Skip to main content

Derivation of Myelin-forming Cells for Transplantation Repair of the CNS

  • Chapter
Neural Stem Cells
  • 244 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ader M, Meng J, Schachner M, Bartsch U (2000) Formation of myelin after transplantation of neural precursor cells into the retina of young postnatal mice. GLIA 301–310.

    Google Scholar 

  • Ader M, Schachner M, Bartsch U (2001) Transplantation of neural precursor cells into the dysmyelinated CNS of mutant mice deficient in the myelin-associated glycoprotein and Fyn tyrosine kinase. Eur J Neurosci 14: 561–566.

    Article  CAS  PubMed  Google Scholar 

  • Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002b) Remyelination of the spinal cord following intravenous delivery of hone marrow cells. GLIA 39: 229–236.

    Article  PubMed  Google Scholar 

  • Akiyama Y, Radtke C, Kocsis JD (2002h) Remyelination of the rat spinal cord by transplantation of identified hone marrow stromal cells. J Neurosci 22: 6623–6630.

    CAS  PubMed  Google Scholar 

  • Archer DR, Cuddon PA, Lipsitz D, Duncan ID (1997) Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nature Med 3: 54–59.

    CAS  PubMed  Google Scholar 

  • Armstrong RC, Harvath L, Duhois-Dalcq ME (1990) Type 1 astrocytes and oligodendrocytetype 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res 27: 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Au E, Roskams AJ (2003) Olfactory ensheathing cells of the lamina propria in vivo and in vitro. GLIA 41: 224–236.

    Article  PubMed  Google Scholar 

  • Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, Baron-Van Evercooren A (1996) Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J Neurosci Res 45: 558–570.

    Article  CAS  PubMed  Google Scholar 

  • Bain G, Kitchens K, Yao M, Huettner JE, Gottlieh DI (1995) Embryonic stem cells express neuronal properties in vitro. Developmental Biology 168: 342–357.

    Article  CAS  PubMed  Google Scholar 

  • Barnett SC, Alexander CL, Iwashita Y, Gilson JM, Crowther J, Clark L, Dunn LT, Papanastassiou V, Kennedy PGE, Franklin RJM (2000) Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123: 1581–1588.

    Article  PubMed  Google Scholar 

  • Baron-Van Evercooren A, Avellana-Adalid V, Ben Younes-Chennoufi A, Gansmuller A, Nait-Oumesmar B, Vignais L (1996) Cell-cell interactions during the migration of myelin-forming cells transplanted in the demyelinated spinal cord. GLIA 16: 147–164.

    Article  CAS  PubMed  Google Scholar 

  • Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70: 31–46.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, Ahramsky O (2003) Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. GLIA 41: 73–80.

    Article  PubMed  Google Scholar 

  • Björklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nature Neuroscience 3: 537–544.

    Article  PubMed  Google Scholar 

  • Blakemore WF, Crang A (1988) Extensive oligodendrocyte remyelination following injection of cultured central nervous system cells into demyelinating lesions in adult central nervous system. Dev Neurosci 10: 1–11.

    CAS  PubMed  Google Scholar 

  • Blakemore WF, Crang AJ, Franklin RJM (1991) Transplantation of glial cells In: Neuroglial Cells (Ransom BR, Kettenmann H, eds), pp 869–882. Cambridge: Oxford University Press.

    Google Scholar 

  • Blakemore WF, Franklin RJM (1991) Transplantation of glial cells into the CNS. TINS 14:323327.

    Google Scholar 

  • Blakemore WF, Franklin RJM (1999) Transplantation options for therapeutic CNS remyelination. Cell Transplantation.

    Google Scholar 

  • Blakemore WF, Franklin RJM, Noble M (1996) Glial cell transplantation and the repair of demyelinating lesions. In: Glial Cell Development. Basic principles and clinical relevance. (Jessen KR, Richardson WD, eds), pp 209–220. Oxford: BIOS Scientific.

    Google Scholar 

  • Blakemore WF, Olby NJ, Franklin RJM (1995b) The use of transplanted glial cells to reconstruct glial environments in the CNS. Brain Pathol 5: 443–450.

    CAS  PubMed  Google Scholar 

  • Brustle O, Cunningham M, Tabar V, Studer L (1997) Experimental transplantation in the embryonic, neonatal, and adult mammalian brain. In: Current Protocols in Neuroscience (Crawley J, Gerfen C, McKay RDG, Rogawski M, Sibley D, Skolnick P, eds), pp 3.10.11–13.10.28. New York: John Wiley.

    Google Scholar 

  • Brustle O, Jones E, Learish R, Karran K, Chaudhary K, Weistler O, Duncan ID, McKay RDG (1999) Myelin-repair by transplantation of embryonic stem cell-derived glial precursors. Science.

    Google Scholar 

  • Bulte JWM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19: 11411147.

    Article  Google Scholar 

  • Bulte JWM, Zhang S-C, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: MR tracking of cell migration and myelination. Proc Natl Acad Sci.

    Google Scholar 

  • Buttery PC, Mallawaarachchi CM, Milner R, Doherty P, ffrench-Constant C (1999) Mapping regions of the bl integrin cytoplasmic domain involved in migration and survival in primary oligodendrocyte precursors using cell-permeable homeopeptides. Biochem Biophys Res Commun 259: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Buzanska L, Machaj EJK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115: 2131–2138.

    CAS  PubMed  Google Scholar 

  • Chari DM, Blakemore W (2002) New insights into remyelination failure in multiple sclerosis: implications for glial cell transplantation. Mult Scler 8: 271–277.

    Article  CAS  PubMed  Google Scholar 

  • Doucette R (1990) Glial influences on axonal growth in the primary olfactory system. GLIA 3: 433–449.

    Article  CAS  PubMed  Google Scholar 

  • Duncan ID (1996) Glial cell transplantation and remyelination of the CNS. Neuropathol Appl Neurobiol 22:87–100.

    CAS  PubMed  Google Scholar 

  • Duncan ID (2001) Strategies for repair in MS: the potential role of glial-cell transplantation. In: Multiple Sclerosis: Tissue Destruction and Repair (Kappos L, ed), pp 25–32. Martin Dunitz Publishers.

    Google Scholar 

  • Duncan ID, Aguayo AJ, Bunge RP, Wood PM (1981) Transplantation of in vitro cultures of rat Schwann cells into the mouse spinal cord. J Neurol Sci 41: 241–252.

    Google Scholar 

  • Duncan ID, Grever WE, Zhang S-C (1997) Repair of myelin disease: strategies and progress in animal models. Molecular Medicine Today 3: 554–561.

    Article  CAS  PubMed  Google Scholar 

  • Duncan ID, Hammang JP, Jackson KF, Wood PM, Bunge RP, Langford LA (1988) Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat. J Neurocytol 17: 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Duncan ID, Hoffman RL (1997) Schwann cell invasion of the central nervous system of the myelin mutants. J Anat 190: 35–49.

    Article  PubMed  Google Scholar 

  • Duncan ID, Paino C, Archer DR, Wood PM (1992) Functional capacities of transplanted cellsorted adult oligodendrocytes. Dev Neurosci 14: 114–122.

    CAS  PubMed  Google Scholar 

  • Felts PA, Smith KJ (1992) Conduction properties of central nerve fibers remyelinated by Schwann cells. Brain Res 574: 178–192.

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJM, Barnett SC (1997) Do olfactory glia have advantages over Schwann cells for CNS repair. J Neurosci Res 50: 665–672.

    CAS  PubMed  Google Scholar 

  • Franklin RJM, Bayley SA, Blakemore WF (1996a) Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Exp Neurol 137: 263–276.

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJM, Blakemore WF (1993) Requirements for Schwann cell migration within CNS environments: a viewpoint. Int J Devi Neurosci 11: 641–649.

    CAS  Google Scholar 

  • Franklin RJM, Blaschuk KL, Bearchell MC, Prestoz LLC, Setzu A, Brindle KM, ffrench-Constant C (1999) Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. NeuroReport 10: 3961–3965.

    CAS  PubMed  Google Scholar 

  • Franklin RJM, Gilson JM, Franceschini IA, Barnett SC (1996b) Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. GLIA 17: 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Gansmüller A, Clerin E, Krüger F, Gumpel M, Lachapelle F (1991) Tracing transplanted oligodendrocytes during migration and maturation in the shiverer mouse brain. GLIA 4: 580–590.

    PubMed  Google Scholar 

  • Gansmuller A, Clerin E, Kruger F, Gumpel M, Lachapelle F (1991) Tracing transplanted oligodendrocytes during migration and maturation in the shiverer mouse brain. GLIA 4: 580–590.

    Article  CAS  PubMed  Google Scholar 

  • Gumpel M, Baumann N, Raoul M, Jacque C (1983) Survival and differentiation of oligodendrocytes from neural tissue transplanted into new-born mouse brain. Neurosci Letters 37: 307–311.

    Article  CAS  Google Scholar 

  • Gumpel M, Lachapelle F, Baumann N (1985) Central nervous tissue transplantation into mouse brain: differentiation of myelin from transplanted oligodendrocytes. In: Neural Grafting in the Mammalian CNS (Björklund A, Stenevi U, eds), pp 151–158. Elsevier Science Publishers, B.V.

    Google Scholar 

  • Gumpel M, Lachapelle F, Gansmüller A, Baulac M, Baron-Van Evercooren A, Baumann N (1987) Transplantation of human embryonic oligodendrocytes into shiverer brain. Ann N Y Acad Sci 495: 71–85.

    CAS  PubMed  Google Scholar 

  • Hammang JP, Archer DR, Duncan ID (1997) Myelination following transplantation of EGFresponsive neural stem cells into a myelin-deficient environment. Exp Neurol 147: 84–95

    Article  CAS  PubMed  Google Scholar 

  • Honmou O, Kocsis JD, Waxman SG, Felts PA (1996) Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci 16: 3199–3208.

    CAS  PubMed  Google Scholar 

  • Hunter S, Bottenstein JE (1990) Growth factor responses of enriched bipotential glial progenitors. Dev Brain Res 54: 235–248.

    Article  CAS  Google Scholar 

  • Hunter SF, Bottenstein JE (1991) O-2A glial progenitors from mature brain respond to CNS neuronal cell line-derived growth factors. J Neurosci Res 28: 574–582.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Lankford KL, Burton WV, Fodor WL, Kocsis JD (2000a) Xenotransplantation of transgenic pig olfactory ensheathing cells promotes axonal regeneration in rat spinal cord. Nature Biotechnology.

    Google Scholar 

  • Imaizumi T, Lankford KL, Kocsis JD (2000b) Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction acress the transected spinal cord. Brain Res 854: 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD (1998) Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci 18: 6176–6185.

    CAS  PubMed  Google Scholar 

  • Iwashita Y, Fawcett JW, Crang AJ, Franklin RJM, Blakemore WF (2000) Schwann cells transplanted into normal and x-irradiated adult white matter do not migrate extensively and show poor long-term survival. Exp Neurol 164: 292–302.

    Article  CAS  PubMed  Google Scholar 

  • Jeffery ND, Crang AJ, O’Leary MT, Hodge SJ, Blakemore WF (1999) Behavioural consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesions in the rat spinal cord. Eur J Neurosci 11: 1508–1514.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30: 896–904.

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Honmou O, Uede T, Hashi K, Kocsis JD (2000) Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. GLIA 209–218.

    Google Scholar 

  • Kessaris N, Pringle N, Richardson WD (2001) Ventral neurogenesis and the neuron-glial switch. Neuron 31: 677–680.

    Article  CAS  PubMed  Google Scholar 

  • Kiernan BW, Götz B, Faissner A, ffrench-Constant C (1996) Tenascin-C inhibits oligodendrocyte precursor cell migration by both adhesion-dependent and adhesion-independent mechanisms. Mol. Cell. Neurosci. 7:322–335.

    Article  CAS  PubMed  Google Scholar 

  • Kohama I, Lankford KL, Preiningerova J, White FA, Vollmer TL, Kocsis JD (2001) Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci 21: 944–950.

    CAS  PubMed  Google Scholar 

  • Lachapelle F, Lapie P, Nussbaum JL, Gumpel M (1990) Immunohistochemical studies on crosstransplantations betweenjimpy, shiverer, and normal newborn mice. J Neurosci Res 27: 324–331.

    Article  CAS  PubMed  Google Scholar 

  • Lakatos A, Franklin RJM, Barnett SC (2000) Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. GLIA 32: 214–225.

    Article  CAS  PubMed  Google Scholar 

  • Learish RD, Brustle O, Zhang S-C, Duncan ID (1999) Widespread myelination following intraventricular transplantation of oligodendrocyte progenitors into the cerebral ventricle of embryonic myelin-deficient rats. Ann Neurol 46: 716–722.

    Article  CAS  PubMed  Google Scholar 

  • Lipsitz D, Archer DR, Duncan ID (1995) Acute dispersion of glial cells following transplantation into the myelin deficient rat spinal cord. GLIA 14: 237–242.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. PNAS 97: 6126–6131.

    CAS  PubMed  Google Scholar 

  • Louis JC, Magal E, Muir D, Manthorpe M, Varon S (1992) CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J Neurosci Res 31: 193–204.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy KD, de Vellis J (1980) Preparation of Separate Astroglial and Oligodendroglial Cell Cultures From Rat Cerebral Tissue. J Cell Biol 85: 890–902.

    Article  CAS  PubMed  Google Scholar 

  • McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal column. Nat Med 5: 1410–1412.

    Article  CAS  PubMed  Google Scholar 

  • Milner R, Anderson HJ, Rippon RF, McKay J, Franklin RJM, Marchionni MA, Reynolds R, ffrench-Constant C (1997) Contrasting effects of mitogenic growth factors on oligodendrocyte precursor cell migration. GLIA 19: 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Milner R, Edwards G, Streuli C, ffrench-Constant C (1996) A role in migration for the avbl integrin expressed on oligodendrocyte precursors. J Neurosci 16: 7240–7252.

    CAS  PubMed  Google Scholar 

  • Milward EA, Zhang S-C, Zhao M, Lundberg C, Ge B, Goetz BD, Duncan ID (2000) Enhanced proliferation and directed migration of Oligodendroglial progenitors co-grafted with growth factor-secreting cells. GLIA 32: 264–270.

    Article  CAS  PubMed  Google Scholar 

  • Mitome M, Low HP, van den Pol A, Nunnari JJ, Wolf MK, Billings-Gagliardi S, Schwartz WJ (2001) Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain 124: 2147–2161.

    Article  CAS  PubMed  Google Scholar 

  • Morrissey TK, Levi ADO, Nuijens A, Sliwkowski MX, Bunge RP (1995) Axon-induced mitogenesis of human Schwann cells involves heregulin and pl85erbB2. Proc Natl Acad Sci USA 92: 1431–1435.

    CAS  PubMed  Google Scholar 

  • O’Leary MT, Blakemore WF (1997a) Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system. J Neurosci Res 48: 159–167.

    CAS  PubMed  Google Scholar 

  • O’Leary MT, Blakemore WF (1997b) Use of a rat Y chromosome probe to determine the long-term survival of glial cells transplanted into areas of CNS demyelination. J Neurocytol 26: 191–206.

    CAS  PubMed  Google Scholar 

  • Olivier C, Cobos I, Villegas EMP, Spassky N, Zalc B, Martinez S, Thomas JL (2001) Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128: 1757–1769.

    CAS  PubMed  Google Scholar 

  • Plant GW, Currier PF, Cuervo EP, Bates ML, Pressman Y, Bunge MB, Wood PM (2002) Purified adult ensheathing glia fail to myelinate axons under culture conditions that enable Schwann cells to form myelin. J Neurosci 22: 6083–6091.

    CAS  PubMed  Google Scholar 

  • Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422: 688–694.

    Article  CAS  PubMed  Google Scholar 

  • Pringle NP, Richardson WD (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117: 525–533.

    CAS  PubMed  Google Scholar 

  • Qi Y, Stapp D, Qiu M (2002) Origin and molecular specification of oligodendrocytes in the telencephalon. Trends in Neurosciences 25: 223–225.

    Article  CAS  PubMed  Google Scholar 

  • Ramon-Cueto A, Avila J (1998) Olfactory ensheathing glia: properties and function. Brain Res Bull 46: 175–187.

    CAS  PubMed  Google Scholar 

  • Ramon-Cueto A, Valverde F (1995) Olfactory bulb ensheathing glia: a unique cell type with axonal growth-promoting properties. GLIA 14:163–173.

    CAS  PubMed  Google Scholar 

  • Reubinoff BE, Pera MF, Fong C-Y, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol 18: 399–404.

    CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710.

    CAS  PubMed  Google Scholar 

  • Richardson WD, Pringle NP, Yu W-P, Hall AC (1997) Origins of spinal cord oligodendrocytes: Possible developmental and evoluntionary relationships with motor neurons. Dev Neurosci 19: 58–68.

    CAS  PubMed  Google Scholar 

  • Rosenbluth J, Hasegawa M, Shirasaki N, Rosen CL, Liu Z (1990) Myelin formation following transplantation of normal fetal glia into myelin-deficient rat spinal cord. J Neurocytol 19: 718–730.

    Article  CAS  PubMed  Google Scholar 

  • Rowitch DH, Lu QR, Kessaris N, Richardson WD (2002) An ‘oligarchy’ rules neural development. Trends in Neurosciences 25: 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. PNAS 97: 11307–11312.

    Article  CAS  PubMed  Google Scholar 

  • Seilhean D, Gansmüller A, Baron-Van Evercooren A, Gumpel M, Lachapelle F (1996) Myelination by transplanted human and mouse central nervous system tissue after long-term cryopreservation. Acta Neuropathol (Berl) 91: 82–88.

    CAS  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. PNAS 95: 13726–13731.

    Article  CAS  PubMed  Google Scholar 

  • Shields SA, Blakemore WF, Franklin RJM (2000) Schwann cell remyelination is restricted to astrocyte-deficient areas after transplantation into demyelinated adult rat brain. J Neurosci Res 60: 571–578.

    Article  CAS  PubMed  Google Scholar 

  • Smith PM, Blakemore WF (2000) Porcine neural progenitors require commitment to the oligodendrocyte lineage prior to transplantation in order to achieve significant remyelination of demyelinated lesions in the adult CNS. Eur J Neurosci 12: 2414–2424.

    CAS  PubMed  Google Scholar 

  • Smith PM, Lakatos A, Barnett SC, Jeffery, ND, Franklin RJM (2002) Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Exp Neurol 176:402–406.

    Article  CAS  PubMed  Google Scholar 

  • Spassky N, de Castro F, Le Bras B, Heydon K, Quéraud-LeSaux F, Bloch-Gallego E, Chédotal A, Zalc B, Thomas JL (2002)Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J Neurosci 22: 5992–6004

    CAS  PubMed  Google Scholar 

  • Studer L (2001) Stem cells with brainpower. Nature Biotechnol 19: 1117–1118.

    Article  CAS  Google Scholar 

  • Takami T, Oudega M, Bates ML, Wood PM, Kleitman N, Bunge MB (2002) Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. Journal of Neuroscience 22: 6670–6681.

    CAS  PubMed  Google Scholar 

  • Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K (2002) The basic helix-loop-helix factor Olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12: 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  • Targett MP, Sussman J, Scolding N, O’Leary MT, Compston DAS, Blakemore WF (1996) Failure to achieve remyelination of demyelinated rat axons following transplantation of glial cells obtained from the adult human brain. Neuropathol Appl Neurobiol 22: 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Tennekoon GI, Lerner MA, Kirk C, Rutkowski JL (1995) Purification and expansion of human Schwann cells in vitro. Nature Med 1: 80–83.

    PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. PNAS 92: 7844–7848.

    CAS  PubMed  Google Scholar 

  • Tontsch U, Archer DR, Dubois-Dalcq M, Duncan ID (1994) Transplantation of an oligodendrocyte cell line leading to extensive myelination. PNAS 91: 11616–11620.

    CAS  PubMed  Google Scholar 

  • Tourbah A, Linnington C, Bachelin C, Avellana-Adalid V, Wekerle H, Baron-Van Evercooren A (1997) Inflammation promotes survival and migration of the CG4 oligodendrocyte progenitors transplanted in the spinal gord of both inflammatory and demyelinated EAE rats. J Neurosci Res 50: 853–861.

    Article  CAS  PubMed  Google Scholar 

  • Tsai HH, Frost E, To V, Robinson S, ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110: 373–383.

    Article  CAS  PubMed  Google Scholar 

  • Utzschneider DA, Archer DR, Kocsis JD, Waxman SG, Duncan ID (1994) Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. PNAS 91: 53–57.

    CAS  PubMed  Google Scholar 

  • Vitry S, Avellana-Adalid V, Hardy R, Lachapelle F, Baron-Van Evercooren A (1999) Mouse oligospheres: From pre-progenitors to functional oligodendrocytes. J Neurosci Res 735–751.

    Google Scholar 

  • Warrington AE, Barbarese E, Pfeiffer SE (1993) Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J Neurosci Res 34: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Windrem MS, Roy NS, Wang J, Nunes M, Benraiss A, Goodman R, McKhann GM, II, Goldman SA (2002) Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J Neurosci Res 69: 966–975.

    Article  CAS  PubMed  Google Scholar 

  • Woodruff RH, Tekki-Kessaris N, Stiles CD, Rowitch DH, Richardson WD (2001) Oligodendrocyte development in the spinal cord and telencephalon: common themes and new perspectives. Int J Dev Neurosci 19: 379–385.

    CAS  PubMed  Google Scholar 

  • Wu SF, Suzuki Y, Kitada M, Kataoka K, Kitaura M, Chou H, Nishimura Y, Ide C (2002) New method for transplantation of neurosphere cells into injured spinal cord through cerebrospinal fluid in rat. Neurosci Lett 318: 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Yandava BD, Billinghurst LL, Snyder EY (1999) “Global” cell replacement is feasible via neural stem cell transplantation: Evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sri USA 96: 7029–7034.

    CAS  Google Scholar 

  • Zhang S-C, Duncan ID (1999) Remyelination and restoration of axonal function by glial cell transplantation. In: Functional Neural Transplantation (Dunnett SB, Bjorklund A, eds), Amsterdam: Elsevier.

    Google Scholar 

  • Zhang S-C, Ge B, Duncan ID (1999a) Tracing human oligodendroglial development in vitro. J Neurosci Res. 59:421–429.

    Google Scholar 

  • Zhang S-C, Ge B, Duncan ID (1999b) Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. PNAS 96: 4089–4094.

    CAS  PubMed  Google Scholar 

  • Zhang S-C, Goetz BD, Duncan ID (2003) Suppression of activated microglia promotes survival and function of transplanted oligodendroglial progenitors. GLIA 41: 191–198.

    Article  PubMed  Google Scholar 

  • Zhang S-C, Lipsitz D, Duncan ID (1998a) Self-renewing canine oligodendroglial progenitor expanded as oligospheres. J Neurosci Res 54: 181–190.

    CAS  PubMed  Google Scholar 

  • Zhang S-C, Lundberg C, Lipsitz D, O’Connor LT, Duncan ID (1998b) Generation of oligodendroglial progenitors from neural stem cells. J Neurocytol 27: 475–489.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S.-C, Wagner, D., and Duncan, I. D. Acute death of grafted oligodendroglial progenitors. Soc for Neurosci 25. 1999c.

    Google Scholar 

  • Zhang S-C, Wernig M, Duncan ID, Brüstle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotech 19:1129–1133.

    CAS  Google Scholar 

  • Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174: 11–20.

    Article  PubMed  Google Scholar 

  • Zhou Q, Choi G, Anderson DJ (2001) The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31: 791–807.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Duncan, I.D., Kondo, Y. (2003). Derivation of Myelin-forming Cells for Transplantation Repair of the CNS. In: Bottenstein, J.E. (eds) Neural Stem Cells. Springer, Boston, MA. https://doi.org/10.1007/0-306-48356-4_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-48356-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7588-9

  • Online ISBN: 978-0-306-48356-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics