; 82:4–6

    PubMed  CAS  Google Scholar 

  414. Weidner N, Semple J, Welch W, Folkman J. Tumour angiogenesis and metastasis-correlation in invasive breast carcinoma. N. Engl. J. Med. 1991; 324:1–8

    PubMed  CAS  Google Scholar 

  415. Maione T, Gray G, Petro J, Hunt A, Donner A, Bauer S, Carson H, Sharpe R. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247:77–79

    PubMed  CAS  Google Scholar 

  416. Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J. Synthetic analogues of fumagilin that inhibit angiogenesis and suppress tumour growth. Nature 1990; 348:555–557

    Article  PubMed  CAS  Google Scholar 

  417. Gerwins P, Skoldenberg E, Claesson-Welsh L. Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit. Rev. Oncol. Hematol. 2000; 34:185–194

    PubMed  CAS  Google Scholar 

  418. Brooks P, Montgomery A, Rosenfeld M, Reisfeld R, Hu T, Klier G, Cheresh D. Integrin alpha v beta 3 antagonists promote tumour regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79:1157–1164

    Article  PubMed  CAS  Google Scholar 

  419. Rastinejad F, Polverini P, Bouck N. Regulation of the activity of a new inhibitor of angiogenesis bya cancer suppresor gene. Cell 1989;56:345–355

    Article  PubMed  CAS  Google Scholar 

  420. Dameron K, Volpert O, Tainsky M, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of throm bospondin-1. Science 1994; 265:1582–1584

    PubMed  CAS  Google Scholar 

  421. O’Reilly M, Holmgren L, Shing Y, Cheng C, Rosenthal R, Moses M, Lane W, Cao Y, Sage E, Folkman J. Angiostatin. A novel angiogenesis inhibitor that mediates the suppresion of metastases by a Lewis lung carcinoma. Cell 1994; 79:315–328

    Google Scholar 

  422. van Meir E, Polverini P, Chazin V, Su Huang H, de Tribolet N, Cavenee W. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat. Genet. 1994; 8:171–176

    PubMed  Google Scholar 

  423. Moulder J, Rockwell S. Hypoxic fractions of solid tumours: experimental techniques, methods of analysis, and a survey of existing data. Int. J. Radiat. Oncol. Biol. Phys. 1984; 10:695–712

    PubMed  CAS  Google Scholar 

  424. Brown J. The hypoxic cell: a target for selective cancer therapy-Eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 1999; 59:5863–5870

    PubMed  CAS  Google Scholar 

  425. Shweiki D, Itin A, Soffer D, Keshet E. Vasculae endothelial growth factor induced by hypoxia may mediate hypoxia initiated angiogenesis. Nature 1992; 359:843–845

    Article  PubMed  CAS  Google Scholar 

  426. Guillemin K, Krasnow M. The hypoxic response. Huffing and HIFing. Cell 1997; 89:9–12

    Article  PubMed  CAS  Google Scholar 

  427. Gleadle J, Ebert B, Firth J, Ratcliffe P. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am. J. Physiol. 1995; 268:C1362–C1368

    PubMed  CAS  Google Scholar 

  428. Yan S, Tritto I, Pinsky D, Liao H, Huang J, Fuller G, Brett J, May L, Stern D. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J. Biol. Chem. 1995; 270:11463–11471

    PubMed  CAS  Google Scholar 

  429. Karakurum M, Shreeniwas R, Chen J, Pinsky D, Yan S, Anderson M, Sunouchi K, Major J, Hamilton T, Kuwabara K. Hypoxic induction of onterleukin-8 gene expression in human endothelial cells. J. Clin. Invest. 1994; 93:1564–1570

    PubMed  CAS  Google Scholar 

  430. Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky D, Lyn P, Leavy J, Witte L, Joseph-Silverstein J, Furie M, Torcia G, Cozzolino F, Kamada T, Stern D. Hypoxiamediated induction of acidic 7 basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 1995; 92:4606–4610

    PubMed  CAS  Google Scholar 

  431. Levy A, Levy N, Goldberg M. Posttranscriptional regulation of vascular endothelial growth factor by hypoxia. J. Biol. Chem. 1996; 271:2746–2753

    PubMed  CAS  Google Scholar 

  432. Zhang L, Zhou W, Velculescu V, Kern S, Hruban R, Hamilton S, Vogelstein B, Kinzler K. Gene expression profiles in normal and cancer cells. Science 1997; 276:1268–1272

    PubMed  CAS  Google Scholar 

  433. Maxwell P, Dachs G, Gleadle J, Nicholls L, Harris A, Stratford I, Hankinson O, Pugh C, Ratcliffe P. Hypoxia-inducible factor-1 modulates gene expression in solid tumours and influences both angiogenesis and tumour growth. Proc. Natl. Acad. Sci. USA 1997; 94:8104–8109

    Article  PubMed  CAS  Google Scholar 

  434. Jiang B-H, Agani F, Passaniti A, Semenza G. vSrc induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumour progression. Cancer Res. 1997; 57:5328–5335

    PubMed  CAS  Google Scholar 

  435. Tazuke S, Mazure N, Sugawara J, Carland G, Faessen G, Suen L-F, Irwin J, Powell D, Giaccia A, Giudice L. Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: a possible model for IGFBP-1 expression in fetal hypoxia. Proc. Natl. Acad. Sci. USA 1998; 95:10118–10193

    Article  Google Scholar 

  436. Kim K, Bae S, Lee O, Bae M, Lee M, Park B. Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma. Cancer Res 1998; 58:348–351

    PubMed  CAS  Google Scholar 

  437. Tucci M, Nygard K, Tanswell B, Farber H, Hill D, Han V. Modulation of insulin-like growth factor (IGF) and IGF binding protein biosynthesis in cultured vascular endothelial cells. J. Endocrinol. 1998; 157:13–24

    Article  PubMed  CAS  Google Scholar 

  438. Zhong H, Agani F, Baccala A, Laughner E, Rioseco-Camacho N, Isaacs W, Simons J, Semenza G. Increased expression of hypoxiainducible factor 1 α in rat and human prostate cancer. Cancer Res. 1998; 58:5280–5284

    PubMed  CAS  Google Scholar 

  439. Feldser D, Agani F, Iyer N, Pak B, Ferreira G, Semenza G. Reciprocal positive regulation of hypoxia-inducible factor 1 α and insulin-like growth factor 2. Cancer Res. 1999; 59:3915–3918

    PubMed  CAS  Google Scholar 

  440. Bae M, Lee M, Bae S, Lee O, Lee Y, Park B, Kim K. Insulin-like growth factor II (IGF-II) secreted form HepG2 human hepatocellular carcinoma cells shows angiogenic activity. Cancer Lett 1998; 128:41–46

    Article  PubMed  CAS  Google Scholar 

  441. Bae S-k, Bae M, Ahn M-Y, Son M, Lee Y, Bae M-K, Lee O-H, Park B, Kim K-W. Egr-1 mediates transcriptional activation of IGF-II gene in response to hypoxia. Cancer Res. 1999; 59:5989–5994

    PubMed  CAS  Google Scholar 

  442. Volpert O, Jackson D, Bouck N, Linzer D. The insulin-like growth factor II/mannose 6-phosphate receptor is required for proliferin-induced angiogenesis. Endocrinology 1996; 137:3871–3876

    Article  PubMed  CAS  Google Scholar 

  443. Warren R, Yuan H, Matli M, Ferrara N, Donner D. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J. Biol. Chem. 1996; 271:29483–29488

    PubMed  CAS  Google Scholar 

  444. Bermont L, Lamielle F, Fauconnet S, Esumi H, Weisz A, Adessi G. Regulation of vascular endothelial growth factor expression by insulin-like growth factor-I in endometrial adenocarcinma cells. Int. J. Cancer 2000; 85:117–123

    Article  PubMed  CAS  Google Scholar 

  445. Zelzer E, Levy Y, Kahana C, Shilo B-Z, Rubinstein M, Cohen B. Insulin induces transcription of target genes through the hypoxia inducible factor HIF-1α/ARNT. EMBO J. 1998; 17:5085–5094

    Article  PubMed  CAS  Google Scholar 

  446. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk A, Ryan H, Johnson R, Jefferson A, Stokoe D, Giaccia A. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000; 14:391–396

    PubMed  CAS  Google Scholar 

  447. Yamamoto Y, Toi M, Kondo S, Matsumoto T, Suzuki H, Kitamura M, Tsuruta K, Taniguchi T, Okamoto A, Mori T, Yoshida M, Ikeda T, Tominaga T. Concentrations of vascular endothelial growth factor in the sera of normal controls and cancer patients. Clin. Cancer Res. 1996; 2:821–826

    PubMed  CAS  Google Scholar 

  448. Spratt J, Greenberg R, Heuser L. Geometry, growth rates, and duration of cancer and carcinoma in situ of the breast before detection and screening. Cancer Res. 1986; 46:970–974

    PubMed  CAS  Google Scholar 

  449. Zhuang Z, Merino M, Chuaqui R, Liotta L, Emmert-Buck M. Identical allelic loss on chromosome 11p13 in microdissected in situ and invasive human breast cancer. Cancer Res. 1995;55:467–471

    PubMed  CAS  Google Scholar 

  450. Marcelli M, Haidacher S, Plymate S, Birnbaum R. Altered growth and insulin-like growth factor-binding protein-3 production in PC3 prostate carcinoma cells stably transfected with a constitutively active androgen receptor complementary deoxyribonucleic acid. Endocrinology 1995; 136:1040–1048

    Article  PubMed  CAS  Google Scholar 

  451. Lee A, Hilsenbeck S, Yee D. IGF system components as prognostic markers in breast cancer. Breast Cancer Res. Treat. 1998; 47:295–302

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mira, E., Lacalle, R.A., Martínez-A, C., Mañes, S. (2001). Insulin-like Growth Factor Axis Elements in Breast Cancer Progression. In: Snyder, C.R., Jiang, W.G., Matsumoto, K., Nakamura, T. (eds) Growth Factors and their Receptors in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-48399-8_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48399-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7141-0

  • Online ISBN: 978-0-306-48399-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics