Skip to main content
  • 1260 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellows, R.S., Muju, S. and Nicholas, T., Validation of the step test method for generating Haigh diagrams for Ti-6A1-4V. Int. J. of Fatigue, Vol.21 (1999) pp.687–697.

    Google Scholar 

  2. SchĂ¼tz, W., Fatigue strength of single shear riveted joints of aluminum alloys (in German). Laboratorium fĂ¼r Betriebsfestigkeit (LBF), Darmstadt, Bericht Nr.F-47 (1963).

    Google Scholar 

  3. Standard practice for verification of specimen alignment under tensile loading. ASTM Standard E 1012-89 (1989).

    Google Scholar 

  4. SchĂ¼tz, W., Fatigue life prediction — A somewhat optimistic view of the problem. AGARD Lectures Series No.62 (1973).

    Google Scholar 

  5. Potter, J.M. and Watanabe, R.T. (Eds), Development of fatigue loading spectra. ASTM STP 1006, 1989

    Google Scholar 

  6. ten Have, A.A., Wisper and Wisperx. A summary paper describing their background, derivation and statistics. Nat. Aerospace Lab. NLR, Amsterdam, Report TP 92410 (1992).

    Google Scholar 

  7. LeMay, I., Symposium summary and an assessment of research progress in fatigue mechanisms. Fatigue mechanisms (Fong, J.T., Ed.). ASTM STP 675, 1979, pp.873–888.

    Google Scholar 

  8. Test method for measurement of fatigue crack growth rates. ASTM Standard E 647-99 (1999).

    Google Scholar 

  9. Johnson, H.H., Calibrating the electric potential method for studying slow crack growth. Materials Research and Standards, Vol.5 (1965) pp.442–445.

    Google Scholar 

  10. Saxena, A. and Muhlstein, C.L., Fatigue crack growth testing. ASM Handbook, Vol. 19 (1996) pp.168–184.

    Google Scholar 

  11. Ichsan S. Putra, Fatigue crack growth predictions of surface cracks under constant-amplitude and variable-amplitude loading. Doctor thesis, Delft University of Technology (1994).

    Google Scholar 

  12. Piascik, R.S. and Willard, S.A., The characteristics of fatigue damage in the fuselage riveted lap splice joint. NASA / TP-97-206257 (1997).

    Google Scholar 

  13. Fawaz, S.A., Fatigue crack growth in riveted joints. Doctor thesis, Delft University of Technology (1997).

    Google Scholar 

  14. Sunder, R., Binary coded event registration on fatigue fracture surfaces. Nat. Aero. Lab., Bangalore. Report TM-MT-8-82 (1982).

    Google Scholar 

  15. Schijve, J., Fatigue crack closure observations and technical significance. Mechanics of Fatigue Crack Closure, Int. Symp., Charleston 1986. ASTM STP 982 (1988) pp.5–34.

    Google Scholar 

  16. Sunder, R. and Dash, P.K., Measurement of Fatigue Crack Closure Through Electron Microscopy. Int. Journal of Fatigue, Vol.4 (1982) pp.97–105.

    Google Scholar 

  17. Zhang, S., Marissen, R., Schulte, K., Trautmann, K.K., Nowack, H. and Schijve, J., Crack propagation studies on Al 7475 on the basis of constant amplitude and selective variable amplitude loading histories. Fatigue of Eng. Materials and Structures, Vol.10 (1987) pp.315–332.

    Google Scholar 

General references

  1. Heuler, P. and SchĂ¼tz, W., Standardized load-time histories — Status and trends. Low cycle fatigue and elasto-plastic behaviour of materials (K-T. Rie and P.D. Portella, eds.), Elsevier (1998), pp.729–734.

    Google Scholar 

  2. 1997 Annual book of ASTM Standards. Section 3. Metals test methods and analytical procedures. Vol.03.01. Metals.

    Google Scholar 

  3. Maennig, W.-W., Planning and evaluation of fatigue tests. Fatigue and Fracture, American Society for Materials, Handbook Vol.19, ASM (1996) pp.303–313.

    Google Scholar 

  4. Amzallig, C. (Ed.), Automation in fatigue and fracture: testing and analysis. ASTM STP 1231 (1994).

    Google Scholar 

  5. Ruschau, J.J. and Donald, J.K. (Eds), Special applications and advanced techniques for crack size determination. ASTM STP 1251 (1993).

    Google Scholar 

  6. Marsh, K.J., Smith, R.A. and Ritchie, R.O. (Eds), Fatigue crack measurement: Techniques and applications. Engineering Materials Advisory Services, EMAS (1991).

    Google Scholar 

  7. Marsh, K.J. (Ed), Full-scale fatigue testing of components and structures. Butterworth (1988).

    Google Scholar 

  8. Cullen, W.H., Landgraf, R.W., Kaisand, L.R. and Underwood, J.H. (Eds), Automated test methods for fracture and fatigue crack growth. ASTM STP 877 (1985).

    Google Scholar 

  9. Beevers, C.J. (Ed.), Advances in crack length measurement. Chameleon Press, Warley (1982).

    Google Scholar 

  10. Hudak, S.J. and Bucci, R.J. (Eds.), Fatigue crack growth measurement and data analysis. ASTM STP 738 (1981).

    Google Scholar 

  11. Fatigue test methodology. AGARD Lecture Series No. 118 (1981).

    Google Scholar 

  12. Beevers, C.J. (Ed.), The measurement of crack length and shape during fracture and fatigue. EMAS, Warley (1980).

    Google Scholar 

  13. Swanson, S.R., Handbook of fatigue testing. ASTM STP 566 (1974).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Fatigue Tests. In: Fatigue of Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/0-306-48396-3_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48396-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7013-0

  • Online ISBN: 978-0-306-48396-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics