Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Abboud, V. Mathis, and J.-C. Nedelec. Diffraction of an electromagnetic travelling wave by a periodic structure. In G. Cohen et al., editors, Third international conference on Mathematical and Numerical Aspects of Wave Propagation. SIAM, 1995.

    Google Scholar 

  2. N. Abrahamson, J. Schneider, and J. Stepp. Empirical spatial coherency functions for application to soil-structure interaction analyses. Earthquake Spectra, 7(1):1–27, 1991.

    Article  Google Scholar 

  3. S. Ahmad and P. Banerjee. Multi-domain BEM for two-dimensional problems of elastodynamics. Int. J. Num. Meth. Eng., 26:891–911, 1988.

    MATH  Google Scholar 

  4. S. Ahmad and P. Banerjee. Inelastic transient elastodynamic analysis of three-dimensional problems by BEM. Int. J. Num. Meth. in Eng., 29:371–390, 1990.

    MATH  Google Scholar 

  5. S. Ahmad and P. K. Banerjee. Time-domain transient elastodynamic analysis of 3-d solids by BEM. Int. J. Num. Meth. in Eng., 26:1709–1728, 1988.

    MATH  Google Scholar 

  6. H. Antes and O. V. Erstoff. Analysis of absorption effects on the dynamic response of dam reservoir systems by boundary element methods. Earthquake. Eng. Struct. Dyn., 15:1023–1036, 1987.

    Google Scholar 

  7. H. Antes and O. V. Erstoff. Dynamic response of 2D and 3D block foundations on a halfspace with inclusions. Soil Dyn. Earthquake Engrg, 13:305–311, 1994.

    Google Scholar 

  8. R. Apsel and J. Luco. Torsional response of a rigid embedded foundation. J. Engrg. Mech. Div. ASCE, 102:957–970, 1976.

    Google Scholar 

  9. A. Askar and A. Cakmak. Seismic waves in random media. Prob. Engrg. Mech., 3(3):124–129, 1988.

    Google Scholar 

  10. D. Aubry, A. Baroni, and D. Clouteau. Seismic borehole modeling with a mixed boundary and finite-element method. In Proc. SEG Los Angeles, volume PP4.4, pages 751–754, 1994.

    Google Scholar 

  11. D. Aubry, A. Baroni, D. Clouteau, A. Fodil, and A. Modaressi. Modeling of ballast behaviour in railway track. In Int. Conf. on soil mechanics, 1999.

    Google Scholar 

  12. D. Aubry and D. Clouteau. A regularized boundary element method for stratified media. In G. Cohen and al., editors, Math, and num. aspects of wave propagation, Proc. 1st Int. Conf., pages 660–668. SIAM, 1991.

    Google Scholar 

  13. D. Aubry and D. Clouteau. A subdomain approach to dynamic soil-structure interaction, pages 251–272. Ouest Editions/AFPS, Nantes, 1992.

    Google Scholar 

  14. D. Aubry, D. Clouteau, and G. Bonnet. Modelling of wave propagation due to fixed or mobile dynamic sources. In N. Chouw and G. Schmid, editors, Workshop Wave’ 94, Wave propagation and Reduction of Vibrations, pages 109–121. Berg-verlag, 1994.

    Google Scholar 

  15. D. Aubry, D. Clouteau, J. Crepel, and F. Gillon. Approche par sous-domaines et lments finis de frontire des effets de site tridimensionnels. Rapport final M.R.T, appel ďoffre 1988/ Gnie Civil 88.F.0863, Ecole Centrale de Paris, 1991.

    Google Scholar 

  16. D. Aubry, D. Clouteau, J. Dompierre, and J. Svay. The seismic borehole problem, a mixed bem-fem modal approach in the frequency domain. In Proc. Numerical Methods in Engineering’ 92, Brussels, 1992.

    Google Scholar 

  17. D. Aubry, D. Clouteau, and A. Modaressi. Interaction dynamique sol-structure. In Proc. jour. Calcul tridimensionnel en geotechnique. Presse des Ponts et Chausses, 1998.

    Google Scholar 

  18. D. Aubry, D. Clouteau, and J. Svay. The seismic horizontal borehole problem, a mixed bem-fem modal approach in the frequency domain. In 2nd int. Conf, on Mathematical and Numerical Aspects of Wave Propagation, Philadelphia, 1993. SIAM.

    Google Scholar 

  19. D. Aubry, D. Clouteau, and J. Svay. Tube waves in horizontal boreholes. In Proc. SEG Los Angeles, volume BG1.8, pages 28–31, 1994.

    Google Scholar 

  20. E. Balmès. Optimal Ritz vectors for component mode synthesis using the singular value decomposition. AIAA Journal, 34(6):1256–1260, 1996.

    MATH  Google Scholar 

  21. A. Bamberger and T. Ha Duong. Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction ďune onde acoustique (i). Math. Meth. in Appl. Sc., 8:405–435, 1986.

    MATH  Google Scholar 

  22. P. Banerjee and S. M. Manoon. A fundamental solution due to a periodic point force in the interior of an elastic half-space. Earth Eng. Struct. Dyn., 19:91–105, 1990.

    Google Scholar 

  23. P. Banerjee and R. Shaw. Developments in Boundary Element Methods. Elsevier Applied Science, Barking, Essex, U.K., 1979.

    MATH  Google Scholar 

  24. P. Bard. Diffracted waves and displacement field over two-dimensional elevated topographies. Geophys. J; R. Asrt. Soc., 71:731–760, 1982.

    Google Scholar 

  25. P. Bard and M. Bouchon. The two dimensional resonance of sediment-filled valley. Bull. Seism. Soc. Am., 75:517–541, 1985.

    Google Scholar 

  26. P.-Y. Bard and J. Riepl-Thomas. Wave propagation in complex geological structures and local effects on strong ground motion, pages 38–95. Number ISBN 1-85312-744-2 in Advances in Earthquake Engineering. WIT Press, 1999.

    Google Scholar 

  27. A. Baroni. Modélisation du couplage sol-fluide pour la sismique entre puits. PhD thesis, Ecole Centrale de Paris, Châtenay-Malabry, november 1996.

    Google Scholar 

  28. T. Belytschko, C. H. S., and Y. Y. Lu. A variationally coupled finite element-boundary element method. Comp. Struct., 33:17–20, 1989.

    MATH  Google Scholar 

  29. J. Bérenger. A perfectly matched layer for the absorption of electromagnetic wave. J. Comp. Phys., 114, 1994.

    Google Scholar 

  30. C. Bernardi, N. Debit, and Y. Maday. Coupling finite element and spectral methods: First results. Math. Comp., 189:21–39, 1990.

    MathSciNet  Google Scholar 

  31. D. E. Beskos. Boundary element methods in dynamic analysis. Appl. Mech. Rev., 40:1–23, 1987.

    Article  Google Scholar 

  32. D. E. Beskos. Boundary element methods in dynamic analysis, part. II (1986–1996). Appl. Mech. Rev., 50:149–197, 1997.

    Article  Google Scholar 

  33. P. Bisch, editor. 11th European conference on earthquake engineering, Rotterdam, September 1998. Balkema.

    Google Scholar 

  34. M. Bonnet. Boundary integral equations methods for Solids and Fluids. John Wiley and sons, 1999.

    Google Scholar 

  35. M. Bonnet, G. Maier, and C. Polizzotto. Symmetric Galerkin boundary element method. Appl. Mech. Rev., 1997.

    Google Scholar 

  36. A. Bonnet-BenDhia and A. Tillequin. A generalized mode matching method for the junction of open waveguides. In A. Bermudez et al, editor, Fifth international conference on Mathematical and Numerical Aspects of Wave Propagation, pages 399–402. SIAM, 2000.

    Google Scholar 

  37. A. Bossavit. Symmetry, groups and boundary value problems: a progressive introduction to non commutative harmonic analysis of partial differential equations in domains with geometrical symmetry. Comp. Meth. in Appl. Mech. Engng., 56:167–215, 1986.

    MathSciNet  MATH  Google Scholar 

  38. M. Bouchon. A simple complete numerical solution to the problem of diffraction of SH waves by an irregular surface. J. Acous. Soc. Am., 77:1–5, 1985.

    MATH  Google Scholar 

  39. M. Bouchon. A numerical simulation of the acoustic and elastic wave fields radiated by a source on a fluid-filled borehole embedded in a layered medium. Geophysics, 58:475–481, 1993.

    Article  Google Scholar 

  40. M. Bouchon and K. Aki. Discrete wave number representation of seismic source field. Bull. Seism. Soc. Am., 67:259–277, 1977.

    Google Scholar 

  41. E. O. Brigham. The Fast Fourier transform. Prentice-Hall, 1974.

    Google Scholar 

  42. C.A. Brebbia, L. Wrobel, and J. Telles. Boundary element techniques. Theory and application in engineering. Springer-Verlag, 1984.

    Google Scholar 

  43. M. Campillo, L. Margerin, and K. Aki. Seismology, volume 144 of Springer Tracts in Modern Physics, pages 87–99. Springer, 1998.

    Google Scholar 

  44. S. M. Candel. Simultaneous calculation of Fourier-Bessel transforms up to order n. J. of Computational Physics, 44:243–261, 1981.

    MathSciNet  MATH  Google Scholar 

  45. C. Canuto, M. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods in fluid dynamics. Springer Verlag, New York, 1988.

    MATH  Google Scholar 

  46. X. Chang and D. Clouteau. Rponse sismique de barrages vote sous ľinteraction sol-fluide-structure: influence de la rigidit du sol et des champs incidents. Rapport interne, Ecole Centrale de Paris, 1995.

    Google Scholar 

  47. F. Chapel. Boundary element method applied to linear soil-structure interaction on a heterogeneous soil. Earthquake Engrg. Struct. Dyn., 15:815–829, 1987.

    Google Scholar 

  48. F. Chapel and C. Tsakaladis. Computation of the Green’s functions of elastodynamics for a layered half space through a Hankel transform, applications to foundation vibration and seismology. In I. Kawamoto, editor, Numerical Methods in Geomechanics, pages 1311–1318. Balkema, 1985.

    Google Scholar 

  49. K. Chen and T. Soong. Covariance properties of waves propagating in a random medium. J. Acoust. Soc. Am., 49(5):1639–1642, 1971.

    Google Scholar 

  50. L. Chernov. Wave propagation in a random medium. McGraw-Hill, New York, 1960.

    Google Scholar 

  51. L. Chu, A. Askar, and A. Cakmak. Earthquake waves in a random medium. Int. J. Num. Methods Geomech., 5:79–96, 1981.

    MATH  Google Scholar 

  52. C. Chua, T. Balendra, and K. Lo. Groundborne vibrations due to trains in tunnels. Earthquake Engineering and Structural Dynamics, 21:445–460, 1992.

    Google Scholar 

  53. C. Chua, K. Lo, and T. Balendra. Building response due to subway train traffic. J. of Geotechnical Engineering, 121(11), 1995.

    Google Scholar 

  54. R. Clough and J. Penzien. Dynamics of structures. McGraw-Hill, New York, 1975.

    MATH  Google Scholar 

  55. D. Clouteau. Propagation ďondes dans des milieux héérogénes, Application á la tenue ďouvrages sous séismes. PhD thesis, Ecole Centrale de Paris, 1990.

    Google Scholar 

  56. D. Clouteau. Diffraction ďondes lastiques sur une montagne, comparaison 2d et 3d. Rapport interne, Ecole Centrale de Paris, 1994.

    Google Scholar 

  57. D. Clouteau. Miss: Manuel scientifique, rev. 6.2. Laboratoire MSSMat, Ecole Centrale de Paris, Châtenay-Malabry, 1999.

    Google Scholar 

  58. D. Clouteau and D. Aubry. 3d seismicsoil-fluid-structure interaction for arch dams including source and site effects. In Proc. of Eurodyn 93 Int. Conf., pages 1217–1224, Rotterdam, 1993. Balkema.

    Google Scholar 

  59. D. Clouteau and D. Aubry. Site effects on 3d elevated topography. In A. Cakmak and C. Brebbia, editors, Soil Dynamics and Earthquake Engineering VII, pages 291–298, Southampton, 1995. Computational Mechanics Publications.

    Google Scholar 

  60. D. Clouteau and D. Aubry. Modifications of the ground motion in dense urban areas. Journal of Computational Acoustics, 9(4):1–17, 2001.

    Google Scholar 

  61. D. Clouteau, D. Aubry, M. Elhabre, and E. Savin. Periodic and stochastic BEM for large structures embedded in an elastic half-space, pages 91–102. Chapman & Hall, CRC Press, London, 1999.

    Google Scholar 

  62. D. Clouteau, D. Aubry, and M. L. Elhabre. Periodic bem and fem-bem coupling: application to seismic behaviour of very long structures. Comp. Mech., 25(6):567–577, 2000.

    Article  MATH  Google Scholar 

  63. D. Clouteau, D. Aubry, and E. Savin. Influence of free field variability on soil-structure interaction. In Bisch [33].

    Google Scholar 

  64. D. Clouteau, D. Aubry, and B. Tardieu. Influences of site effects and incident fields on the seismic response of an arch dam. In G. Duma, editor, Earthquake Engineering, Proc. 10th European conf., 28 August–2 September 1994, Wien, Austria, pages 1837–1842, Rotterdam, 1994. Balkema.

    Google Scholar 

  65. D. Clouteau, A. Baroni, and D. Aubry. Boundary integrals and ray method coupling for seismic borehole modeling. In J. A. DeSanto, editor, Fourth international conference on Mathematical and Numerical Aspects of Wave Propagation, page 768. SIAM, 1998.

    Google Scholar 

  66. D. Clouteau, G. Degrande, and G. Lombaert. Some theoretical and numerical tools to model traffic induced vibrations. In S. Chouw, editor, WAVE 2000 — Wave Propagation, Moving Load, Vibration Reduction, pages 13–28, Rotterdam, December 2000. Balkema.

    Google Scholar 

  67. D. Clouteau and G. Devesa. Dcollement des fondations sous chargement sismique: mthodes temporelle et temps/frquence. In J. B. et al., editor, Actes 5 ème Colloque National en Calcul des Structures, volume 2, pages 1065–1073, Teknea, Toulouse, 2001.

    Google Scholar 

  68. D. Clouteau, G. Devesa, and G. Jacquart. Couplage fem-bem: applications pratiques en génie parasismique. In D. G. Degeorges, and M. Raous, editors. Actes 4 ème Collogue National en Calcul des Structures, volume 1, Teknea, Toulouse, 1999 Ladevèze et al. [128], pages 215–220.

    Google Scholar 

  69. D. Clouteau and E. Savin. Influence of soil variability on soil—structure interaction. In Bisch [33].

    Google Scholar 

  70. D. Clouteau and B. Tardieu. Calculs sismiques tridimensionnels ďun barrage vote: effets de site et interaction sol-fluide-structure. In Proc. 2me Colloque national de gnie parasismique. APFS, 1993.

    Google Scholar 

  71. D. M. Cole, D. D. Kosloff, and J. B. Minster. A numerical boundary integral equation method for elastodynamics i. Bull. Seism. Soc. Am., 68:1331–1357, 1978.

    Google Scholar 

  72. R. Craig and M. Bampton. Coupling of substructures for dynamic analysis. A. I. A. A. J. Aircraft, 6(7):1313–1319, 1968.

    MATH  Google Scholar 

  73. F. de Barros and J. Luco. Identification of foundation impedance functions and soil properties from vibration tests of the Hualien containment model. Soil Dyn. Earthquake Engrg., 14:229–248, 1995.

    Google Scholar 

  74. A. de La Bourdonnaye, C. Farhat, A. Macedo, F. Magoulès, and F. Roux. A non-overlapping domain decomposition method for the exterior Helmholtz problem. Contempory Mathematics, 218:42–66, 1998.

    Google Scholar 

  75. G. Degrande, G. D. Roeck, P. V. den Broeck, and D. Smeulders. Wave propagation in layered dry, saturated and unsaturated poroelastic media. International Journal of Solids and Structures, 35(34–35), 1998.

    Google Scholar 

  76. P. V. den Broeck and G. D. Roeck. The vertical receptance of track including soil-structure. In L. Fryba and J. Naprstek, editors, Proceedings of the 4th European Conference on Structural Dynamics: Eurodyn’ 99, pages 837–842, Rotterdam, June 1999. A.A. Balkema.

    Google Scholar 

  77. A. Der Kiureghian. A coherency model for spatially varying ground motion. Earthquake Engng. and Struct. Dyn., 25:99–111, 1996.

    Google Scholar 

  78. G. Devesa. Oprateurs code-aster lire_miss_3d impr_miss_3d: documentation ďutilisation code_aster. Technical Report U4.78.01 et U4.28.01, E.d.F/D.E.R, 1998.

    Google Scholar 

  79. J. Dominguez and O. Maseo. Earthquake analysis of arch dams I: Dam foundation interaction. J. Engrg. Mech., 119(3):496–512, 1993.

    Google Scholar 

  80. J. Dompierre. Modlisation de la sismique de puit en axisymtrique. PhD thesis, Ecole Centrale de Paris, 1994.

    Google Scholar 

  81. M. Dravinski and T. Mossessian. Scattering of plane harmonic p. sv and rayleigh waves by dipping layers of arbitrary shape. Bull. Seism. Soc. Am., 77:212–235, 1987.

    Google Scholar 

  82. M. Elhabre. Interaction sismique Sol-Fluide-Structure. PhD thesis, Ecole Centrale de Paris, 2000.

    Google Scholar 

  83. M.-L. Elhabre, D. Clouteau, and D. Aubry. Seismic behaviour of diaphragm walls. In Bisch [33].

    Google Scholar 

  84. J. M. Emperador and J. Dominguez. Dynamic response of axisymmetric embbedded foundations. Earth. Eng. Struct. Dyn., 18:1105–1117, 1989.

    Google Scholar 

  85. B. Engquist and A. Majda. Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math., 32:313–357, 1979.

    MathSciNet  MATH  Google Scholar 

  86. S. K. S. et al. The Mexico earthquake of September 19, 1985 — a study of amplification of seismic waves in the valley of Mexico with respect to a hill zone site. Earth. Spectra, 4(4):653–673, 1988.

    Google Scholar 

  87. E. Faccioli, F. Maggio, A. Quarteroni, and A. Tagliani. Spectral-domain decomposition for the solution of acoustic and elastic wave equations. Geophysics, 61:1160–1174, 1996.

    Article  Google Scholar 

  88. C. Farhat and F. Roux. A method for finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Num. Meth. in Eng., 32:1205–1227, 1991.

    MATH  Google Scholar 

  89. J. Favre. Errors in geotechnics and their impact on safety. Computers & Structures, 67:37–45, 1998.

    Article  MATH  Google Scholar 

  90. M. G. Floquet. Sur les quations diffrentielles linaires coefficients priodiques. Ann. de ľEcole Normale, 12, 1883.

    Google Scholar 

  91. E. Fukuyama and R. Madariaga. Rupture dynamics of a planar fault in a 3d elastic medium: rate-and slip-weakening friction. Bull. Seism. Soc. Am., 88:1–17, 1998.

    Google Scholar 

  92. L. Geli, P. Bard, and B. Jullien. The effect of topography on earthquake ground motion: a review and new results. Bull. Seism. Soc. Am., 78:42–63, 1988.

    Google Scholar 

  93. R. Ghanem and R. Kruger. Numerical solution of spectral stochatsic finite element systems. Comp. Methods Appl. Mech. Engrg., 129:289–303, 1996.

    MATH  Google Scholar 

  94. R. Ghanem and P. Spanos. Stochastic finite elements: a spectral approach. Springer Verlag, New York, 1991.

    MATH  Google Scholar 

  95. Ghanem R.G. Ingredients for a general purpose stochastic finite elements implementation. Comp. Methods Appl. Mech. Engrg., 168:19–34, 1999.

    MathSciNet  MATH  Google Scholar 

  96. R. Glowinski, T. Pan, and J. Periaux. A fictitious domain method for Dirichlet problem and applications. Comp. Mech. in Appl. Mech. and Eng., pages 283–303, 1994.

    Google Scholar 

  97. Grabe J. Spatial variation of soil stiffness: spectral density approach. Soil Dyn. Earthquake Engrg., 13:25–29, 1994.

    Google Scholar 

  98. H. Grundmann, M. Lieb, and E. Trommer. The response of a layered half-space to traffic loads movingalong its surface. Archive of Applied Mechanics, 69, 1999.

    Google Scholar 

  99. J. Gutierrez and A. Chopra. A substructure method for earthquake analysis of structures including structure-soil interaction. Earthquake Engineering and Structural Dynamics, 6:51–69, 1978.

    Google Scholar 

  100. J. Guy and B. Mangeot. Use of group theory in various integral equations. SIAM J. Appl. Math., 40:390–399, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  101. W. Hackbusch and Z. Nowak. On the fast matrix multiplication in the BEM by panel clustering. Numer. Math., 54:463–491, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  102. H. Hao and S. Zhang. Spatial ground motion effect on relative displacement of adjacent building structures. Earthquake Engrg. Struct. Dyn., 28:333–349, 1999.

    Google Scholar 

  103. R. S. Harichandran and E. Vanmarke. Stochastic variation of earthquake ground motion in space and time. ASCE J. Engrg. Mech., 112(2):154–174, 1986.

    Google Scholar 

  104. R. S. Harichandran. Estimating the spatial variation of earthquake ground motion from dense array recordings. Structural Safety, 10:219–233, 1991.

    Article  Google Scholar 

  105. N. A. Haskell. The dispersion of surface waves on multilayered media. Bull. seism. Soc. Am., 43:17–34, 1953.

    MathSciNet  Google Scholar 

  106. M. Hoshiya and K. Ishii. Evaluation of kinematic interaction of soil-foundation systems by a stochastic model. Soil Dyn. Earthquake Engrg., 2(3):128–134, 1983.

    Google Scholar 

  107. T. Hughes. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall International, 1987.

    Google Scholar 

  108. J. Hujeux. Une loi de comportement pour le chargement cyclique des sols, pages 287–302. Presses Ponts et Chausses, Paris, 1985.

    Google Scholar 

  109. H. Hunt. Stochastic modelling of traffic-induced ground vibration. J. of Sound and Vibration, 144(1), 1991.

    Google Scholar 

  110. D. Inman. Engineering Vibration. Prentice-Hall, Englewood Cliffs, N.J., 1994.

    Google Scholar 

  111. A. Ishimaru. Wave propagation and scattering in random media. Oxford University Press, 1978.

    Google Scholar 

  112. F. Janod and O. Coutant. Seismic response of three-dimensional topographies using a time-domain Boundary Element Method. Geophys. J. Int., 142:603–614, 2000.

    Article  Google Scholar 

  113. C. Johnson and J. Nédélec. On the coupling of boundary integral and finite element methods. Math. Comp., 35:1036–1079, 1980.

    Google Scholar 

  114. M. Kahan, R. Gibert, and P. Bard. Influence of seismic waves spatial variability on bridges: a sensitivity approach. Earthquake Engrg. Struct. Dyn., 25:795–814, 1996.

    Google Scholar 

  115. D. L. Karabalis. A simplified 3D time-domain BEM for dynamic soil-structure interaction problems. Engng. Anal. with Bound. Elem., 8:139–145, 1991.

    Google Scholar 

  116. E. Kausel and A. Pais. Stochastic deconvolution of earthquake motions. ASCE J. Eng. Mech., 113(2):266–277, 1987.

    Article  Google Scholar 

  117. E. Kausel and R. Peek. Dynamic loads in the interior of a layered stratum: an explicit solution. Bull. Seism. Soc. Am., 72:1459–1481, 1982.

    Google Scholar 

  118. E. Kausel and J. Roesset. Dynamic stiffness of circular foundations. J. eng. Div. ACSE, CI:771–785, 1975.

    Google Scholar 

  119. E. Kausel and J. Roesset. Stiffness matrices for layered soils. Bull. Seism. Soc. Am., 71(6):1743–1761, 1981.

    Google Scholar 

  120. H. Kawase. Time-domain response of semi-circular canyon for incident P, SV and Rayleigh waves calculated by discrete wavenumber Boundary Element Method. Bull. Seism. Soc. Am., 78:1415–1437, 1988.

    Google Scholar 

  121. H. Kawase and K. Aki. A study on the response of soft basin for incident S, P and Rayleigh waves with special reference to long duration observed in Mexico city. Bull. Seism. Soc. Am., 79:1361–1382, 1989.

    Google Scholar 

  122. B. L. N. Kennett. Seismic wave propagation in stratified media. Cambridge University Press, 1983.

    Google Scholar 

  123. G. Kergourlay, E. Balms, and D. Clouteau. Model reduction for efficient FEM/BEM coupling. In ISMA, Leuven, 2000.

    Google Scholar 

  124. W. Kohler, G. Papanicolaou, and B. White. Reflection of waves generated by a point source over a randomly layered medium. Wave Motion, 13:53–87, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  125. W. Kohler, G. Papanicolaou, and B. White. Localization and mode conversion for elastic waves in randomly layered media I. Wave Motion, 23:1–22, 1996.

    MathSciNet  MATH  Google Scholar 

  126. D. P. N. Kontoni and D. E. Beskos. Application of DR-BEM to inelastic dynamic problems. In C. A. Brebbia, J. Dominguez, and F. Paris, editors, Boundary Elements XIV. Computational Mechanics Publications, 1992.

    Google Scholar 

  127. P. Krée & C. Soize. Mathematics of random phenomena. MIA, Reidel Publishing, Dordrecht, 1986.

    MATH  Google Scholar 

  128. P. Ladevéze, D. G. Degeorges, and M. Raous, editors. Actes 4 ème Collogue National en Calcul des Structures, volume 1, Teknea, Toulouse, 1999.

    Google Scholar 

  129. C. Lage and C. Schwab. Wavelet Galerkin algorithms for boundary integral equations. J. Sci. Comput., 20(6):2195–2222, 1999.

    MathSciNet  MATH  Google Scholar 

  130. P. Lewicki, R. Burridge, and G. Papanicolaou. Pulse stabilisation in a strongly heterogeneous layered medium. Wave Motion, 20:177–195, 1994.

    MathSciNet  MATH  Google Scholar 

  131. W. Liu, T. Belytschko, and A. Mani. Random field finite elements. Int. J. Num. Methods Engrg., 23:1841–1845, 1986.

    MathSciNet  Google Scholar 

  132. C. Loh, J. Penzien, and Y. Tsai. Engineering analysis of SMART-1 array accelerograms. Earthquake Engrg. Struct. Dyn., 10:575–591, 1982.

    Google Scholar 

  133. G. Lombaert, G. Degrande, and D. Clouteau. Deterministic modelling of free field traffic induced vibrations. Soil Dyn. and earth, eng., 19(7):473–488, 2000.

    Google Scholar 

  134. J. E. Luco. Linear soil-structure interaction. Technical Report UCRL-15272, Lawrence Livermore National Laboratory, 1980.

    Google Scholar 

  135. J. E. Luco and R. J. Apsel. On the Green’s functions for a layered half-space, Part I and II. Bull. Seism. Soc. Am., 73:909–950, 1983.

    Google Scholar 

  136. G. Maier, M. Diligenti, and A. Carini. A variational approach to boundary element elastodynamic analysis and extension to multidomain problems. Comp. Meth. in Appl. Mech. Engng., 92:193–213, 1991.

    MathSciNet  MATH  Google Scholar 

  137. G. Manolis. Shear wave propagation in a stochastic halfplane using Green’s function. In C.A. Brebbia et al., editor, Boundary Elements XIV, vol. 2, pages 123–134, Computational Mechanics Publications, Southampton, 1992.

    Google Scholar 

  138. G. Manolis and R. Shaw. Green’s function for the vector wave equation in a mildly heterogeneous continuum. Wave Motion, 24:59–83, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  139. G. D. Manolis. A comparative study on three boundary element method approaches to problems in elastodynamics. Int. J. Num. Meth. in Eng., 19:73–91, 1983.

    MATH  Google Scholar 

  140. G. D. Manolis and R. Shaw. Harmonic wave propagation through viscoelastic heterogeneous media exhibiting mild stochasticity — I. Fundamental solutions. Soil Dyn. Earthquake Engrg., 15:119–127, 1996.

    Google Scholar 

  141. H. Matthies and C. Bucher. Finite elements for stochastic media problems. Comp. Methods Appl. Mech. Engrg., 168:3–17, 1999.

    MathSciNet  MATH  Google Scholar 

  142. R. McNeal. A hybrid method of component mode synthesis. Computers and structures, 1(4):581–601, 1971.

    Google Scholar 

  143. L. Meirovitch. Elements of Vibration Analysis. McGraw-Hill Inc., New York, N.Y., 1989.

    Google Scholar 

  144. S. Muscat. Ľeffet ville. Master’s thesis, Ecole Centrale de Nantes, 1995.

    Google Scholar 

  145. J. Nédélec and J. Planchard. Une méthode ďéléments finis de pour le résolution numérique ďun probleme extérieur dans ℝ3. R.A.I.R.O., 7:105–129, 1973.

    Google Scholar 

  146. R. Paolucci. Soil-structure interaction effects on an instrumented building in Mexico city. European Earthquake Engineering, 3:33–44, 1993.

    Google Scholar 

  147. M. Papadrakakis and A. Kotsopulos. Parallel solution of stochastic finite element methods using Monte-Carlo simulation. In S. Idelsohn, E. Oňate & E. Dvorkin, editor, Computational mechanics. New trends and applications, Barcelona, 1998.

    Google Scholar 

  148. G. Papanicolaou. Mathematical problems in geophysical wave propagation. In Documenta Mathematica, proc. Int. Congress of Mathematicians, Extra Volume ICM 98, volume I, pages 241–265, Berlin, 1998.

    MathSciNet  Google Scholar 

  149. A. Pecker and J. Teyssandier. Seismic design for the foundation of the rion-antirion bridge. In Proc. Institution of Civil Engineers, Geotechnical Engineering, volume 131, pages 4–11, 1998.

    Google Scholar 

  150. H. A. Pedersen, B. L. Brun, D. Hatzfeld, M. Campillo, and P.-Y. Bard. Ground motion amplitude across ridges. Bull. Seism. Soc. Am., 85:1786–1800, 1994.

    Google Scholar 

  151. H. A. Pedersen, F. J. Sanchez-Sesma, and M. Campillo. Three-dimensional scattering by two-dimensional topographies. Bull. Seism. Soc. Am., 84:1169–1183, 1994.

    Google Scholar 

  152. A. Peirce and E. Siebrits. Stability analysis and design of time-stepping schemes for general elastodynamic boundary element models. Int. J. Num. Meth. in Eng., 40:319–342, 1997.

    MathSciNet  Google Scholar 

  153. R. Popescu, J. Prévost, and G. Deodatis. Effects of spatial variability on soil liquefaction: some design recommendations. Géotechnique, 47(5):1019–1036, 1997.

    Google Scholar 

  154. J. H. Prevost. Dynaflow — a finite element analysis program for the static and transient response of linear and non-linear two and three-dimensional systems. Technical report, Dept. of Civil Eng., Princeton University, 1981.

    Google Scholar 

  155. E. Reinoso and M. Ordaz. Spectral ratios for Mexico City from free-field recordings. Earth. Spectra, 15(2):273–295, 1999.

    Google Scholar 

  156. J. Rizzo and D. J. Shippy. A boundary integral approach to potential and elasticity problems for axisymmetric bodies with arbitrary boundary conditions. Mechanics Research Communications, 6(2):99–103, 1979.

    Article  MATH  Google Scholar 

  157. V. Rokhlin. Rapid solution of integral equations of classical potential theory. J. Comp. Phys., 60:187–207, 1985.

    MathSciNet  MATH  Google Scholar 

  158. R. Y. Rubinstein. Simulation and the Monte-Carlo method. John Wiley & Sons, New York, 1981.

    MATH  Google Scholar 

  159. F. Sanchez-Sesma. Diffraction of elastic waves by three-dimensional surface irregularities. Bull. Seism. Soc. Am., 73:1621–1636, 1983.

    Google Scholar 

  160. F. Sanchez-Sesma and I. A. Esquivel. Ground motion on alluvial valleys under incident plane SH waves. Bull. Seism. Soc. Am., 69:1107–1120, 1979.

    Google Scholar 

  161. F. Sanchez-Sesma, L. Perez-Rocha, and S. Chavez-Terez. Diffraction of elastic waves by three-dimensional surface irregularities, part ii. Bull, seism. Soc. Am., 79:101–112, 1989.

    Google Scholar 

  162. F. J. Sanchez-Sesma and M. Campillo. Diffraction of P, SV and Rayleigh waves by topographic features: a boundary integral formulation. Bull. Seism. Soc. Am., 81:2234–2253, 1991.

    Google Scholar 

  163. S. Savidis and C. Vrettos. Dynamic soil-structure interaction for foundations on nonhomo-geneous soils. In G. Duma, editor, Earthquake Engineering, Proc. 10th European conf., 28 August — 2 September 1994, Wien, Austria, pages 599–609, Balkema, Rotterdam, 1994.

    Google Scholar 

  164. E. Savin. Effet de la variabilité du sol et du champ incident en interaction sismique sol-structure. PhD thesis, Ecole Centrale de Paris, 1999.

    Google Scholar 

  165. E. Savin and D. Clouteau. Coupling a bounded domain and an unbounded heterogeneous domain for elastic wave propagation in three-dimensional random media. Int. J. Num. Meth. in Eng., In press, 2001.

    Google Scholar 

  166. E. Savin, D. Clouteau, and D. Aubry. Modélisation numérique stochastique de ľinteraction dynamique sol-structure. In P. G. Degeorges, and M. Raous, editors. Actes 4 ème Collogue National en Calcul des Structures, volume 1, Teknea, Toulouse, 1999 Ladevéze et al. [128], pages 221–226.

    Google Scholar 

  167. M. Schanz and H. Antes. A new visco-and elastodynamic time domain boundary element formulation. Comp. Mech., 20:452–459, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  168. M. Shinozuka and G. Deodatis. Response variability of stochastic finite element systems. ASCE J. Engrg. Mech., 114(3):499–519, 1988.

    Google Scholar 

  169. C. Soize. A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. Probabilistic Engineering Mechanics, 15(3):277–294, 2000.

    Article  Google Scholar 

  170. C. Song and J. P. Wolf. The scaled boundary-finite element method — alias consistent infinitesimal finite-element cell method — for elastodynamics. Comp. Meth. in Appl. Mech. Engng., 147:329–355, 1997.

    MathSciNet  MATH  Google Scholar 

  171. M. Soulié, P. Montes, and V. Silvestri. Modelling spatial variability of soil parameters. Can. Geotech. J., 27:617–630, 1990.

    Google Scholar 

  172. P. D. Spanos and R. Ghanem. Stochastic finite elements: a spectral approach. Springer-Verlag, 1991.

    Google Scholar 

  173. A. Stamos and D. Beskos. Dynamic analysis of large 3D underground structures by the BEM. Earthquake Engineering and Structural Dynamics, pages 1–18, 1995.

    Google Scholar 

  174. A. Stamos and D. Beskos. 3-D seismic response analysis of long lined tunnels in half-space. Soil Dynamics and Earthquake Engineering, 15, 1996.

    Google Scholar 

  175. B. W. Suter. Foundations of Hankel transform algorithms. Quart. of App. Math., XLIX(2):267–279, 1991.

    MathSciNet  Google Scholar 

  176. J. Svay. Modlisation de la sismique de puits en puits-horizontal. PhD thesis, Ecole Centrale de Paris, 1995.

    Google Scholar 

  177. P. L. Tallec. Domain decomposition methods in computational mechanics. Computational Mechanics Advances. North-Holland, 1994.

    Google Scholar 

  178. I. Tarman. An improved dynamical approximation to Boussinesq equation using Karhunen-Loeve basis. Comp. Methods Appl. Mech. Engrg., 144:153–162, 1997.

    MATH  Google Scholar 

  179. W. T. Thomson. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys, 21:89–93, 1950.

    MathSciNet  MATH  Google Scholar 

  180. M. Toksöz, A. Dainty, and E. Charrette. Spatial variation of ground motion due to lateral heterogeneity. Structural Safety, 10:53–77, 1991.

    Google Scholar 

  181. F. Toubalem, B. Zeldin, F. Thouverez & P. Labbé. Vertical excitation of stochastic soil-structure interaction systems. ASCE J. Geotech. Geoenvir. Engrg., 125(5):349–356, 1999.

    Google Scholar 

  182. C. Tsakalidis. Diffraction ďondes sismiques sur les structures sur pieux et functions de Green du sol multicouche. PhD thesis, Ecole Centrale de Paris, Châtenay-Malabry, July 1985.

    Google Scholar 

  183. E. Vanmarcke. Probabilistic modeling of soil profiles. ASCE J. Geotech. Engrg., 103(GT11):1227–1246, 1977.

    Google Scholar 

  184. R. F. Vogt, J. P. Wolf, and H. Bachmann. Wave scattering by a canyon of arbitrary shape in a layered half-space. Earth. Eng. Struct. Dyn., 16:803–812, 1988.

    Google Scholar 

  185. O. Von Estorff, A. L. Pais, and E. Kausel. Some observations on time-domain and frequency domain boundary elements. Int. J. Num. Meth. in Eng., 29:785–800, 1990.

    Google Scholar 

  186. C. Y. Wang and J. D. Achenbach. Elastodynamic fundamental solution for anisotropic solids. Geophy. J. Int., 118:384–392, 1994.

    Article  Google Scholar 

  187. H. Wang and P. K. Banerjee. Multi-domain general axisymmetric stress analysis by BEM. Int. J. Num. Meth. in Eng., 30:115–131, 1990.

    MATH  Google Scholar 

  188. W. X. Wang. Expansion of Green’s function in a cylindrical coordinate system. Quaterly of Appl. Math., 48:499–501, 1990.

    MATH  Google Scholar 

  189. G. Watson. A treatise on the theory of Bessel functions. Cambridge University Press, 1966.

    Google Scholar 

  190. G. Wilson, H. Saurenman, and J. Nelson. Control of groundborne noise and vibration. J. of Sound and Vibration, 87(2), 1983.

    Google Scholar 

  191. A. Wirgin and P. Bard. Effects of buildings on the duration and amplitude of ground motion in Mexico City. Bull. Seism. Soc. Am., 86:914–920, 1996.

    Google Scholar 

  192. J. Wolf. Dynamic soil-structure interaction. Prentice-Hall, Englewood Cliffs, 1985.

    Google Scholar 

  193. J. Wolf and G. Darbre. Dynamic stiffness matrix of soil by the boundary — element method: conceptual aspects. Earth. Eng. and Struc. Dyn., 12:385–400, 1984.

    Google Scholar 

  194. H. J. Wong and J. E. Luco. Dynamic response of rigid foundations of arbitrary shape. Earth. Eng. Struct. Dyn., 4:579–587, 1976.

    Google Scholar 

  195. F. Yamazaki, M. Shinozuka, and G. Dasgupta. Neumann expansion for stochastic finite element analysis. ASCE J. Engrg. Mech., 114(8):1335–1354, 1988.

    Google Scholar 

  196. A. Zerva. On the spatial variation of seismic ground motions and its effects on lifelines. Eng. Struc., 16:534–546, 1994.

    Article  Google Scholar 

  197. A. Zerva and O. Zhang. Correlation patterns in characteristics of spatially variable seismic ground motions. Earthquake Engrg. Struct. Dyn., 26:19–39, 1997.

    Google Scholar 

  198. O. Zienkiewicz. The finite element method in engineering science. McGraw Hill, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Clouteau, D., Aubry, D. (2003). Computational Soil-Structure Interaction. In: Hall, W.S., Oliveto, G. (eds) Boundary Element Methods for Soil-Structure Interaction. Springer, Dordrecht. https://doi.org/10.1007/0-306-48387-4_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48387-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1300-3

  • Online ISBN: 978-0-306-48387-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics