Abstract
A number of specific genes encoding for melanosomal proteins are selectively expressed in melanocytes and melanomas. For detection of circulating melanoma cells, the expression of the tyrosinase gene is most widely used. Several cohorts of melanoma patients from single institutions have been analyzed by various research groups for the presence of circulating melanoma cells in all stages of disease. The percentage of patients with evidence for occult tumor dissemination has been correlated with the stage of disease in several, but not all, reports. Two prospective analyses suggest that the PCR result is of prognostic value in melanoma. Several laboratories have found PCR evidence for circulating melanoma cells in the great majority of untreated patients with Stage IV disease, other groups have reported much lower frequencies. Taken together, there is a wide range of results. Methodological differences are likely to account for this discrepancy. With the availability of true quantitative real-time reverse transcriptase (RT)-PCR systems, accurate quantification of tyrosinase transcripts over a range of 1 to 10,000 tumor cells per milliliter of blood is possible. Quantitative real-time RT-PCR systems also dramatically improve quality control, since exact quantitation of housekeeping gene mRNA facilitates determination of sample quality. Two large clinical trials are currently under way within the EORTC and in the US to adequately determine the clinical usefulness of PCR detection of minimal residual disease in melanoma.
Keywords
- Melanoma Cell
- Clin Oncol
- Melanoma Patient
- Circulate Tumor Cell
- Minimal Residual Disease
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Preview
Unable to display preview. Download preview PDF.
References
Caron M, Jorgensen G, Rigel D, Friedman R. In: Blach CM, Houghton AN, Miltron GM, editors. The Worldwide Incidence of Malignant Melanoma. Philadelphia: JB Lippincott, 1992, pp. 27–45.
Lakhani S, Selby P, Bliss JM, Perren TJ, Gore ME, McElwain TJ. Chemotherapy for malignant melanoma: combinations and high doses produce more responses without survival benefit. Brit J Cancer. 1990; 61: 330–334.
Buzaid AC and Balch CM. Polymerase chain reaction of melanoma in peripheral blood: too early to assess clinical value. J Natl Cancer Inst. 1996; 88: 569–570.
Cross NC, Feng L, Chase A et al. Competitive polymerase chain reaction to estimate the number of bcr-abl transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood. 1993; 82: 1929–1936.
Fukuhara T, Hooper WC, Baylin SB et al. Use of the polymerase chain reaction to detect hypermethylation in the calcitonin gene — a new, sensitive approach to monitor tumor cells in acute myelogenous leukemia. Leukemia Res. 1992; 16: 1031–1040.
Curry BJ, Smith MJ, Hersey P. Detection and quantitation of melanoma cells in the circulation of patients. Melanoma Res. 1996; 6: 45–54.
Brossart P, Keilholz U, Willhauck M, Scheibenbogen C et al. Hematogenous spread of malignant melanoma cells in different stages of disease. J Invest Dermatol. 1993; 101: 887–889.
Brossart P, Schmier J-W, Krüger S et al. A polymerase chain reaction-based semiquantitative assessment of malignant melanoma cells in peripheral blood. Cancer Res. 1995; 55: 4056–4068.
Brossart P, Keilholz U, Scheibenbogen C et al. Detection of residual tumor cells in patients with malignant melanoma responding to immunotherapy. J Immunotherapy. 1994; 15: 38–41.
Adema G de Boer AJ van’t Hullenaar R et al. Melacyte lineage-specific antigens recognized by moclonal antibodies NKI-beteb HMB-50 and HMB-45 are encoded by a single cDNA. Am J Path. 1993; 143 1579–1585.
Adema GJ, de Boer AJ, Vogel AM et al. Molecular characterization of the melanoma lineage-specific antigen gp100. J Biol Chem. 1994; 269: 20126–20133.
Kawakami Y, Eliyahu S, Delgado CH et al. Cloning the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA. 1994; 91: 3515–3519.
Carrel S, Dore JF, Ruiter D et al. The EORTC melanoma group exchange program: evaluation of a multicenter monoclonal antibody study. Int J Cancer. 1991; 48: 836–847.
Scheibenbogen C, Weyers I, Ruiter D, Willhauck M, Bittinger A, Keilholz U. Expression of gp100 in melanoma metastases resected before or after treatment with IFN alpha and IL-2. J Immunother 1996; 19: 375–380.
Chen YT, Stockert E, Tsang S et al. Immunophenotyping of melanomas for tyrosinase: implications for vaccine development. Proc Natl Acad Sci USA. 1995; 92: 8125–8129.
Marincola FM, HiJazi YM, Fetsch P et al. Analysis of expression of the melanoma-associated antigens MART-1 and gp100 in metastatic melanoma cell lines and in situ lesions. J Immunotherapy. 1996; 19: 192–205.
Coulie PG, Brichard V, van Pel A et al. A new gene coding for a differentiation antigen recognized by autologous cytoloytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1994; 180: 35–42.
Gaugler B, Van den Eynde B, van der Bruggen P et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytoloytic T lymphocytes. J Exp Med. 1994; 179: 921–930.
Brasseur F, Rimoldi D, Lienard D et al. Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer. 1995; 63: 375–380.
De Plaen E, Arden K, Traversari C et al. Structure, chromosomal localization and expression of twelve genes of the MAGE family. Immunogenetics. 1994; 40: 360–369.
Smith B, Selby P, Southgate J et al. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet. 1991; 338: 1227–1229.
Tobal K, Sherman LS, Foss AJ, Lightman SL. Detection of melanocytes from uveal melanoma in peripheral blood using the polymerase chain reaction. Invest Ophthalmol Vis Sci. 1993; 34: 2622–2625.
Battyani Z, Grob J, Xerri L et al. PCR detection of circulating melanocytes as a prognostic marker in patients with melanoma. Arch Dermatol. 1995; 131: 443–447.
Hoon DS, Wang Y, Dale PS et al. Detection of occult melanoma cells in blood with a multiple-marker polymerase chain reaction assay. J Clin Oncol. 1995; 13: 2109–2116.
Foss AJ, Guille MJ, Occleston NL et al. The detection of melanoma cells in peripheral blood by reverse transcription polymerase chain reaction. Brit J Cancer. 1995; 72: 155–159.
Kunter U, Buer J, Probst M et al. Peripheral blood tyrosinase messenger RNA detection and survival in malignant melanoma. J Natl Cancer Inst. 1996; 88: 590–594.
Tsao H, Nadiminti U, Sober AJ, Bigby M. A meta-analysis of reverse transcriptase-polymerase chain reaction for tyrosinase mRNA as a marker for circulating tumor cells in cutaneous melanoma. Arch Dermatol. 2001; 137: 325–330.
Mellado B, Colomer D, Castel T et al. Detection of circulating neoplastic cells by reverse-transcriptase polymerase chain reaction in malignant melanoma: association with clinical stage and prognosis. J Clin Oncol. 1996; 14: 2091–2097.
de Vries TJ, Fourkour A, Punt CJ, van de Locht LT et al. Reproducibility of detection of tyrosinase and MART-1 transcripts in the peripheral blood of melanoma patients: a quality control study using real-time quantitative RT-PCR. Brit J Cancer. 1999; 80: 883–891.
Chen YT, Stockert E, Tsang S et al. Immunophenotyping of melanomas for tyrosinase: implications for vaccine development. Proc Natl Acad Sci USA. 1995; 92: 8125–8129.
Scheibenbogen C, Weyers I, Ruiter D et al. Expression of gp100 in melanoma metastases resected before or after treatment with IFN alpha and IL-2. J Immunother Emphasis Tumor Immunol. 1996; 19: 375–380.
Wang X, Heller R, VanVoorhis N, Cruse CW et al. Detection of submicroscopic lymph node metastases with polymerase chain reaction in patients with malignant melanoma. Ann Surg. 1994; 220: 768–774.
Max N, Wolf K, Spike B et al. Nested quantitative real-time PCR for detection of occult tumor cells. Recent Results Cancer Res. 2001; 158: 25–31.
Keilholz U, Willhauck M, Rimoldi D, Brasseur F, Dummer W, Rass K, de Vries T, Blaheta J, Voit C, Lrthe B, Burchill L. Reliability of reverse transcription-polymerase chain reaction (RT-PCR)-based assays for the detection of circulating tumor cells: a quality-assurance initiative of the EORTC melanoma cooperative group. EJC. 1998; 34: 750–753.
Stevens GL, Scheer WD, Levine EA. Detection of tyrosinase mRNA from the blood of melanoma patients. Cancer Epidemiol Biomarkers Prev. 1996; 5: 293–296.
Glaser R, Rass K, Seiter S et al. Detection of circulating melanoma cells by specific amplification of tyrosinase complementary DNA is not a reliable tumor marker in melanoma patients: a clinical two-center study. J Clin Oncol. 1997; 15: 2818–2825.
Reinhold U, Ludtke-Handjery HC, Schnautz S et al. The analysis of tyrosinase-specific mRNA in blood samples of melanoma patients by RT-PCR is not a useful test for metastatic tumor progression. J Invest Dermatol. 1997; 108: 166–169.
Jung FA, Buzaid AC, Ross MI et al. Evaluation of tyrosinase mRNA as a tumor marker in the blood of melanoma patients. J Clin Oncol. 1997; 15: 2826–2831.
Tessier MH, Denis MG, Lustenberger P, Dreno B. Detection of circulating neoplastic cells by reverse transcriptase and polymerase chain reaction in melanoma. Ann Dermatol Verel. 1997; 124: 607–611.
Farthmann B, Eberle J, Krasagakis K et al. RT-PCR for tyrosinase-mRNA positive cells in peripheral blood: evaluation strategy and correlation with known prognostic markers in 123 melanoma patients. J Invest Dermatol. 1998; 110: 263–267.
Ghossein RA, Coit D, Brennan M et al. Prognostic significance of peripheral blood and bone marrow tyrosinase messenger RNA in malignant melanoma. Clin Cancer Res. 1998; 4: 419–428.
O’Connell CD, Juhasz A, Kuo C et al. Detection of tyrosinase mRNA in melanoma by reverse transcription PCR and electrochemiluminescence. Clin Chem. 1998; 44: 1161–1169.
Voit C, Schoengen A, Schwurzer M et al. Detection of regional melanoma metastases by ultrasound B-scan, cytology or tyrosinase RT-PCR of fine-needle aspirates. Brit J Cancer. 1999; 80: 1672–1677.
Palmieri G, Strazzullo M, Ascierto PA et al. Polymerase chain reaction-based detection of circulating melanoma cells as an effective marker of tumor progression. Melanoma Cooperative Group. J Clin Oncol. 1999; 17: 304–311.
Mellado B, Gutierrez L, Castel T et al. Prognostic siginificance of the detection of circulating malignant cells by reverse transcriptase polymerase chain reaction in long-term clinically disease-free melanoma patients. Clin Cancer Res. 1999; 5: 1843–1848.
Le Bricon T, Stoitchkov K, Letellier S et al. Simultaneous analysis of tyrosinase mRNA and markers of tyrosinase activity in the blood of patients with metastatic melanoma. Clin Chim Acta. 1999; 282: 101–113.
Schittek B, Bodingbauer Y, Ellwanger U et al. Amplification of MelanA messenger RNA in addition to tyrosinase increases sensitivity of melanoma cell detection in peripheral blood and is associated with the clinical stage and prognosis of malignant melanoma. Brit J Dermatol. 1999; 141: 30–36.
Curry BJ, Myers K, Hersey P. MART-1 is expressed less frequently on circulating melanoma cells in patients who develop distant compared with locoregional metastases. J Clin Oncol. 1999; 17: 2562–2571.
Hanekom GS, Stubbings HM, Johnson CA, Kidson SH. The detection of circulating melanoma cells correlates with tumor thickness and ulceration but is not predictive of metastasis for patients with primary melanoma. Melanoma Res. 1999; 9: 465–473.
Alao JP, Mohammed MQ, Slade MJ, Retsas S. Detection of tyrosinase mRNA by RT-PCR in the peripheral blood of patients with advanced metastatic melanoma. Melanoma Res. 1999; 9: 395–399.
Kopreski MS, Benko FA, Kwak LW, Gocke CD. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res. 1999; 5: 1961–1965.
de Vries TJ, Fourkour A, Punt CJ, van de Locht LT, Wobbes T, van den Bosch S, de Rooij MJ, Mensink EJ, Ruiter DJ, van Muijen GN. Reproducibility of detection of tyrosinase and MART-1 transcripts in the peripheral blood of melanoma patients: a quality control study using real-time quantitative RT-PCR. Br J Cancer 1999; 80: 883–91.
Proebstle TM, Jiang W, Hogel J, Keilholz U, Weber L, Voit C. Correlation of positive RT-PCR for tyrosinase in peripheral blood of malignant melanoma patients with clinical stage, survival and other risk factors. Brit J Cancer. 2000; 82: 118–123.
Brownbridge GG, Gold J, Edward M, MacKie RM. Evaluation of the use of tyrosina-sespecific and melanA/MART-1-specific reverse transcriptase-coupled-polymerase chain reaction to detect melanoma cells in peripheral blood samples from 299 patients with malignant melanoma. Br J Dermatol. 2001; 144: 279–287.
Reinhold U, Berkin C, Bosserhoff AK, Deutschmann A et al. Interlaboratory evaluation of a new reverse transcriptase polymerase chain reaction-based enzymelinked immunosorbent assay for the detection of circulating melanoma cells: a multicenter study of the Dermatologic Cooperative Oncology Group. J Clin Oncol. 2001; 19: 1723–1727.
Stoitchkov K, Letellier S, Garnier JP, Toneva M, Naumova E, Peytcheva E, Tzankov N, Bousquet B, Morel P, Le Bricon T. Evaluation of standard tyrosinase RT-PCR in melanoma patients by the use of the Light Cycler system. Clin Chim Acta. 2001; 306: 133–138.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Kluwer Academic Publishers
About this chapter
Cite this chapter
Goldin-Lang, P., Keilholz, U. (2003). Minimal Residual Disease in Melanoma. In: Pantel, K. (eds) Micrometastasis. Cancer Metastasis - Biology and Treatment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48355-6_9
Download citation
DOI: https://doi.org/10.1007/0-306-48355-6_9
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-1155-9
Online ISBN: 978-0-306-48355-4
eBook Packages: Springer Book Archive
