Neural Cells Derived From Embryonic Stem Cells

  • Mark J. Tomishima
  • Lorenz Studer


Embryonic Stem Cell Retinoic Acid Neural Stem Cell Leukemia Inhibitory Factor Human Embryonic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelov DN, Arnhold S, Andressen C, Grabsch H, Puschmann M, Hescheler J, Addicks K (1998) Temporospatial relationships between macroglia and microglia during in vitro differentiation of murine stem cells. Dev Neurosci 20:42–51.CrossRefPubMedGoogle Scholar
  2. Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genomewide RNAi analysis of Caenorhabditis elegnas fat regulatory genes. Nature 421:268–272.CrossRefPubMedGoogle Scholar
  3. Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, Baron-Van Evercooren A (1996) Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J Neurosci Res 45:558–570.CrossRefPubMedGoogle Scholar
  4. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357.CrossRefPubMedGoogle Scholar
  5. Bain G, Yao M, Huettner JE, Finley MFA, Gottlieb DI (1998) Neuronlike cells derived in culture from P19 embryonal carcinoma and embryonic stem cells. In: Culturing nerve cells, 2nd Ed. (Gary Banker and Kimberly Goslin, eds.), pp 189–211. Cambridge, MA: The MIT Press.Google Scholar
  6. Bernsteine EG, Hooper ML, Grandchamp S, Ephrussi B (1973) Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci USA 70:3899–3903.Google Scholar
  7. Billon N, Jolicoeur C, Ying QL, Smith A, and Raff M (2002) Normal timing of oligodendrocytes development from genetically engineered, lineage-selectable mouse ES cells. J Cell Sci 115:3657–3665.CrossRefPubMedGoogle Scholar
  8. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson’s rat model. Proc Natl Acad Sci USA 99:2344–2349.CrossRefPubMedGoogle Scholar
  9. Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 76: 514–517.PubMedGoogle Scholar
  10. Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RDG (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756.PubMedGoogle Scholar
  11. Brustle O, Spiro AC, Karram K, Choudhary K, Okabe S, McKay RD (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci USA 94:14809–14814.CrossRefPubMedGoogle Scholar
  12. Buehr M, Nichols J, Stenhouse F, Mountford P, Greenhalgh CJ, Kantachuvesiri S, Brooker G, Mullins J, and Smith AG (2003) Rapid loss of oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biol Reprod 68:222–229.PubMedGoogle Scholar
  13. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu C-P, Rao MS (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397.CrossRefPubMedGoogle Scholar
  14. Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ (2002) Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci USA 99:3586–3590.CrossRefPubMedGoogle Scholar
  15. Chen LR, Shiue YL, Bertolini L, Medrano JF, BonDurant RH, Anderson GB (1999) Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52:195–212.CrossRefPubMedGoogle Scholar
  16. Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002) Parthenogenetic stem cells in nonhuman primates. Science 295:819.CrossRefPubMedGoogle Scholar
  17. Darmon M, Bottenstein J, Sato G (1981) Neural differentiation following culture of embryonal carcinoma cells in a serum-free defined medium. Dev Biol 85: 463–473.CrossRefPubMedGoogle Scholar
  18. Deacon T, Dinsmore J, Costantini L, Ratliff J, Isacson O (1998) Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 149:28–41.CrossRefPubMedGoogle Scholar
  19. DeWitt N (2002) Biologists divided over proposal to create human-mouse embryos. (News) Nature 420:255.PubMedGoogle Scholar
  20. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45.PubMedGoogle Scholar
  21. Dunnett SB (1999) Repair of the damaged brain. The Alfred Meyer Memorial Lecture 1998. Neuopathol Appl Neurobiol 25:351–362.Google Scholar
  22. Evans MJ (1972) The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J Embryol Exp Morphol 28:163–176.PubMedGoogle Scholar
  23. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562.CrossRefPubMedGoogle Scholar
  24. Finley MF, Kulkarni N, Huettner JE (1996) Synapse formation and establishment of neuronal polarity by P19 embryonic carcinoma cells and embryonic stem cells. J Neurosci 16:1056–1065.PubMedGoogle Scholar
  25. Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut, J (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108:3181–3188.PubMedGoogle Scholar
  26. Freed C (2002) Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc Natl Acad Sci USA 99:1755–1757.CrossRefPubMedGoogle Scholar
  27. Ge W, Marinowich K, Wu X, He F, Miyamoto A, Fan G, Weinmaster G, Sun YE (2002) Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res 69:848–860.CrossRefPubMedGoogle Scholar
  28. Ghosh C, Collodi P (1994) Culture of cells from zebrafish (Brachydanio rerio) blastula-stage embryos. Cytotechnology 14:21–26.CrossRefPubMedGoogle Scholar
  29. Goldstein RS, Drukker M, Reubinoff BE, Benvenisty N (2002) Integration and differentiation of human embryonic stem cells transplanted to the chick embryo. Dev Dyn 225:80–86.CrossRefPubMedGoogle Scholar
  30. Gossler A, Joyner AL, Rossant J, Skarnes WC (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244:463–465.PubMedGoogle Scholar
  31. Gottlieb DI (2002) Large-scale sources of neural stem cells. Annu Rev Neurosci 25:381–407.CrossRefPubMedGoogle Scholar
  32. Gratsch TE, O’Shea KS (2002) Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells. Dev Biol 245:83–94.CrossRefPubMedGoogle Scholar
  33. Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays neuralizing activity. Cell 77:283–295.PubMedGoogle Scholar
  34. Hong Y, Winkler C, Schartl M (1996) Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev 60:33–44.CrossRefPubMedGoogle Scholar
  35. Hong Y, Winkler C, Schartl M (1998) Production of medakafish chimeras from a stable embryonic stem cell line. Proc Natl Acad Sci USA 95:3679–3694.CrossRefPubMedGoogle Scholar
  36. Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmtl gene. Cell 104:829–838.CrossRefPubMedGoogle Scholar
  37. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa S-I, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40.CrossRefPubMedGoogle Scholar
  38. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S, Nakatsuji N, Sasai Y (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA 99:1580–1585.CrossRefPubMedGoogle Scholar
  39. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56.CrossRefPubMedGoogle Scholar
  40. Kleinsmith LJ, Pierce GB (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1552.PubMedGoogle Scholar
  41. Laborsky PA, Barlow DP, Hogan BL (1994) Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) stem cell lines. Development 120:3197–3204.Google Scholar
  42. Lee S-H, Lumelsky N, Studer L, Auerbach JM, McKay RDG (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675–679.PubMedGoogle Scholar
  43. Lindvall O, Hagell P (2000) Clinical observations after neural transplantation in Parkinson’s disease. Prog Brain Res 127:299–320.PubMedGoogle Scholar
  44. Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97:6126–6131.PubMedGoogle Scholar
  45. Maden M (2002) Retinoid signaling in the development of the central nervous system. Nat Rev Neurosci 3:843–853.CrossRefPubMedGoogle Scholar
  46. Martin GR (1980) Teratocarcinomas and mammalian embryogenesis. Science 209:768–776.PubMedGoogle Scholar
  47. Martin GR, Evans MJ (1975) The formation of embryoid bodies in vitro by homogeneous embryonal carcinoma cell cultures derived from isolated single cell. In: Teratomas and differentiation (Sherman MI and Solter D, eds.), pp.169–187. New York, NY: Academic Press.Google Scholar
  48. Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758.PubMedGoogle Scholar
  49. McDonald JW, Liu X-Z, Qu Y, Liu S, Turetsky D, Mickey SK, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate, and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412.CrossRefPubMedGoogle Scholar
  50. Morizane A, Takahashi J, Takagi Y, Sasai Y, Hashimoto N (2002) Optimal conditions for in vivo induction of dopaminergic neurons from embryonic stem cells through stromal cell-derived inducing activity. J Neurosci Res 69:934–939.CrossRefPubMedGoogle Scholar
  51. Mortensen RM, Conner DA, Chao S, Geisterfer-Lowrance AA, Seidman JG (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol 12:2391–2395.PubMedGoogle Scholar
  52. Muncie MJ, Michalska AE, O’Brien CM, Trounson AO, Pera MF, Mountford PS (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10:989–992.Google Scholar
  53. Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3:271–280.PubMedGoogle Scholar
  54. Ohtaka T, Matsui Y, Obinata M (1999) Hematopoietic development of primordial germ cell-derived mouse embryonic germ cells in culture. Biochem Biophysical Res Comm 260:475–482.Google Scholar
  55. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102.CrossRefPubMedGoogle Scholar
  56. Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut J, Etches RJ (1996) Long-term in vitro culture and characterisation of avian embryo stem cells with multiple morphogenetic potentialities. Development 122:2339–2348.PubMedGoogle Scholar
  57. Perrier AL, Studer L (2003) Making and repairing the mammalian brain — in vitro production of dopaminergic neurons. Annu Rev Cell Dev Biol. In press.Google Scholar
  58. Rathjen J, Haines BP, Hudson KM, Nesci A, Dunn S, Rathjen PD (2002) Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neuroectoderm population. Development 129:2649–2661.PubMedGoogle Scholar
  59. Renoncourt Y, Carroll P, Filippi P, Arce V, Alonso S (1998) Neurons derived from ES cells express homeoproteins characteristic of motoneurons an interneurons. Mech Dev 79:185–197.CrossRefPubMedGoogle Scholar
  60. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140.CrossRefPubMedGoogle Scholar
  61. Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20:933–936.CrossRefPubMedGoogle Scholar
  62. Rideout 3rd WE, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27.CrossRefPubMedGoogle Scholar
  63. Rohwedel J, Sehlmeyer U, Shan J, Meister A, Wobus A (1996) Primordial germ cell-derived mouse embryonic germ EG cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol Int 20:579–587.CrossRefPubMedGoogle Scholar
  64. Rutishauser U (1992) NCAM and its polysialic acid moiety: a mechanism for pull/push regulation of cell interactions during development? Dev Suppl 99–104.Google Scholar
  65. Saito S, Ugai H, Sawai K, Yamamoto Y, Minamihasi A, Kurosaka K, Kobayashi Y, Murata T, Obata Y, Yokoyama K (2002) Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett 531:389–396.CrossRefPubMedGoogle Scholar
  66. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790.CrossRefPubMedGoogle Scholar
  67. Schuldiner M, Eiges R, Eden A, Yanuka O, Iskovitz-Eldor J, Goldstein RS, Benvenisty N (2001) Induced neuronal differentiation of human embryonic stem cells. Brain Res 913:201–205.CrossRefPubMedGoogle Scholar
  68. Smith A (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462.CrossRefPubMedGoogle Scholar
  69. Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840.PubMedGoogle Scholar
  70. Solter D, Skreb N, Damjanov I (1970) Extrauterine growth of mouse egg cylinders results in malignant teratoma. Nature 227:503–504.CrossRefPubMedGoogle Scholar
  71. Soodeen-Karamath S, Gibbins AM (2001) Apparent absence of oct 3/4 from the chicken genome. Mol Reprod Dev 58:137–148.CrossRefPubMedGoogle Scholar
  72. Spemann H, Mangold H (1924) Uber Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Wilh Roux’ Arch Entw Mech Organ 100:599–638. English translation in: Foundations of experimental embryology (Willier BH, Oppenheimer JM, eds.), pp. 144–184. New York, NY: Hafner Press.Google Scholar
  73. Stern CD (2002) Induction and initial patterning of the nervous system — the chick embryo enters the scene. Curr Opin Genet Dev 12:447–451.CrossRefPubMedGoogle Scholar
  74. Stevens LC (1970) The development of transplantable teratocarcinomas from intratesticular grafts of pre-and postimplantation mouse embryos. Dev Biol 21:364–382.CrossRefPubMedGoogle Scholar
  75. Stevens LC, Hummel KP (1957) A description of spontaneous congenital testicular teratomas in strain 129 mice. J Natl Cancer Inst 18:719–747.PubMedGoogle Scholar
  76. Stewart CL, Gadi I, Bhatt H (1994) Stem cells from primordial germ cells can reenter the germ line. Dev Biol 161:626–628.PubMedGoogle Scholar
  77. Strubing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Development 53:275–287.Google Scholar
  78. Studer L (2001) Stem cells with brainpower. Nat Biotechnol 19:105–109.CrossRefGoogle Scholar
  79. Suda Y, Suzuki M, Ikawa Y, Aizawa S (1987) Mouse embryonic stem cells exhibit indefinite proliferative potential. J Cell Physiol 133:197–201.CrossRefPubMedGoogle Scholar
  80. Sukoyan MA, Yatolin SY, Golubitsa AN, Zhelezova AI, Semenova LA, Serov OL (1993) Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Mol Reprod Dev 36:148–158.CrossRefPubMedGoogle Scholar
  81. Sun L, Bradford CS, Ghosh C, Collodi P, Barnes DW (1995) ES-like cell cultures derived from early zebrafish embryos. Mol Mar Biotl Biotechnol 4:193–199.Google Scholar
  82. Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93:309–312.CrossRefPubMedGoogle Scholar
  83. Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207:551–561.CrossRefPubMedGoogle Scholar
  84. Thomson JA, Itskovitz-Eldor J, Shappiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147.CrossRefPubMedGoogle Scholar
  85. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848.PubMedGoogle Scholar
  86. Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78.CrossRefPubMedGoogle Scholar
  87. Tsai M, Wedemeyer J, Ganiatsas S, Tarn S-Y, Zon LI, Galli SJ (2000) In vivo immunological function of mast cells derived from embryonic stem cells: an approach for the rapid analysis of even embryonic lethal mutations in adult mice in vivo. Proc Natl Acad Sci USA 97:9186–9190.PubMedGoogle Scholar
  88. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743.CrossRefPubMedGoogle Scholar
  89. Weiss MJ, Orkin SH (1996) In vitro differentiation of murine embryonic stem cells. J Clin Invest 97:591–595.PubMedGoogle Scholar
  90. Westmoreland JJ, Hancock CR, Condie BG (2001) Neuronal development of embryonic stem cells: a model of GAB Aergic neuron differentiation. Biochem Biophy Res Commun 284:674–680.CrossRefGoogle Scholar
  91. Wichterle H, Lieberam I, Porter JA, Jessell TA (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397.CrossRefPubMedGoogle Scholar
  92. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813.CrossRefPubMedGoogle Scholar
  93. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974.PubMedGoogle Scholar
  94. Yan J, Studer L, McKay RD (2001) Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 76:307–311.PubMedGoogle Scholar
  95. Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A. (1998) FGF and SHH signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93:755–766.CrossRefPubMedGoogle Scholar
  96. Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186.CrossRefPubMedGoogle Scholar
  97. Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SL, Person C, Sands AT (1998) Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392:608–611.CrossRefPubMedGoogle Scholar
  98. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250.PubMedGoogle Scholar
  99. Zhang SC, Lundberg C, Lipsitz D, O’Connor LT, Duncan ID(1998) Generation of oligodendroglial progenitors from neural stem cells. J Neurocytol 27:475–489.CrossRefPubMedGoogle Scholar
  100. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133.PubMedGoogle Scholar
  101. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mark J. Tomishima
  • Lorenz Studer

There are no affiliations available

Personalised recommendations