Skip to main content

Aircraft Wake Vortex Evolution and Decay in Idealized and Real Environments: Methodologies, Benefits and Limitations

  • Conference paper
Advances in LES of Complex Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 65))

Abstract

After a brief introduction of the governing equations and numerical approaches that are used to simulate wake vortices in the atmosphere associated implications and restrictions are discussed. The complex interaction of turbulence and rotation in the vortex core region is not resolved appropriately and is controlled by the subgrid scale model. A local Richard-son number correction for strong streamline curvature effects is proposed that accounts for stabilizing effects of coherent rotation and reduces vortex core growth rates. Real case simulations demonstrate that LES is capable to reproduce complex wake vortex behaviour as the spectacular rebound observed at London Heathrow Int’l Airport. Various idealized cases with stably stratified, turbulent and sheared environments are used to reveal the mechanisms thatcontrol vortex decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bradshaw, P. (1969) The analogy between streamline curvature and buoyancy in turbulent shear flow, J. Fluid Mech. 36, pp. 177–191

    Article  MATH  ADS  Google Scholar 

  • Cotel, A.J. and Breidenthal, R.E. (1999) Turbulence inside a vortex, Phys. Fluids 11, pp. 3026–3029

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Deardorff, J.W. (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech. 41, pp. 453–480

    Article  MATH  ADS  Google Scholar 

  • Gerz, T. and Ehret, T. (1997) Wingtip vortices and exhaust jets during the jet regime of aircraft wakes, Aerospace Sci. Techn. 1, pp. 463–474

    Article  Google Scholar 

  • Gerz, T. and Holzäpfel, F. (1999), Wingtip vortices, turbulence, and the distribution of emissions, AIAA J. 37, pp. 1270–1276

    Article  ADS  Google Scholar 

  • Greenwood, J.S. and Vaughan, J.M. (1997) Measurements of Aircraft Wake Vortices at Heathrow by Laser Doppler Velocimetry, Air Traffic Control Quarterly 6, pp. 179–203

    Google Scholar 

  • Hirsch, C. (1995) Ein Beitrag zur Wechselwirkung von Turbulenz und Drall, Ph.D. Dissertation, Universität Karlsruhe

    Google Scholar 

  • Hofbauer, T. and Gerz, T. (2000) Shear-layer effects on the dynamics of a counter-rotating vortex pair, AIAA Paper 2000-0758

    Google Scholar 

  • Holzäpfel, F. and Gerz, T. (1999) Two-Dimensional Wake Vortex Physics in the Stably Stratified Atmosphere, Aerospace Sci. Techn. 3, pp. 261–270

    Article  MATH  Google Scholar 

  • Holzäpfel, F., Gerz, T. and Baumann, R. (2001) The turbulent decay of trailing vortex pairs in stably stratified environments, Aerospace Sci. Techn. 5, pp. 95–108

    Article  MATH  Google Scholar 

  • Holzäpfel, F., Gerz, T., Freeh, M. and Dörnbrack, A. (2000) Wake Vortices in a Convective Boundary Layer and Their Influence on Following Aircraft, J. of Aircraft 37, pp. 1001–1007

    Article  Google Scholar 

  • Holzäpfel, F., Lenze B. and Leuckel W. (1999) Quintuple Hot-Wire Measurements of the Turbulence Structure in Confined Swirling Flows, J. of Fluids Engineering 121, pp. 517–525

    Article  Google Scholar 

  • Jacquin, L., Fabre, D. and Geffroy, P. (2001) The Properties of a Transport Aircraft Wake in the Extended Near Field: an Experimental Study, AIAA Paper 2001-1038

    Google Scholar 

  • Jeong, J. and Hussain, F. (1995) On the identification of a vortex, J. Fluid Mech. 285, pp. 69–94

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kaltenbach, H.-J, Gerz, T. and Schumann, U. (1994) Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow, J. Fluid Mech. 280, pp. 1–40

    Article  ADS  MATH  Google Scholar 

  • Kleiser L. and Schumann, U. (1984) Spectral simulations of the laminar-turbulent transition process in plane poiseuille flow, Spectral methods for partial differential equations, SIAM, Philadelphia, pp. 141–163

    Google Scholar 

  • Proctor, F.H. and Switzer, G.F. (2000) Numerical Simulation of Aircraft Trailing Vortices, 9th Conf. on Aviation, Range and Aerospace Meteorlogy 7.12, pp. 511–516

    Google Scholar 

  • Risso, F., Corjon, A. and Stoessel, A. (1997) Direct numerical simulations of wake vortices in intense homogeneous turbulence, AIAA J. 35, pp. 1030–1040

    Article  MATH  ADS  Google Scholar 

  • Rokhsaz, K., Foster, S.R. and Miller, L.S. (2000) Exploratory Study of Aircraft Wake Vortex Filaments in a Water Tunnel, J. of Aircraft 37, pp. 1022–1027

    Article  Google Scholar 

  • Schmidt, H. and Schumann, U. (1989) Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech. 200, pp. 511–562

    Article  ADS  MATH  Google Scholar 

  • Schumann, U., Hauf, T., Höller, H., Schmidt, H. and Volkert, H. (1987) A mesoscale model for the simulation of turbulence, clouds and flow over mountains: Formulation and validation examples, Beitr. Phys. Atmosph. 60, pp. 413–446

    MATH  Google Scholar 

  • Scotti, A., Meneveau, C. and Lilly, D.K. (1993) Generalized Smagorinsky model for anisotropic grids, Phys. Fluids A 5, pp. 2306–2308

    Article  ADS  MATH  Google Scholar 

  • Shaw, R.H. and Schumann, U. (1992) Large-Eddy Simulation of Turbulent Falow above and within a Forrest, Boundary-Layer Meteorology 61, pp. 47–64

    Article  ADS  Google Scholar 

  • Shen, S., Ding, F., Han, J., Lin, Y.-L., Arya S.P. and Proctor, F.H. (1999) Numerical Modeling Studies of Wake Vortices: Real Case Simulations, AIAA Paper 99-0755

    Google Scholar 

  • Vollmers, H. (2001) Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data, submitted to Meas. Sci. Technol.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

HolzäPfel, F., Hofbauer, T., Gerz, T., Schumann, U. (2002). Aircraft Wake Vortex Evolution and Decay in Idealized and Real Environments: Methodologies, Benefits and Limitations. In: Friedrich, R., Rodi, W. (eds) Advances in LES of Complex Flows. Fluid Mechanics and Its Applications, vol 65. Springer, Dordrecht. https://doi.org/10.1007/0-306-48383-1_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-48383-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0486-5

  • Online ISBN: 978-0-306-48383-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics