Skip to main content

Tight Junctions, a Critical Structure in the Control of Cancer Invasion and Metastasis

  • Chapter

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 1))

Abstract

Tight junction is the apical most structure in epithelium as well as in the endothelium. Its main function is to control the paracellular diffusion of ions and certain molecules. Although the structure has been known for decades, the molecular composition of the tight junction has only been recognised in the past decade. Molecules making up tight junctions include the transmembrane proteins occludin, claudin and paracellin, and cytoplasmic proteins, MAGUK family members. The structure has now been demonstrated as also having a role in the control of cancer cell penetration of the endothelium and in the development of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson JM and Vanitallie CM. 1995 Tight junctions and the molecular-basis for regulation of paracellular permeability. Am. J. Physiol., 32, G467–475

    Google Scholar 

  2. Tsukita S, Furuse M, Itoh M. 1996. Molecular dissection of tight junctions. Cell Structure Function, 21, 381–385

    CAS  Google Scholar 

  3. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. 1986. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelial. J Cell Biol, 103, 755–766

    Article  PubMed  CAS  Google Scholar 

  4. Anderson JM, Stevenson BR, Jesaitis LA, Goodnough DA, Mooseker MS. 1988. Characterisation of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol, 106, 1141–1149

    PubMed  CAS  Google Scholar 

  5. Saunders NR, Dziegielewska KM, and Mollgard K. 1991. The importance of the blood brain in fetuses and embryos. Trend Neurosci, 14, 1–14

    Article  Google Scholar 

  6. Marfatia SM, Lue RA, Branton D, Chishti AH. 1994. In vitro binding studies suggest a membrane associated complex between erythroid p55, protein 4.1, and glycophorin C. J Biol Chem., 269, 8631–8634

    PubMed  CAS  Google Scholar 

  7. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, et al. 1996. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha 1 syntrophin mediated by PDZ domains. Cell, 84, 757–767

    Article  PubMed  CAS  Google Scholar 

  8. Mayer BJ, Ren R, Clark KL, Baltimore D. 1993. A putative modular domain present in diverse signaling proteins. Cell, 73, 629–630

    Article  PubMed  CAS  Google Scholar 

  9. Ren R, Mayer BJ, Chichetti P, Baltimore D. 1993. Identification of a ten-amino acid preoline-rich SH3 bidning site. Science, 259, 1157–1161

    PubMed  CAS  Google Scholar 

  10. Stehle T, Schulz GE. 1990. Three dimensional structure of the complex of guanylate kinase from yeast with its substrate GMP. J Mol Biol, 211, 249–254

    Article  PubMed  CAS  Google Scholar 

  11. Takeichi M, Hata Y, Hirao K, Toyada A, Irie M, Takai Y. 1997. SAPAPS— a family of PSD-95/SAP90 associated proteins localized at postsynaptic density. J Biol Chem, 272, 11943–11951

    Google Scholar 

  12. Gumbiner B, Lowendopf T, Apatira D. 1991. Identification of a 160 kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci USA, 88, 3460–3464

    PubMed  CAS  Google Scholar 

  13. Hasins J, Gu L, Wittchen E, Hibbard J, Stevenson BR. 1998. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interact with ZO-1 and occludin. J Cell Bil, 141, 199–208

    Google Scholar 

  14. Balda MS, Gonzalez-Mariscal L, Matter K, Cereijido M, Anderson JM. 1993. Assembly of tight junction, the role of diacylglycerol. J Cell Biol, 123, 293–302

    Article  PubMed  CAS  Google Scholar 

  15. Jesaitis LA and Goodenough DA. 1994. Molecular characterizationand tissue distributionof ZO-2, a tight junction protein homologous to ZO-1 and the drosophila disc large tumour suppressor protein. J Cell Biol, 124, 949–961

    Article  PubMed  CAS  Google Scholar 

  16. Citi S, Sabanay H, Jakes R, Geiger B, and Kendrick-Jones J. 1988. Cingulin, a new peripheal component of tight jenctions. Nature, 333, 272–276

    Article  PubMed  CAS  Google Scholar 

  17. Stevenson BR, Heintzelman MB, Anderson JM, Citi S, Mooseker MD. 1989. ZO-1 and cingulin: tight junctin proteins with distinct identities and localisations. Am J Physiol, 257, C621–C628

    PubMed  CAS  Google Scholar 

  18. Zhong Y, Enomoto K, Tobioka H, Konishi Y, Satoh M, and Mori M. 1994. Sequential decreasein tight junctions as revealed by 7H6 tight junction associated protein during rat hepatocarcinogenesis. Japn J Cancer Res, 85, 351–356

    CAS  Google Scholar 

  19. Zhong Y, Saitoh T, Misase T, Sawada N, Enomoto K, and Mori M. Monoclonal antibody 7H6 reacts with a novel tight junction associated protein distinct from ZO-1, cingulin, and ZO-2. J Cell Biol, 120, 477–483

    Google Scholar 

  20. Weber E, Berta G, Tousson A John SP, Green MW. 1994. Expression and polarizaed targeting of a Rab 3 isoform in epithelial cells. J Cell Biol, 125, 583–594

    Article  PubMed  CAS  Google Scholar 

  21. Keon BH, Schafer S, Kuhn C, Grund C, Franke WW. 1996. Symplekin, a novel type of tight juction plaque protein. J Cell Biol, 134, 1003–1018

    Article  PubMed  CAS  Google Scholar 

  22. Merzdorf CS and Goodenough. 1997. Localisation of a novel 210 kDA protein in Xenopus tight junctions. J Cell Sci, 110, 1005–1012

    PubMed  CAS  Google Scholar 

  23. Yamamoto T, Harada N, Kano K, Taya SI, Canaani E, Matsuura Y, Mizoguchi A, Ide C, and Kaibuchi K. 1997. The ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J. Cell Biol., 139, 785–795

    Article  PubMed  CAS  Google Scholar 

  24. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. 1993. Occludin — a novel integral membrane-protein localizing at tight junctions. J. Cell Biol, 123, 1777–1788

    Article  PubMed  CAS  Google Scholar 

  25. Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita SA, and Tsukita SH. 1993. The220-kDaprotein colocalising with cadherins in non-epithelial cells is identical to ZO-1, a tight junction associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol, 121, 491–502

    Article  PubMed  CAS  Google Scholar 

  26. Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. 1994. Direct association of occludin with zo-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol, 127, 1617–1626

    Article  PubMed  CAS  Google Scholar 

  27. Chen YH, Merzdorf C, Paul DL, and Goodenough DA. 1997. COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos. J Cell Biol, 138, 891–899

    PubMed  CAS  Google Scholar 

  28. Matter K and Balda MS. 1998. Biogenesis of tight junctions: the C-terminal domain of occludin mediates basolateral targeting. J Cell Sci, 111, 511–519

    PubMed  CAS  Google Scholar 

  29. Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K. 1996. Functional dissociation of paracellular permeability and transepithelial electrical-resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane-protein. J. Cell Biol., 134, 1031–1049

    Article  PubMed  CAS  Google Scholar 

  30. Furuse M, Fujimoto K, Sato N, Hirase T, Tsukita S, Tsukita S. 1996. Overexpression of occludin, a tight junction-associated integral membrane-protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J Cell Sci., 109, 429–435

    PubMed  CAS  Google Scholar 

  31. McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers R.A., Lynch RD, Schneeberger EE. 1996. Occludin is a functional component of the tight junction. J Cell Sci., 109, 2287–2298

    PubMed  CAS  Google Scholar 

  32. Wong V and Gumbiner BM 1997.A synthetic peptide corresponding to the extracellular domain of occludin perturbs thetight junctionpermeabilitybarrier. J. Cell Biol., 136, 399–409

    Article  PubMed  CAS  Google Scholar 

  33. LacazVieira F, Jaeger MMM, Farshori P, Kachar B. 1999. Small synthetic peptides homologous to segments of the first externalloop ofoccludin impair tight junction resealing. J Membrane Biol, 168, 289–297

    CAS  Google Scholar 

  34. Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Inazawa J, Fujimoto K, and Tsukita S. 1997, Mammalian occludin in epithelial cells:its expression and subcellular distribution. Eur J Cell Biol, 73, 222–231

    PubMed  CAS  Google Scholar 

  35. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. 1998. Claudin-1 and-2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol, 141, 1539–1550

    Article  PubMed  CAS  Google Scholar 

  36. Morita K, Furuse M, Fujimoto K, and Tsukita S. 1999. Claudin multigene family endoding four-transmembrane domain protein components of tihgt junction proteins. Proc Natl Acad Sci USA, 96, 511–516

    Article  PubMed  CAS  Google Scholar 

  37. Furuse M, Sasaki H, Fujimoto K, and Tsukita S. 1998. Asingle gene product, claudin-1 or-2, reconstitutes tight junction strangs and recruits occludin in fibroblasts. J Cell Biol, 143, 391–401

    Article  PubMed  CAS  Google Scholar 

  38. Tsukita S and Furuse M.1999. Occludin and claudins in tight-junction strands: leading or supporting players? Trend Cell Biol, 9, 268–273

    Google Scholar 

  39. StadSimon DB, Lu Y, Choate KA, Velazquez H, AlSabban E, Praga M, Casari C, Bettinelli A, Colussi C, Rodriguez Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. 1999. Paracellin-1, a renaltight junction protein required for paracellular Mg2+ resorption. Science, 285,103–106

    Google Scholar 

  40. Wong V, Goodenough DA. Paracellular channels. Science, 285, 62

    Google Scholar 

  41. McLay RN, Kimura M, Banks WA, Kastin AJ. 1997. Granulocyte-macrophage colony stimulating factor crosses theblood-brain and blood spinal cordbarriers. Brain. 120, 2083–2091

    Article  PubMed  Google Scholar 

  42. Hirase T, Staddon JM, Saitou M, Ando Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL. 1997 Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci, 110, 1603–1613

    PubMed  CAS  Google Scholar 

  43. Risau W and Wolburg H. 1990. Development of the blood brain barrier. Trend Neurosci, 13,174–178

    Article  PubMed  CAS  Google Scholar 

  44. Wakai S and Hirokawa N 1978. Development of the blood brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res, 195, 195–203

    Article  PubMed  CAS  Google Scholar 

  45. Hart IR, Goode NT, and Wilson RE. 1989. Molecular aspectsof themetastatic cascade.Biochim Biophys Acta, 989, 65–84

    PubMed  CAS  Google Scholar 

  46. Jiang WG, Puntis MCA, and Hallett MB. 1994.The moleclar and cellular basis of cancer invasion and metastasis and its implications for treatment. Br J Surg. 81, 1576–1590

    PubMed  CAS  Google Scholar 

  47. Satoh H, Zhong Y, Isomura H, Saitoh M, Enomoto K, Sawada N, Mori M. 1996. Localization of 7H6 tight junction associated antigen along the cell border of vascular endothelial cell correlates with paracellular barrier function against ions, large molecules, and cancer cells. Exp Cell Res, 222, 269–274

    Article  PubMed  CAS  Google Scholar 

  48. Tobioka H, Sawada N, Zhong Y, Mori M. 1996. Enhanced paracellular barrier function of rat mesothelial cells partially protects against cancer cell penetration. Br. J. Cancer, 74, 439–445

    PubMed  CAS  Google Scholar 

  49. Utoguchi N, Mizuguchi H, Saeki K., Ikeda K, Tsutsumi Y, Nakagawa S, Mayumi T. 1995 Tumor-conditioned medium increases macromolecular permeability of endothelial-cell monolayer. Cancer Lett., 89,7–14

    PubMed  CAS  Google Scholar 

  50. Burns AR, Calker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, Simon SI, Entman ML, and Smith CW. 1997. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol, 159, 2893–2903

    PubMed  CAS  Google Scholar 

  51. Pauli BU, Weinstein RS, Alroy J, Arai M. 1977. Ultrastructure of celljunctions in FANFT-induced urothelial tumors in urinary bladder of Fischer rats. Lab Invest, 37, 609–621

    PubMed  CAS  Google Scholar 

  52. Alroy J. 1979. Ultrastructure of canine urinary bladder carcinomas. VetPathol, 16, 693–701

    CAS  Google Scholar 

  53. Kerjaschki D, Krisch K, Sleyter UB, Umrath W, Jakesz R, Depisch D, Kokoschika R, Horandner H. 1979. The structure of tight junctions in human thyroid tumours.A systematic freeze-fracture study. Am J Pathol, 96, 207–225

    PubMed  CAS  Google Scholar 

  54. Polak-Charcon S, Shoham J, Ben-Shaul Y. 1980.Tight junctions in epithelial cells of human feta hindgut,normal colon, and colon adenocarcinoma. J Natl Cancer Instil, 65, 53–62

    CAS  Google Scholar 

  55. Hoover KB, Liao SY, Bryant PJ. 1998. Loss of thetight junction MAGUK ZO-1 in breast cancer—Relationship to glandular differentiation and loss of heterozygosity. Am J Pathol, 153, 1767–1773

    PubMed  CAS  Google Scholar 

  56. Kimura Y, Shiozaki H, Hirao M, Maeno Y, Doki Y, Inoue M, Monden Y, Ando-Akatsuka Y, Furuse M, Tsukita S, and Monden M. 1997. Expression of occludin, tight junction associated protein in human digestive tract. Am.J.Pathol., 151, 45–54

    PubMed  CAS  Google Scholar 

  57. Chilenski A, Ketels KV, Tsao MS, Talamonti MS, Anderson MR, Oyasu R, and Scarpelli DG. 1999. Tight junction protein ZO-2is differentiaaly expressed in normal pacreatic ducts compared to human pancreatic adenocarcinoma. Int J Cancer, 82, 137–144

    Google Scholar 

  58. Cochand Priollet B, Raison D, Molinie V, Guillausseau PJ, Wassef M, Bouchaud C. 1998. Altered gap and tight junctions in human thyroid oncocytic tumors: A study of 8 cases by freeze-fracture. Ultrastruct Pathol, 22, 413–420

    PubMed  CAS  Google Scholar 

  59. Itoh M, Nagafuchi A, Moroi S, Tsukita S. 1997.Involvement of ZO-1 incadherinbased cell adhesion through its direct binding to or catenin and actin filaments. J. Cell Biol.,138,181–192

    Article  PubMed  CAS  Google Scholar 

  60. Van Itallie CM, and Anderson JM. 1997. Occludin confers adhesiveness when expressed in fibroblasts. J.Cell Sci., 110, 1113–1121

    PubMed  Google Scholar 

  61. Ando Akatsuka Y, Yonemura S, Itoh M, Furuse M, Tsukita S. 1999. Differential behavior of E-cadherin and occludin in their colocalization with ZO-1during the establishment of epithelial cell polarity. J Cell Physiol, 179, 115–125

    PubMed  CAS  Google Scholar 

  62. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, and Robinson C. 1999. Der P1 facilitates transepithelial allergen delivery by disruptioin of tight junctionsl J Clin Invest. 104, 123–133

    PubMed  CAS  Google Scholar 

  63. Tilling T, Korte D, Hoheisel D, Galla HJ. 1998 Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J Neurochemistry, 71, 1151–1157

    CAS  Google Scholar 

  64. Lewalle JM, Bajou K, Desreux J, Mareel M, Dejana E, Noel A, and Foidart JM. 1997. Alteration of interendothelial adherens junctions following tumor cellendothelial interact ioninvitro. Exp Cell Res, 237, 347–356

    Article  PubMed  CAS  Google Scholar 

  65. Youakim A, Ahdieh M. 1999.Interferongammadecreases barrier function inT84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol, 39, G1279–G1288

    Google Scholar 

  66. Schimitz H, Fromm M, Bentzel CJ, Scholz P, Detjen K, Mankertz J, Bode H, Epple HJ, Riecken EO, Schulzke JD. 1999. Tumor necrosisfactor-alpha(TNFalpha) regulates the epithelial barrier in the human intestinalcell lineHT-29/B6. J Cell Sci, 112,137–146

    Google Scholar 

  67. Van Itallie CM, Anderson JM. 1999. Tight-junction protein ZO-1 isoforms (alpha(+) andalpha(-)) showdifferential extractability and epidermal-growth-factor-induced tyrosine phosphorylation in A431 cells. Protoplasma. 206, 211–218

    Article  Google Scholar 

  68. Jiang WG, Hiscox S, Matsumoto K, and Nakamura T. 1999. Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical impact in the development of cancer. Crit Rev Oncology Hematology, 29, 209–248

    CAS  Google Scholar 

  69. Nusrat A, Parkos CA, Bacarra AE, Godowski PJ, Delparcher C, Rosen EM, Madara JL. 1994. Hepatocyte growth factor/scatter factor effects on epitheliaregulation ofintercellular-junctions in transformed and nontransformed celllines, basolateral polarization ofc-met receptor. J. Clin. Invest., 93, 2056–2065

    Article  PubMed  CAS  Google Scholar 

  70. Grisendi S, Arpin M, Crepaldi T. 1998. Effect of hepatocyte growth factor on assembly of zonula occluden-1protein at the plasma membrane. Cell Physiol, 176, 465–471

    CAS  Google Scholar 

  71. Jiang WG, Martin TA, Matsumoto K, Nakamura T, Mansel RE. 1999. Hepatocyte growth factor/scatter factor decreases the expression of occludin and transendothelial resestance (TER) and increases paracellular permeability in human vascular endothelial cells. J Cell Physiol, 181, in press

    Google Scholar 

  72. Petroll WM, Jester JV, Barry Lane PA, Cavanagh HD.1996 Effects of basic FGF and TGF(beta1) on F-actin and ZO-1 organization during cat endothelial wound healing. Cornea, 15, 525–532

    PubMed  CAS  Google Scholar 

  73. Woo PL, Cha HH, Singer KL, and Firestone GL. 1996. Antagonistic regulation of tight junction dynamics by glucocorticoids and transforming growth factor beta in mouse mammary epithelial cells. J Biol Chem, 271, 404–412

    PubMed  CAS  Google Scholar 

  74. Buse P, Woo PL, Alexander DB, Cha HH, Reza A, Sirota ND, and Firestone GL. 1995.Transforming growth factoralpha abrogate glucocortinoid-stimulated tight junction formationa nd growth suppression in rat mammary epithelial tumour cells.J Biol Chem, 270, 6505–6514

    PubMed  CAS  Google Scholar 

  75. Duffey ME, Hainau B, Ho S, and Bentzel CJ. 1981. Regulation of epithelial tight junction permeability by cyclic AMP. Nature, 294, 451–453

    Article  PubMed  CAS  Google Scholar 

  76. Wolburg H, Neuhaus J, Kniesel U, Kraub B, Schmid EM, Ocalan M, Farrell C, and Riaasu W. 1994. Modulation of tight junction structure in blood-brain barrier endothelial cells, effectsof tissue cutlture, second messengers and cocultured astrocytes. J Cell Sci,,107, 1347–1357

    PubMed  CAS  Google Scholar 

  77. Oliver JA. 1990. Adenulase and protein kinase C mediate opposite actions on endothlial junctions.J Cell Physiol,145, 536–542

    Article  PubMed  CAS  Google Scholar 

  78. Citi S 1992. Protein kinase inhibitors prevent junction dissociationi induced by low extracellular calcium in MDCK cells. J Cell Biol, 117, 169–178

    Article  PubMed  CAS  Google Scholar 

  79. Stuart RO and Nigam SK.1995. Regulated assembly of tight junction by protein kinase C. Proc Natl Acad Sci USA. 92, 6072–6076

    PubMed  CAS  Google Scholar 

  80. Jou TS, Schneeberger EE, Nelson WJ. 1998. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol, 142, 101–115

    PubMed  CAS  Google Scholar 

  81. Contreras RG, Ponce A, and Bolivar JJ. 1992, Calcium and tight junctions. In ‘Tightjunctions. Cereijido M (Editor), CRC Press, London, pp139–150

    Google Scholar 

  82. Gillies MC, Su T, Stayt J, Simpson JM, Naidoo D, Salonikas C 1997 Effectof high glucose on permeability of retinal capillary endothelium in vitro. Invest Ophthalmol Vis Sci, 38, 635–642

    PubMed  CAS  Google Scholar 

  83. Nlikslager AT, Roberts MC, Rhoads JM, and Argenzio RA. 1997. Prostandlandin I2 and E2 have synergistic role in rescuing epithelial barrier function in porcine ileum. I Clin Invest, 100, 1928–1933

    Google Scholar 

  84. Noske W and Hirsch M. 1986. Morphology of tight junctions in the cilliary epithelium of rabbits during arachidoni cacid induced breakdown of the blooda queous barrier. Cell Tissue Res, 245, 405–412

    Article  PubMed  CAS  Google Scholar 

  85. Jiang WG, Bryce RP, Horrobin DF. 1998, Essential fatty acids, molecular and cellular basis of their anticancer action. Crit Rev Oncology/Hematology, 27,179–209

    CAS  Google Scholar 

  86. Jiang WG, Bryce RP, Horrobin DF, Mansel RE. 1998. Regulation of tight junction permeability and occludin expression by polyunsaturated fatty acids. Biochem Biophys Res Commun, 244, 414–420

    Article  PubMed  CAS  Google Scholar 

  87. Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, and Tsukita S. 1997. Possible Involvement of phosphorylation of occludin in tight junction formation. J. CellBiol., 137, 1393–1401

    Article  CAS  Google Scholar 

  88. Wong V. 1997. Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am. J. Physiol., 273, C1859–1867

    PubMed  CAS  Google Scholar 

  89. Staddon JM, Herrenknecht K, Smales C, Rubin LL. 1995 Evidence that tyrosine phosphorylation may increase tight junction permeability. J Cell Sci,108, 609–619

    PubMed  CAS  Google Scholar 

  90. Stadon J, Ratcliffe M, Morgan L, Hirase T, Smales C, Rubin L. 1997. Protein phosphorylation and the regulation of cell-celljunctions in brain endothelial cells. Heart Vessel, S12, 106–109

    Google Scholar 

  91. Tsukamoto T and Nigam SK. 1999. Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J Physiol, 45, F737–F750

    Google Scholar 

  92. Citi S and Denisendo N. 1995. Phosphorylation of the tight junction protein cingulin and the effects of protein-kinase inhibitors and activators in MDCK epithelial-cells. J Cell Sci, 108, 2917–2926

    PubMed  CAS  Google Scholar 

  93. Cordenonsi M, Mazzon E, Rigo LD, Baraldo S, Meggio F,and Citi S. 1997. Occludin dephosphorylation in early development of Xenopus laevis. J Cell Sci, 110, 3131–3139

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jiang, W.G., Martin, T., Llaffafian, I., Mansel, R.E. (2000). Tight Junctions, a Critical Structure in the Control of Cancer Invasion and Metastasis. In: Jiang, W.G., Mansel, R.E. (eds) Cancer Metastasis, Molecular and Cellular Mechanisms and Clinical Intervention. Cancer Metastasis — Biology and Treatment, vol 1. Springer, Dordrecht. https://doi.org/10.1007/0-306-48388-2_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48388-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6395-8

  • Online ISBN: 978-0-306-48388-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics