Skip to main content

A new Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models

  • Chapter
Cardiovascular Soft Tissue Mechanics

Abstract

In this paper we develop a new constitutive law for the description of the (passive) mechanical response of arterial tissue. The artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia (the solid mechanically relevant layers in healthy tissue). Each layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous component of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. Fiber orientations obtained from a statistical analysis of histological sections from each arterial layer are used. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the natural (unstressed and unstrained) configuration of the material corresponds to an open sector of a tube, which is then closed by an initial bending to form a load-free, but stressed, circular cylindrical configuration prior to application of the extension, inflation and torsion. The effect of residual stress on the stress distribution through the deformed arterial wall in the physiological state is examined.

The model is fitted to available data on arteries and its predictions are assessed for the considered combined loadings. It is explained how the new model is designed to avoid certain mechanical, mathematical and computational deficiencies evident in currently available phenomenological models. A critical review of these models is provided by way of background to the development of the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abè, K. Hayashi and M. Sato (eds), Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, Springer-Verlag, New York (1996).

    Google Scholar 

  2. H. Bader, Dependence of wall stress in the human thoracic aorta on age and pressure. Circ. Res. 20 (1967)354–361.

    Google Scholar 

  3. P.C. Block, Mechanism of transluminal angioplasty. Am. J. Cardiology 53 (1984) 69C–71C.

    Article  Google Scholar 

  4. T.E. Carew, R.N. Vaishnav and D.J. Patel, Compressibility of the arterial wall. Circ. Res. 23 (1968) 61–68.

    Google Scholar 

  5. C.J. Chuong and Y.C. Fung, Three-dimensional stress distribution in arteries. J. Biomech. Engr. 105 (1983) 268–274.

    Google Scholar 

  6. C.J. Chuong and Y.C. Fung, Residual stress in arteries. In: G.W. Schmid-Schönbein, S.L-Y. Woo and B.W. Zweifach (eds), Frontiers in Biomechanics, Springer-Verlag, New York (1986), pp. 117–129.

    Google Scholar 

  7. P.G. Ciarlet, Mathematical Elasticity. Volume I: Three-Dimensional Elasticity, North-Holland, Amsterdam (1988).

    Google Scholar 

  8. R.H. Cox, Regional variation of series elasticity in canine arterial smooth muscles. Am. J. Physiol. 234 (1978) H542–H551.

    Google Scholar 

  9. R.H. Cox, Comparison of arterial wall mechanics using ring and cylindrical segments. Am. J. Phys. 244 (1983) H298–H303.

    Google Scholar 

  10. A. Delfino, N. Stergiopulos, J.E. Moore and J.-J. Meister, Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30 (1997) 777–786.

    Article  Google Scholar 

  11. H. Demiray, A layered cylindrical shell model for an aorta. Int. J. Engr. Sci. 29 (1991) 47–54.

    MathSciNet  MATH  Google Scholar 

  12. S.X. Deng, J. Tomioka, J.C. Debes and Y.C. Fung, New experiments on shear modulus of elasticity of arteries. Am. J. Physiol 266 (1994) H1–H10.

    Google Scholar 

  13. H.M. Finlay, L. McCullough and P.B. Canham, Three-dimensional collagen organization of human brain arteries at different transmural pressures. J. Vase. Res. 32 (1995) 301–312.

    Google Scholar 

  14. P. Flory, Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57 (1961) 829–838.

    Article  MathSciNet  Google Scholar 

  15. R.F. Fuchs, Zur Physiologie und Wachstumsmechanik des Blutgefäßsystems. Archiv fur die gesamte Physiologie 28 (1900).

    Google Scholar 

  16. Y.C. Fung, Biomechanics: Motion, Flow, Stress, and Growth, Springer-Verlag, New York (1990).

    Google Scholar 

  17. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissue, 2nd edn, Springer-Verlag, New York (1993).

    Google Scholar 

  18. Y.C. Fung, K. Fronek and P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237 (1979) H620–H631.

    Google Scholar 

  19. Y.C. Fung and S.Q. Liu, Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65 (1989) 1340–1349.

    Google Scholar 

  20. T.C. Gasser and G.A. Holzapfel, Rate-independent elastoplastic constitutive modeling of biological soft tissues: PartI. Continuum basis, algorithmic formulation and finite element implementation. Submitted (2000).

    Google Scholar 

  21. T.C. Gasser, C.A.J. Schulze-Bauer, E. Pernkopf, M. Stadler and G.A. Holzapfel, Rate-independent elastoplastic constitutive modeling of biological soft tissues: Part II. Percutaneous transluminal angioplasty. Submitted (2000).

    Google Scholar 

  22. J.M. Guccione, A.D. McCulloch and L.K. Waldman, Passive material properties of intact ventricular myocardium determined from a cylindrical model. ASME J. Biomech. Engr. 113 (1991) 42–55.

    Google Scholar 

  23. H.C. Han and Y.C. Fung, Species dependence of the zero-stress state of aorta: Pig versus rat. J. Biomech. Engr. 113 (1991) 446–451.

    Google Scholar 

  24. K. Hayashi, Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J. Biomech. Engr. 115 (1993) 481–488.

    Google Scholar 

  25. G.A. Holzapfel, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, Wiley, Chichester (2000).

    Google Scholar 

  26. G.A. Holzapfel and T.C. Gasser, A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Engr. In press (2000).

    Google Scholar 

  27. G.A. Holzapfel, T.C. Gasser, M. Stadler and C.A.J. Schulze-Bauer, A multi-layer structural model for the elastic and viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Submitted (2000).

    Google Scholar 

  28. G.A. Holzapfel, C.A.J. Schulze-Bauer and M. Stadler, Mechanics of angioplasty: Wall, balloon and stent. In: J. Casey and G. Bao (eds), Mechanics in Biology, AMD-Vol. 242/BED-Vol. 46, The American Society of Mechanical Engineers, New York (2000), pp. 141–156.

    Google Scholar 

  29. G.A. Holzapfel and H.W. Weizsäcker, Biomechanical behavior of the arterial wall and its numerical characterization. Comp. Biol. Med. 28 (1998) 377–392.

    Article  Google Scholar 

  30. W.H. Hoppmann and L. Wan, Large deformation of elastic tubes. J. Biomech. 3 (1970) 593–600.

    Article  Google Scholar 

  31. T.J.R. Hughes, The Finite Element Method: Linear Staticand Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ (1987).

    Google Scholar 

  32. J.D. Humphrey, Mechanics of arterial wall: Review and directions. Critical Reviews in Biomed. Engr. 23 (1995) 1–162.

    Google Scholar 

  33. J.D. Humphrey, An evaluation of pseudoelastic descriptors used inarterial mechanics. J. Biomech. Engr. 121 (1999) 259–262.

    Google Scholar 

  34. J.M. Huyghe, D.H. van Campen, T. Arts and R.M. Heethaar, A two-phase finite element model of the diastolic left ventricle. J. Biomech. 24 (1991) 527–538.

    Google Scholar 

  35. V.A. Kas’yanov and A.I. Rachev, Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech. Comp. Mat. 16 (1980) 76–80.

    Google Scholar 

  36. Y. Lanir and Y.C. Fung, Two-dimensional mechanical properties of rabbit skin-I. Experimental system. J. Biomech. 7 (1974) 29–34.

    Google Scholar 

  37. B.M. Learoyd and M.G. Taylor, Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18 (1966) 278–292.

    Google Scholar 

  38. W.-W. Von Maltzahn, D. Besdo and W. Wiemer, Elastic properties of arteries: A nonlinear two-layer cylindrical model. J. Biomech. 14 (1981) 389–397.

    Google Scholar 

  39. W.-W. Von Maltzahn and R.G. Warriyar, Experimental measurments of elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17 (1984) 839–847.

    Google Scholar 

  40. W.W. Nicholsand M.F. O’Rourke, McDonald’s Blood Flow in Arteries, 4th edn, Arnold, London (1998), chapter 4, pp. 73–97.

    Google Scholar 

  41. R.W. Ogden, Nearly isochoric elastic deformations: Application to rubberlike solids. J. Mech. Phys. Solids 26 (1978) 37–57.

    MathSciNet  MATH  Google Scholar 

  42. R.W. Ogden, Non-linear Elastic Deformations, Dover Publication, New York (1997).

    Google Scholar 

  43. R.W. Ogden and C.A.J. Schulze-Bauer, Phenomenological and structural aspects of the mechanical response of arteries. In: J. Casey and G. Bao (eds), Mechanics in Biology, AMD-Vol. 242/BED-Vol. 46, The American Society of Mechanical Engineers, New York (2000), pp. 125–140.

    Google Scholar 

  44. H.S. Oktay, T. Kang, J. D. Humphrey and G.G. Bishop, Changes in the mechanical behavior of arteries following balloon angioplasty. In: 1991 ASMS Advances in Bioengineering, New York (1991).

    Google Scholar 

  45. D.J. Patel and D.L. Fry, The elastic symmetry of arterial segments in dogs. Circ. Res. 24 (1969) 1–8.

    Google Scholar 

  46. A. Rachev, Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J Biomech. 30 (1997) 819–827.

    Article  Google Scholar 

  47. A. Rachevand K. Hayashi, Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Engr. 27 (1999) 459–468.

    Google Scholar 

  48. J.A.G. Rhodin, Architecture of the vessel wall. In: H.V. Sparks Jr., D.F. Bohr, A.D. Somlyo and S.R. Geiger (eds), Handbook of Physiology, The Cardiovascular System, Vol. 2, American Physiologial Society, Bethesda, Maryland (1980), pp. 1–31.

    Google Scholar 

  49. M.R. Roach and A.C. Burton, The reason for the shape of the distensibility curve of arteries. Canad. J. Biochem. Physiol. 35 (1957) 681–690.

    Google Scholar 

  50. E.K. Rodriguez, A. Hoger and A.D. McCulloch, Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27 (1994) 455–67.

    Article  Google Scholar 

  51. C.S. Roy, The elastic properties of the arterial wall. J. Physiol. 3 (1880–1882) 125–159.

    Google Scholar 

  52. B.S. Schultze-Jena, Uber die schraubenförmige Struktur der Arterienwand. Gegenbauers Morphol. Jahrbuch 83 (1939) 230–246.

    Google Scholar 

  53. C.A.J. Schulze-Bauer, C. Mörth and G.A. Holzapfel, Passive biaxial mechanical response of aged human iliac arteries. Submitted (2000).

    Google Scholar 

  54. F.H. Silver, D.L. Christiansen and C.M. Buntin, Mechanical properties of the aorta: A review. Critical Reviews in Biomed. Engr. 17 (1989) 323–358.

    Google Scholar 

  55. B.R. Simon, M.V. Kaufmann, M.A. McAfee and A.L. Baldwin, Porohyperelastic finite element analysis of large arteries using ABAQUS. J. Biomech. Engr. 120 (1998) 296–298.

    Google Scholar 

  56. B.R. Simon, M.V. Kaufmann, M.A. McAfee, A.L. Baldwin and L.M. Wilson, Identification and determination of material properties for porohyperelastic analysis of large arteries. J. Biomech. Engr. 120 (1998) 188–194.

    Google Scholar 

  57. A.J.M. Spencer, Constitutive theory for strongly anisotropic solids, In: A.J.M. Spencer (ed.), Continuum Theory of the Mechanics of Fibre-Reinforced Composites, CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences, Springer-Verlag, Wien (1984), pp. 1–32.

    Google Scholar 

  58. J. Staubesand, Anatomic der Blutgefäße. I. Funktionelle Morphologic der Arterien, Venen und arterio-venösen Anastomosen. In: M. Ratschow (ed.), Angiology, Thieme, Stuttgart (1959), Chapter 2, pp. 23–82.

    Google Scholar 

  59. K. Takamizawa and K. Hayashi, Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20 (1987) 7–17.

    Article  Google Scholar 

  60. A. Tözeren, Elastic properties of arteries and their influence on the cardiovascular system. J. Biomech. Engr. 106 (1984) 182–185.

    Google Scholar 

  61. R.N. Vaishnav and J. Vossoughi, Estimation of residual strains in aortic segments. In: C.W. Hall (ed.), Biomedical Engineering II: Recent Developments, Pergamon Press, New York (1983), pp. 330–333.

    Google Scholar 

  62. R.N. Vaishnav, J.T. Young and D.J. Patel, Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ. Res. 32 (1973) 577–583.

    Google Scholar 

  63. D.A. Vorp, K.R. Rajagopal, P.J. Smolinsky and H.S. Borovetz, Identification of elastic properties of homogeneous orthotropic vascular segments in distension. J. Biomech. 28 (1995) 501–512.

    Article  Google Scholar 

  64. J. Vossoughi, Z. Hedjazi and F.S.I. Boriss, Intimal residual stress and strain in large arteries. In: 1993 ASME Advances in Bioengineering, New York (1993), pp. 434–437.

    Google Scholar 

  65. J. Vossoughi and A. Tözeren, Determination of an effective shear modulus of aorta. Russian J. Biomech. 12 (1998) 20–35.

    Google Scholar 

  66. H.W. Weizsäcker and J.G. Pinto, Isotropy and anisotropy of the arterial wall. J. Biomech. 21 (1988) 477–487.

    Google Scholar 

  67. F.L. Wuyts, V.J. Vanhuyse, G.J. Langewouters, W.F. Decraemer, E.R. Raman and S. Buyle, Elastic properties of human aortas in relation to age and atherosclerosis: A structural model. Phys. Med. Biol. 40 (1995) 1577–1597.

    Article  Google Scholar 

  68. J. Xie, J. Zhou and Y.C. Fung, Bending of blood vessel wall: Stress-strain laws of the intimamedia and adventitia layers. J. Biomech. Engr. 117 (1995) 136–145.

    Google Scholar 

  69. Q. Yu, J. Zhou and Y.C. Fung, Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am. J. Physiol. 265 (1993) H52–H60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Holzapfel, G.A., Gasser, T.C., Ogden, R.W. (2001). A new Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. In: Cowin, S.C., Humphrey, J.D. (eds) Cardiovascular Soft Tissue Mechanics. Springer, Dordrecht. https://doi.org/10.1007/0-306-48389-0_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48389-0_1

  • Received:

  • Revised:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0220-5

  • Online ISBN: 978-0-306-48389-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics