Skip to main content

Clinical Relevance of Tumor Cell Dissemination in Colorectal, Gastric and Pancreatic Carcinoma

  • Chapter

Part of the Cancer Metastasis - Biology and Treatment book series (CMBT,volume 5)

Abstract

Metastatic spread is a major factor in the prognosis of cancer patients. Early detection and eradication of circulating tumor cells prior to the development of metastases could help to improve the outcome of patients after tumor resection. Disseminated tumor cells have been detected in different compartments of the body using cytological and immunostaining methods and, more recently, using different molecular biological techniques. However, the specificity and the sensitivity of the methods and their prognostic impact are still being debated. This chapter gives an overview over the published studies regarding the prognostic relevance of the detection of disseminated tumor cells in lymph nodes, bone marrow, blood and peritoneal cavity in colorectal, gastric and pancreatic carcinoma patients.

Keywords

  • Gastric Cancer
  • Gastric Carcinoma
  • Colorectal Carcinoma
  • Pancreatic Carcinoma
  • Circulate Tumor Cell

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rererences

  1. Heald RJ, Moran BJ, Ryall RD, Sexton R, MacFarlane JK. Rectal cancer. The Basingstoke experience of total mesorectal excision, 1978–1997. Arch Surg. 1998; 133: 894–99.

    PubMed  CAS  Google Scholar 

  2. Lehnert T, Herfarth C. Multimodale Therapie des Rectumcarcinoms. Chirurg. 1998; 69: 384–92.

    PubMed  CAS  Google Scholar 

  3. Wittekind CH, Meyer HJ, Bootz F. TNM-Klassifikation maligner Tumoren. 6. Auflage 2002, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  4. Burchill SA, Lewis IJ, Selby P. Improved methods using the reverse transcriptase polymerase chain reaction to detect tumor cells. Br J Cancer. 1999; 79: 971–77.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Burchill SA, Selby PJ. Molecular detection of low-level disease in patients with cancer. J Pathol. 2000; 190: 6–14.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Juhl H, Kalthoff H, Krüger U, Schott A, Schreiber HW, Henne-Bruns D, Kremer B. Immunzytologischer Nachweis disseminierter Tumorzellen in der Bauchhöhle und im Knochenmark von Pankreaskarzinom-Patienten. Chirurg. 1994; 65: 1111–15.

    PubMed  CAS  Google Scholar 

  7. Palmieri G, Strazzullo M, Ascierto PA, Satriano SM, Daponte A, Castello G. Polymerase chain reaction-based detection of circulating melanoma cells as an effective marker of tumor progression. Melanoma Cooperative Group. J Clin Oncol. 1999; 17: 304–11.

    CAS  Google Scholar 

  8. Pantel K, Riethmüller G. Methods for detection of micrometastatic carcinoma cells in bone marrow, blood and lymph nodes. Onkologie. 1995; 18: 394–401.

    CrossRef  Google Scholar 

  9. Pantel K, von Knebel Doeberitz M, Izbicki JR, Riethmüller G. Disseminierte Tumorzellen: Diagnostik, prognostische Relevanz, Phänotypisierung und therapeutische Strategien. Chirurg. 1997; 68: 1241–50.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Pantel K, Schlimok G, Angstwurm M, Weckermann D, Schmaus W, Gath H, Passlick B, Izbicki JR, Riethmüller G. Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow. J Hematother. 1994; 3: 165–73.

    PubMed  CAS  Google Scholar 

  11. Braun S, Hepp F, Sommer HL, Pantel K. Tumor-antigen heterogeneity of disseminated breast cancer cells: implications for immunotherapy of minimal residual disease. Int J Cancer. 1999; 84: 1–5.

    PubMed  CAS  Google Scholar 

  12. Kell MR, Winter DC, O’Sullivan GC, Shanahan F, Redmond HP. Biological behaviour and clinical implications on micrometastases. Br J Surg. 2000; 87: 1629–39.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Klein CA, Schmidt-Kittler O, Sachardt JA, Pantel K, Speicher MR, Riethmüller G. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci USA. 1999; 96: 4494–99.

    PubMed  CAS  ADS  Google Scholar 

  14. Noack F, Schmitt M, Bauer J, Helmecke D, Kruger W, Thorban S, Sandherr M, Kuhn W, Graeff H, Harbeck N. A new approach to phenotyping disseminated tumor cells: methodological advances and clinical implications. Int J Biol Markers. 2000; 15: 100–4.

    PubMed  CAS  Google Scholar 

  15. Jung R, Krüger W, Hosch S, Holweg M, Kröger N, Gutensohn K, Wagener C, Neumaier M, Zander AR. Specificity of reverse transcriptase polymerase chain reaction assays designed for the detection of circulating cancer cells is influenced by cytokines in vivo and in vitro. Br J Cancer. 1998; 78: 1194–98.

    PubMed  CAS  Google Scholar 

  16. Raj GV, Moreno JG, Gomella LG. Utilization of polymerase chain reaction technology in the detection of solid tumors. Cancer. 1998; 82: 1419–42.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Johnson PW, Burchill SA, Selby PJ. The molecular detection of circulating tumor cells. Br J Cancer. 1995; 72: 268–76.

    PubMed  CAS  Google Scholar 

  18. Lambrechts AC van’t Veer LJ Rodenhuis S. The detection of minimal numbers of contaminating epithelial tumor cells in blood or bone marrow use limitations and future of RNA-based methods. Ann Oncol. 1998; 9 1269–76.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Soeth E, Röder C, Juhl H, Krüger U, Kremer B, Kalthoff H. The detection of disseminated tumor cells in bone marrow from colorectal-cancer patients by a cytokeratin-20-specific nested reverse-transcriptase-polymerase-chain reaction is related to the stage of disease. Int J Cancer. 1996; 69: 278–82.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Krüger W, Jung R, Kröger N, Gutensohn K, Fiedler W, Neumaier M, Jänicke F, Wagener C, Zander AR. Sensitivity of assays designed for the detection of disseminated epithelial tumor cells is influenced by cell separation methods. Clin Chemistry. 2000; 46: 435–36.

    Google Scholar 

  21. Neumaier M, Gerhard M, Wagener C. Diagnosis of micrometastases by the amplification of tissue-specific genes. Gene. 1995; 159: 43–47.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Denis MG, Lipart C, Leborgne J, LeHur PA, Galmiche JP, Denis M, Ruud E, Truchaud A, Lustenberger P. Detection of disseminated tumor cells in peripheral blood of colorectal cancer patients. Int J Cancer. 1997; 74: 540–44.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Martin VM, Siewert C, Scharl A, Harms T, Heinze R, Ohl S, Radbruch A, Miltenyl S, Schmitz J. Immunomagnetic enrichment of disseminated epithelial tumor cells from peripheral blood by MACS. Exp Hematol. 1998; 26: 252–64.

    PubMed  CAS  Google Scholar 

  24. Naume B, Borgen E, Nesland JM, Beiske K, Gilen E, Renolen A, Ravnas G, Quist H, Karesen R, Kvalheim G. Increased sensitivity for detection of micrometastatases in bone marrow/peripheral blood stem-cell products from breast-cancer patients by negative immunomagnetic separation. Int J Cancer. 1998; 78: 556–60.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Slade MJ, Smith BM, Sinnett HD, Cross NC, Coombes RC. Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol. 1999; 17: 870–79.

    PubMed  CAS  Google Scholar 

  26. Bustin SA, Gyselman VG, Williams NS, Dorudi S. Detection of cytokeratins 19/20 and Guanylyl Cyclase C in peripheral blood of colorecal cancer patients. Br J Cancer. 1999; 79: 1813–20.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Ghossein RA, Bhattacharya S, Rosain J. Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin Cancer Res. 1999; 5: 1950–60.

    PubMed  CAS  Google Scholar 

  28. Goeminne JC, Guillaume T, Symann M. Pitfalls in the detection of disseminated non-hematological tumor cells. Ann Oncol. 2000; 11: 785–92.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Hayashi N, Ito I, Yanagisawa A, Kato Y, Nakamori S, Imaoka S, Watanabe H, Ogawa M, Nakamura K. Genetic diagnosis of lymph-node metastasis in colorectal cancer. Lancet. 1995; 345: 1257–59.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Heiss MM, Allgayer H, Gruetzner KU, Babic R, Jauch KW, Schildberg FW. Clinical value of extended biologic staging by bone marrow micrometastases and tumor-associated proteases in gastric cancer. Ann Surg. 1997; 226: 736–45.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Maguire D, O’Sullivan GC, Collins JK, Morgan J, Shanahan F. Bone marrow metastases and gastrointestinal cancer detection and significance. Am J Gastroenterol. 2000; 95: 1644–51.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Müller P, Schlimok G. Bone marrow ‘micrometastases’ of epithelial tumors: detection and clinical relevance. J Cancer Res Clin Oncol. 2000; 126: 607–18.

    PubMed  Google Scholar 

  33. Pantel K, Cote RJ, Fodstad Ø. Detection and clinical importance of micrometastatic disease. J Natl Cancer I. 1999; 91: 1113–24.

    CAS  Google Scholar 

  34. Tsavallas G, Patel H, Allen-Mersh TG. Detection and clinical significance of occult tumor cells in colorectal cancer. Br J Surg. 2001; 88: 1307–20.

    Google Scholar 

  35. Von Knebel Doeberitz M, Koch M, Weitz J, Herfarth C.Diagnostik und Bedeutung der ‘Minimal Residual Disease’ bei Patienten mit kolorektalem Karzinom. Zentralbl Chir. 2000; 125 (Suppl 1): 15–19.

    Google Scholar 

  36. Sasaki M, Watanabe H, Jass JR, Ajioka Y, Kobayashi M, Matsuda K, Hatakeyama K. Occult lymph node metastases detected by cytokeratin immunohistochemistry predict recurrence in ‘node-negative’ colorectal cancer. J Gastroenterol. 1997; 32: 758–64.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Yonemura Y, Fujimura T, Ninomiya I, Kim BS, Bandou E, Sawa T, Kinoshita K, Endo Y, Sugiyama K, Sasaki T. Prediction of peritoneal micrometastasis by peritoneal lavaged cytology and reverse transcriptase-polymerase chain reaction for matrix metalloproteinase-7 mRNA. Clin Cancer Res. 2001;7: 1647–53.

    PubMed  CAS  Google Scholar 

  38. Adell G, Boeryd B, Franund B, Sjödahl R, Hakansson L. Occurrence and prognostic importance of micrometastases in regional lymph nodes in Duke’s B coloretal carcinoma: an immunohistochemical study. Eur J Surg. 1996; 162: 637–42.

    PubMed  CAS  Google Scholar 

  39. Cutait R, Alves VAF, Lopes LC, Cutait DE, Boges JLA, Singer J da Silva H, Goffi FS. Restaging of colorectal cancer based on the identification of lymph node micrometastases through immunoperoxidase staining of CEA and cytokeratins. Dis Colon Rectum. 1991; 34: 917–20.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Nakanishi Y, Ochiai A, Yamauchi Y, Moriya Y, Yoshumura K, Hirohashi S. Clinical implications of lymph node micrometastases in patients with colorectal cancers. A case control study. Oncology 1999; 57: 276–80.

    PubMed  CAS  Google Scholar 

  41. Öberg A, Stenling R, Tavelin B, Lindmark G. Are lymph node micrometastases of any clinical significance in Dukes stages A and B colorectal cancer? Dis Colon Rectum. 1998; 41: 1244–49.

    PubMed  Google Scholar 

  42. Greenson JK, Isenhart CE, Rice R, Mojzik C, Houchens D, Martin EW Jr. Identification of occult micrometastases in pericolic lymph nodes of Duke’s B colorectal cancer patients using monoclonal antibodies against cytokeratin and CC49. Correlation with long-term survival. Cancer. 1994; 73: 563–69.

    PubMed  CAS  Google Scholar 

  43. Liefers GJ, Cleton-Jansen AM, van de Velde H, Hermans J, van Krieken JHJM, Cornelisse CJ, Tollenaar RAEM. Micrometastases and survival in stage II colorectal cancer. N Engl J Med. 1998; 339: 223–28.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Makin CA, Bobrow LG, Nicholls RJ. Can immunohistology improve detection of lymph-node metastases in large-bowel cancer? Dis Colon Rectum. 1989; 32: 99–102.

    PubMed  CAS  Google Scholar 

  45. Davidson BR, Sams VR, Styles J, Deane C, Boulos PB. Detection of occult nodal metastases in patients with colorectal carcinoma. Cancer. 1990; 65: 967–70.

    PubMed  CAS  Google Scholar 

  46. Haboubi NY, Cark P, Kaftan SM, Schofield PF. The importance of combining xylene clearance and immunohistochemistry in the accurate staging of colorectal carcinoma. J R Soc Med. 1992; 85: 386–88.

    PubMed  CAS  Google Scholar 

  47. Jeffers MD, O’Dowd GM, Mulcahy H, Staag M, O’Donoghue DP, Toner M. The prognostic significance of immunohistochemically detected lymph nodes micrometastases in colorectal carcinoma. J Pathol. 1994; 172: 183–87.

    CrossRef  PubMed  CAS  Google Scholar 

  48. Nicholson AG, Marks CG, Cook MG. Effect on lymph node status of triple levelling and immunohistochemistry with CAM 5.2 on node negative colorectal carcinomas. Gut. 1994; 35: 1447–48.

    PubMed  CAS  Google Scholar 

  49. Cote RJ, Houchens DP, Hitchcock CL, Saad AD, Nines RG, Greenson JK, Schneebaum S, Arnold MW, Martin EW. Intraoperative detection of occult colon cancer micrometastases using 125 I-radiolabeled monoclonal antibody CC49. Cancer. 1996; 77: 613–20.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Broll R, Schauer V, Schimmelpenning H, Strik M, Woltmann A, Best R, Bruch H-P, Duchrow M. Prognostic relevance of occult tumor cells in lymph nodes of colorectal carcinomas: an immunohistochemical study. Dis Colon Rectum. 1997; 40: 1465–71.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Hitchcock CL, Sampsel J, Young DC, Martin EW, Arnold MW. Limitations with light microscopy in the detection of colorectal cancer cells. Dis Colon Rectum. 1999; 42: 1046–52.

    CrossRef  PubMed  CAS  Google Scholar 

  52. Yasuda K, Adachi Y, Shiraishi N, Yamaguchi K, Hirabayashi Y, Kitano S. Pattern of lymph node micrometastases and prognosis of patients with colorectal cancer. Ann Surg Oncol. 2001; 8: 300–4.

    PubMed  CAS  Google Scholar 

  53. Mori M, Mimori K, Inoue H, Barnard GF, Tsuji K, Nanbara S, Ueo H, Akiyoshi T. Detection of cancer micrometastases in lymph nodes by reverse transcriptase-polymerase chain reaction. Cancer Res. 1995; 55: 3417–20.

    PubMed  CAS  Google Scholar 

  54. Futamura M, Takagi Y, Koumura H, Kida H, Tanemura H, Shimokawa K, Saji S. Spread of colorectal cancer micrometastases in regional lymph nodes by reverse transcriptase-polymerase chain reactions for carcinoembryonic antigen and cytokeratin 20. J Surg Oncol. 1998; 68: 34–40.

    CrossRef  PubMed  CAS  Google Scholar 

  55. Mori M, Mimori K, Ueo H, Tsuji K, Shiraishi T, Barnard GF, Sugimachi K, Akiyoshi T. Clinical significance of molecular detection of carcinoma cells in lymph nodes and peripheral blood by reverse transcriptation-polymerase chain reaction in patients with gastrointestinal or breast carcinomas. J Clin Oncol. 1998; 16: 128–32.

    PubMed  CAS  Google Scholar 

  56. Rosenberg R, Hoos A, Mueller J, Nekarda H. Impact of cytokeratin-20 and carcinoembryonic antigen mRNA detection by RT-PCR in regional lymph nodes of patients with colorectal cancer. Br J Cancer. 2000; 83: 1323–29.

    CrossRef  PubMed  CAS  Google Scholar 

  57. Miyake Y, Yamamoto H, Fujiwara Y, Ohue M, Sugita Y, Tomiita N, Sekimoto M, Matsuura N, Shiozaki H, Monden M. Extensive micrometastases to lymph nodes as a marker for rapid recurrence of colorectal cancer: a study of lymphatic mapping. Clin Cancer Res. 2001; 7:1350–57.

    PubMed  CAS  Google Scholar 

  58. Gunn J, McCall JL, Yun K, Wright PA. Detection of micrometastases in colorectal cancer patients by K19 and K20 reverse-transcription polymerase chain reaction. Lab Invest. 1996; 75: 611–16.

    PubMed  CAS  Google Scholar 

  59. Dorudi S, Kinrade E, Marshall NC, Freakins R, Williams NS, Bustin SA. Genetic detection of lymph node micrometastases in patients with colorectal cancer. Br J Surg. 1998; 85: 98–100.

    CrossRef  PubMed  CAS  Google Scholar 

  60. Merrie AE, Yun K, van Rij AM, McCall JL. Detection and significance of minimal residual disease in colorectal cancer. Histol Histopathol. 1999; 14: 561–69.

    PubMed  CAS  Google Scholar 

  61. Weitz J, Kienle P, Magener A, Koch M, Schröel A, Willeke F, Autschbach F, Lacroix J, Lehnert T, Herfarth C, von Knebel Doeberitz M. Detection of disseminated colorectal cancer cells in lymph nodes, blood and bone marrow. Clin Cancer Res. 1999; 5: 1830–36.

    PubMed  CAS  Google Scholar 

  62. Yun K, Merrie AEH, Gunn J, Phillips LV, McCall JL. Keratin 20 is a specific marker of submicroscopic lymph node metastases in colorectal cancer: validation by K-RAS mutations. J Pathol. 2000; 191: 21–26.

    CrossRef  PubMed  CAS  Google Scholar 

  63. Sanchez-Cespedes M, Esteller M, Hibi K, Cope FO, Westra W, Piantadosi S, Herman JG, Jen J, Sidransky D. Molecular detection of neoplastic cells in lymph nodes of metastatic colorectal cancer patients predicts recurrence. Clin Cancer Res. 1999; 5: 2450–54.

    PubMed  CAS  Google Scholar 

  64. Clarke GA, Ryan E, Crowe JP, O’Keane JC, MacMathúna P. Tumor-derived mutated K-ras codon 12 expression in regional lymph nodes of stage II colorectal cancer patients is not associated with increased risk of cancer-related death. Int J Colorectal Dis. 2001; 16: 108–11.

    CrossRef  PubMed  CAS  Google Scholar 

  65. Bernini A, Spencer M, Frizelle S, Maoff RD, Wilmtt LD, McComick SR, Niehans GA, Ho SB, Kratzke RA. Evidence for colorectal cancer micrometastases using reverse transcriptase-polymerase chain reaction analysis of MUC2 in lymph nodes. Cancer Detect Prev. 2000; 24: 72–79.

    PubMed  CAS  Google Scholar 

  66. Wong LS, Cantrill JE, Odogwu S, Morris AG, Fraser IA. Detection of circulating tumor cells and nodal metastasis by reverse transcriptase-polymerase chain reaction technique. Br J Surg. 1997; 84: 834–39.

    PubMed  CAS  Google Scholar 

  67. Ichikawa Y, Ishikawa T, Momiyama N, Yamaguchi S, Masui H, Hasegawa S, Chishima T, Takimto A, Kitamura H, Akitaya T, Hosokawa T, Mitsuhashi M, Shimada H. Detection of regional lymph node metastases in colon cancer by using RT-PCR for matrix metalloproteinase 7, matrilysin. Clin Exp Metastasis. 1998; 16: 3–8.

    PubMed  CAS  Google Scholar 

  68. Waldman SA, Cagir B, Rakinic J, Fry RD, Goldstein SD, Isenberg G, Barber M, Biswas S, Minimo C, Palazzo J, Park PK, Weinberg D. Use of Guanylyl Cylase C for detecting micrometastases in lymph nodes of patients with colon cancer. Dis Colon Rectum. 1998; 41: 310–15.

    CrossRef  PubMed  CAS  Google Scholar 

  69. Aihara T, Fujiwara Y, Miyake Y, Okami J, Okada Y, Iwao K, Sugita Y, Tomita N, Sakon M, Shiozaki H, Monden M. Mammaglobin B gene as a novel marker for lymph node micrometastases in patients with abdominal cancers. Cancer Lett. 2000; 150: 79–84.

    CrossRef  PubMed  CAS  Google Scholar 

  70. Schlimok G, Funke I, Holzmann B, Göttlinger G, Schmidt G, Häuser H, Swierkot S, Warnecke HH, Schneider B, Koprowski H, Riethmüller G. Micrometastatic cells in bone marrow: in vitro detection with anticytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci USA. 1987; 84: 8672–76.

    PubMed  CAS  ADS  Google Scholar 

  71. Lindemann F, Schlimok G, Dirschedl P, Witte J, Riethmüller G. Prognostic significance of micrometastatic tumor cells in bone marrow of colorectal cancer patients. Lancet. 1992; 340: 685–89.

    CrossRef  PubMed  CAS  Google Scholar 

  72. Leinung S, Würl P, Weiss CL, Röder I, Schönfelder M. Cytokeratin-positive cells in bone marrow in comparison with other prognostic factors in colon carcinoma. Langenbeck’s Arch Surg. 2000; 385: 337–43.

    CAS  Google Scholar 

  73. Jung R, Petersen K, Krüger W, Wolf M, Wagener C, Zander A, Neumaier M. Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes. Br J Cancer. 1999; 81: 870–73.

    CrossRef  PubMed  CAS  Google Scholar 

  74. Pelkey TJ, Frierson HF Jr, Bruns DE. Molecular and immunological detection of circulating tumor cells and micrometastases from solid tumors. Clin Chem. 1996; 42: 1369–81.

    PubMed  CAS  Google Scholar 

  75. Gerhard M, Juhl H, Kalthoff H, Schreiber HW, Wagener C, Neumaier M. Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aspirates by polymerase chain reaction. J Clin Oncol. 1994; 12: 725–29.

    PubMed  CAS  Google Scholar 

  76. Vogel I, Soeth E, Röder C, Kremer B, Henne-Bruns D, Kalthoff H. Multivariate analysis reveals RT-PCR-detected tumour cells in the blood and/or bone marrow of patients with colorectal carcinoma as an independent prognostic factor. Eur J Clin Oncol. 2000; 26: 281.

    Google Scholar 

  77. Schneider BM, Schlimok G, Riethmüller G, Witte J. Knochenmarksmikrometastasen bei kolorektalen Karzinomen. Fortschr Med. 1989; 107: 59–63.

    PubMed  CAS  Google Scholar 

  78. Schlimok G, Funke I, Bock B, Schweiberer B, Witte J, Riethmüller G. Epithelial tumor cells in bone marrow of patients with colorectal cancer: immunocytochemical detection, phenotypic characterization, and prognostic significance. J Clin Oncol. 1990: 8: 831–37.

    PubMed  CAS  Google Scholar 

  79. O’Sullivan GC, Collins JK, O’Brien F, Crowley B, Murphy K, Lee G, Shanahan F. Micrometastases in bone marrow of patients undergoing ‘curative’ surgery for gastrointestinal cancer. Gastroenterology. 1995; 109: 1535–40.

    Google Scholar 

  80. Broll R, Lembcke K, Stock C, Zingler M, Duchrow M, Schimmelpenning H, Strik M, Müller G, Kujath P, Bruch HP. Tumorzelldissemination in das Knochenmark und in die Peritonealhöhle. Langenbeck Arch Chir. 1996; 381: 51–58.

    CAS  Google Scholar 

  81. Cohen AM, Garin-Chesa P, Hanson M, Weyhrauch K, Kemeny N, Fong Y, Paty P, Welt S, Old L. In vitro detection of occult bone marrow metastases in patients with colorectal cancer hepatic metastases. Dis Colon Rectum. 1998; 41: 1112–15.

    PubMed  CAS  Google Scholar 

  82. Schott A, Vogel I, Krueger U, Kalthoff H, Schreiber HW, Schmiegel W, Henne-Bruns D, Kremer B, Juhl H. Isolated tumor cells are frequently detectable in the peritoneal cavity of gastric and colorectal cancer patients and serve as a new prognostic marker. Ann Surg. 1998; 227: 372–79.

    CrossRef  PubMed  CAS  Google Scholar 

  83. Litle VR, Warren RS, Moore II D, Pallavicini MG. Molecular cytogenetic analysis of cytokeratin 20-labeled cells in primary tumors and bone marrow aspirates from colorectal carcinoma patients. Cancer. 1997; 79: 1664–70.

    CrossRef  PubMed  CAS  Google Scholar 

  84. Soeth E, Vogel I, Röder C, Juhl H, Marxsen J, Krüger U, Henne-Bruns D, Kremer B, Kalthoff H. Comparative analysis of bone marrow and venous blood isolates from gastrointestinal cancer patients for the detection of disseminated tumor cells using reverse transcription PCR. Cancer Res. 1997; 57: 3106–10.

    PubMed  CAS  Google Scholar 

  85. Weitz J, Koch M, Kienle P, Schrodel A, Willeke F, Brenner A, Lehnert T, Herfarth C, von Knebel Doeberitz M. Detection of hematogenic tumor cell dissemination in patients undergoing resection of liver metastases of colorectal cancer. Ann Surg. 2000; 232: 66–72.

    CrossRef  PubMed  CAS  Google Scholar 

  86. Hardingham JE, Kotasek D, Sage RE, Eaton MC, Pascoe VH, Dobrovic A. Detection of circulating tumor cells in colorectal cancer by immunobead-PCR is a sensitive prognostic marker for relapse of disease. Mol Med. 1995; 1: 789–94.

    PubMed  CAS  Google Scholar 

  87. Hardingham JE, Hewett PJ, Sage RE, Finch JL, Nuttall JD, Kotasek D, Dobrovic A. Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease. Int J Cancer. 2000; 89: 8–13.

    CrossRef  PubMed  CAS  Google Scholar 

  88. Khan ZAJ, Jonas SK, Le-Marer N, Patel H, Wharton RQ, Tarragona A, Ivision A, Allen-Mersh TG. p53 mutations in primary and metastatic tumors and circulating tumor cells from colorectal carcinoma patients. Clin Cancer Res. 2000; 6: 3499–504.

    PubMed  CAS  Google Scholar 

  89. Jonas S, Windeatt S, O-Boateng A, Fordy C, Allen-Mersh TG. Identification of carcinoembryonic antigen-producing cells circulating in the blood of patients with colorectal carcinoma by reverse transcriptase polymerase chain reaction. Gut. 1996; 39: 717–21.

    PubMed  CAS  Google Scholar 

  90. Mori M, Mimori K, Ueo H, Karimine N, Barnard GF, Sugimachi K, Akiyoshi T. Molecular detection of circulating solid carcinoma cells in the peripheral blood: the concept of early systemic disease. Int J Cancer. 1996; 68: 739–43.

    PubMed  CAS  Google Scholar 

  91. Castells A, Boix L, Bessa X, Gargallo L, Pique JM. Detection of colonic cells in peripheral blood of colorectal cancer patients by means of reverse transcriptase and polymerase chain reaction. Br J Cancer. 1998; 78: 1368–72.

    PubMed  CAS  Google Scholar 

  92. Ko Y, Klinz M, Totzke G, Gouni-Berthold I, Sachinidis A, Vetter H. Limitations of the reverse transcription-polymerase chain reaction method for the detection of carcinoembryonic antigen-positive tumor cells in peripheral blood. Clin Cancer Res. 1998; 4: 2141–46.

    PubMed  CAS  Google Scholar 

  93. Noh YH, Im G, Ku JH, Lee YS, Ahn MJ. Detection of tumor cell contamination in peripheral blood by RT-PCR in gastrointestinal cancer patients. J Korean Med Sci. 1999; 14: 623–28.

    PubMed  CAS  Google Scholar 

  94. Taniguchi T, Makino M, Suzuki K, Kaibara N. Prognostic significance of reverse transcriptase-polymerase chain reaction measurement of carcinoembryonic antigen mRNA levels in tumor drainage blood and peripheral blood of patients with colorectal carcinoma. Cancer. 2000, 89: 970–76.

    CrossRef  PubMed  CAS  Google Scholar 

  95. Piva MG, Navaglia F, Basso D, Fogar P, Roveroni G, Gallo N, Zambon C-F, Pedrazzoli S, Plebani M. CEA mRNA identification in peripheral blood is feasible for colorectal, but not for gastric or pancreatic cancer staging. Oncology. 2000, 59: 323–28.

    CrossRef  PubMed  CAS  Google Scholar 

  96. Guadagni F, Kantor J, Aloe S, Carone MD, Spila A, D’Alessandro R, Abbolito MR, Cosimelli M, Graziano F, Carboni F, Carlini S, Perri P, Sciarretta F, Greiner JW, Kashmiri SVS, Steinberg SM, Roselli M, Schlom J. Detection of blood-borne cells in colorectal cancer patients by nested reverse transcription-polymerase chain reaction for carcinoembryonic antigen messenger RNA: longitudinal analyses and demonstration of its potential importance as an adjunct to multiple serum markers. Cancer Res. 2001, 61: 2523–32.

    PubMed  CAS  Google Scholar 

  97. Bessa X, Elizalde JI, Boix L, Pinol V, Lacy AM, Salo J, Pique JM, Castells A. Lack of prognostic influence of circulating tumor cells in peripheral blood of patients with colorectal cancer. Gastroenterology. 2001, 120: 1084–92.

    CrossRef  PubMed  CAS  Google Scholar 

  98. Masson D, Denis MG, Lustenberger P. Limitations of CD44v6 amplification for the detection of tumour cells in the blood of colorectal cancer patients. Br J Cancer. 2000, 82: 1283–89.

    PubMed  CAS  Google Scholar 

  99. Burchill SA, Bradbury MF, Pittman K, Southgate J, Smith B, Selby P. Detection of epithelial cancer cells in peripheral blood by reverse transcriptase-polymerase chain reaction. Br J Cancer. 1995, 71: 278–81.

    PubMed  CAS  Google Scholar 

  100. Nakamori S, Kameyama M, Furukawa H, Takeda O, Sugai S, Imaoka S, Nakamura Y. Genetic detection of colorectal cancer cells in circulation and lymph nodes. Dis Colon Rectum. 1997, 40 (Suppl.): S29–S36.

    PubMed  CAS  Google Scholar 

  101. Funaki NO, Tanaka J, Itami A, Kasamatsu T, Ohshio G, Onodera H, Monden K, Okino T, Imamura M. Detection of colorectal carcinoma cells in circulating peripheral blood by reverse transcription-polymerase chain reaction targeting cytokeratin-20 mRNA. Life Sci 1997, 60: 643–52.

    CrossRef  PubMed  CAS  Google Scholar 

  102. Funaki NO, Tanaka J, Ohshio G, Onodera H, Maetani S, Imamura M. Cytokeratin 20 mRNA in peripheral venous blood of colorectal carcinoma patients. Br J Cancer. 1998, 77: 1327–32.

    PubMed  CAS  Google Scholar 

  103. Wyld DK, Selby P, Perren TJ, Jonas SK, Allen-Mersh TG, Wheeldon J, Burchill SA. Detection of colorectal cancer cells in peripheral blood by reverse-transcriptase polymerase chain reaction for cytokeratin 20. Int J Cancer. 1998, 79: 288–93.

    CrossRef  PubMed  CAS  Google Scholar 

  104. Weitz J, Kienle P, Lacroix J, Willeke F, Brenner A, Lehnert T, Herfarth C, von Knebel Doeberitz M. Dissemination of tumor cells in patients undergoing surgery for colorectal cancer. Clin Cancer Res. 1998, 4: 343–48.

    PubMed  CAS  Google Scholar 

  105. Champelovier P, Mongelard F, Seigneurin D. CK 20 gene expression: technical limits for the detection of circulating tumor cells. Anticancer Res. 1999, 19: 2073–78.

    PubMed  CAS  Google Scholar 

  106. Chausovsky G, Luchansky M, Fier A, Shapira J, Gottfried M, Novis B, Bogelman G, Zemer R, Zimlichman S, Klein A. Expression of cytokeratin 20 in the blood of patients with disseminated carcinoma of the pancreas, colon, stomach and lung. Cancer. 1999, 6: 2398–405.

    Google Scholar 

  107. Wharton RQ, Jonas SK, Glover C, Khan ZA, Klokouzas A, Quinn H, Henry M, Allen-Mersh TG. Increased detection of circulating tumor cells in the blood of colorectal carcinoma patients using two reverse transcription assays and multiple blood samples. Clin Cancer Res. 1999, 5: 4158–63.

    PubMed  CAS  Google Scholar 

  108. Funaki NO, Tanaka J, Sugiyama T, Ohshio G, Nonaka A, Yotsumoto F, Furutani M, Imamura M. Perioperative quantitative analysis of cytokeratin 20 mRNA in peripheral venous blood of patients with colorectal adenocarcinoma. Oncol Rep. 2000, 7: 21–76.

    Google Scholar 

  109. Patel H, Le-Marer N, Wharton RQ, Khan ZAJ, Araia R, Henry MM, Allen-Mersh TG. Clearance of circulating tumour cells is greatest in tumours with the best prognosis. Br J Surg. 2000, 87: 630.

    Google Scholar 

  110. Yamaguchi K, Takagi Y, Aoki S, Futamura M, Saji S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann Surg. 2000, 232: 58–65.

    CrossRef  PubMed  CAS  Google Scholar 

  111. Mathur P, Wharton RQ, Jonas SK, Saini S, Allen-Mersh TG. Relationship between tumor vascularity and circulating cancer cells in patients with colorectal carcinoma. EJSO. 2001, 27: 354–58.

    PubMed  CAS  Google Scholar 

  112. Ambrose NS, MacDonald F, Young J, Thompson H, Keighley MR. Monoclonal antibody and cytological detection of free malignant cells in the peritoneal cavity during resection of colorectal cancer–can monoclonal antibodies do better? Eur J Surg Oncol. 1985, 15: 99–102.

    Google Scholar 

  113. Juhl H, Stritzel M, Wroblewski A, Henne-Bruns D, Kremer B, Schmiegel W, Neumaier M, Wagener C, Schreiber HW, Kalthoff H. Immunocytological detection of micrometastatic cells: comparative evaluation of findings in the peritoneal cavity and the bone marrow of gastric, colorectal and pancreatic cancer patients. Int J Cancer. 1994, 57: 330–35.

    PubMed  CAS  Google Scholar 

  114. Broll R, Weschta M, Windhoevel U, Berndt S, Schwandner O, Roblick U, Schiedeck THK, Schimmelpenning H, Bruch HP, Duchrow M. Prognostic significance of free gastrointestinal tumor cells in peritoneal lavage detected by immunocytochemistry and polymerase chain reaction. Langenbeck’s Arch Surg. 2001, 386: 285–92.

    CAS  Google Scholar 

  115. Harrison LE, Choe JK, Goldstein M, Meridian A, Kim SH, Clarke K. Prognostic significance of immunohistochemical micrometastases in node negative gastric cancer patients. J Surg Oncol. 2000, 73: 153–57.

    CrossRef  PubMed  CAS  Google Scholar 

  116. Ikeguchi M, Cai J, Oka S, Gomyou Y, Tsujitani S, Maeta M, Kaibara N. Nuclear profiles of cancer cells reveal the metastatic potential of gastric cancer. J Pathol 2000, 192: 19–25.

    CrossRef  PubMed  CAS  Google Scholar 

  117. Maehara Y, Yamamoto M, Oda S, Baba H, Kusumoto T, Ohno S, Ichiyoshi Y, Sugimachi K. Cytokeratin-positive cells in bone marrow for identifying distant micrometastasis of gastric cancer. Br J Cancer. 1996, 73: 83–87.

    PubMed  CAS  Google Scholar 

  118. Fukagawa T, Sasako M, Mann GB, Sano T, Katai H, Maruyama K, Nakanishi Y, Shimoda T. Immunohistochemically detected micrometastases of the lymph nodes in patients with gastric carcinoma. Cancer. 2001, 92: 753–60.

    CrossRef  PubMed  CAS  Google Scholar 

  119. Morgagni P, Saragoni L, Folli S, Gaudio M, Scarpi E, Bazzocchi F, Marras GA, Vio A. Lymph node micrometastases in patients with early gastric cancer: experiences with 139 patients. Ann Surg Oncol. 2001, 8: 170–74.

    PubMed  CAS  Google Scholar 

  120. Saragoni L, Gaudio M, Morgagni P, Folli S, Bazzocchi F, Scarpi E, Saragoni A. Identification of occult micrometastases in patients with early gastric cancer using anti-cytokeratin monoclonal antibodies. Oncol Rep. 2000, 7: 535–39.

    PubMed  CAS  Google Scholar 

  121. Stachura J, Zembala M, Heitzman J, Korabiowska M, Schauer A. Lymph node micrometastases in early gastric carcinoma alone inadequately reflect the new model of metastatic development. Pol J Pathol. 1998, 49: 155–57.

    PubMed  CAS  Google Scholar 

  122. Kestlmeier R, Busch R, Fellbaum C, Boettcher K, Reich U, Siewert JR, Hoffler H. Incidence and prognostic significance of epitheloid cell reactions and microcarcinoses in regional lymph nodes in stomach carcinoma. Pathologe. 1997, 18: 124–30.

    CrossRef  PubMed  CAS  Google Scholar 

  123. Siewert JR, Kestelmeier R, Busch R, Böttcher K, Roder JD, Müller J, Fellbaum C, Höfler H. Benefits of D2 lymph node dissection for patients with gastric cancer and pN0 and pN1 lymph node metastases. Br J Surg. 1996, 83: 1144–47.

    PubMed  CAS  Google Scholar 

  124. Ishida K, Katsuyama T, Sugiyama A, Kawasaki S. Immunohistochemical evaluation of lymph node micrometastases from gastric carcinomas. Cancer. 1997, 79: 1069–76.

    CrossRef  PubMed  CAS  Google Scholar 

  125. Nakajo A, Natsugoe S, Ishigami S, Matsumoto M, Nakashima S, Hokita S, Baba M, Takao S, Aikou T. Detection and prediction of micrometastasis in the lymph nodes of patients with pN0 gastric cancer. Ann Surg Oncol. 2001; 8: 158–62.

    PubMed  CAS  Google Scholar 

  126. Cai J, Ikeguchi M, Maeta M, Kaibara N. Micrometastasis in lymph nodes and microinvasion of the muscularis propria in primary lesions of submucosal gastric cancer. Surgery. 2000; 127: 32–39.

    CrossRef  PubMed  CAS  Google Scholar 

  127. Noguchi S, Hiratsuka M, Furukawa H, Aihara T, Kasugai T, Tamura S, Imaoka S, Koyama H, Iwanaga T. Detection of gastric cancer micrometastases in lymph nodes by amplification of keratin 19 mRNA with reverse transcriptase-polymerase chain reaction. Jpn J Cancer Res. 1996; 87: 650–54.

    PubMed  CAS  Google Scholar 

  128. Aihara T, Noguchi S, Ishikawa O, Furukawa H, Hiratsuka M, Ohigashi H, Nakamori S, Monden M, Imaoka S. Detection of pancreatic and gastric cancer cells in peripheral and portal blood by amplification of keratin 19 mRNA with reverse transcriptase-polymerase chain reaction. Int J Cancer. 1997; 72: 408–11.

    CrossRef  PubMed  CAS  Google Scholar 

  129. Okada Y, Fujiwara Y, Yamamoto H, Sugita Y, Yasuda T, Doki Y, Tamura S, Yano M, Shiozaki H, Matsuura N, Monden M. Genetic detection of lymph node micrometastases in patients with gastric carcinoma by multiple-marker reverse transcriptase-polymerase chain reaction assay. Cancer. 2001; 92: 2056–64.

    CrossRef  PubMed  CAS  Google Scholar 

  130. Jauch KW, Heiss MM, Gruetzner U, Funke I, Pantel K, Babic R, Eissner HJ, Riethmüller G, Schildberg FW. Prognostic significance of bone marrow micrometastases in patients with gastric cancer. J Clin Oncol. 1996; 14: 1810–17.

    PubMed  CAS  Google Scholar 

  131. Heiss MM, Allgayer H, Gruetzner KU, Funke I, Babic R, Jauch KW, Schildberg FW. Individual development and uPA-receptor expression of disseminated tumor cells in bone marrow: a reference to early systemic disease in solid cancer. Nat Med. 1995; 1: 1035–39.

    CrossRef  PubMed  CAS  Google Scholar 

  132. Moll R, Löwe A, Laufer J, Franke WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol. 1992; 140: 427–47.

    PubMed  CAS  Google Scholar 

  133. Moll R, Zimbelmann R, Goldschmidt MD, Keith M, Laufer J, Kasper M, Koch PJ, Franke WW. The human gene encoding cytokeratin 20 and its expression during fetal development and in gastrointestinal carcinomas. Differentiation. 1993; 53: 75–93.

    PubMed  CAS  Google Scholar 

  134. Schlimok G, Funke I, Pantel K, Strobel F, Lindemann F, Witte J, Riethmüller G. Micrometastatic tumor cells in bone marrow of patients with gastric cancer: methodological aspects of detection and prognostic significance. Eur J Cancer. 1991; 27: 1461–65.

    PubMed  CAS  Google Scholar 

  135. O’Sullivan GC, Collins JK, Kelly J, Morgan J, Madden M, Shanahan F. Micrometastases: marker of metastatic potential or evidence of residual disease? Gut. 1997; 40: 512–15.

    Google Scholar 

  136. Funke I, Fries S, Rolle M, Heiss MM, Untch M, Bohmert H, Schildberg W, Jauch KW. Comparative analyses of bone marrow micrometastases in breast and gastric cancer. Int J Cancer. 1996; 65: 755–61.

    CrossRef  PubMed  CAS  Google Scholar 

  137. Allgayer H, Heiss MM, Riesenberg R, Grutzner KU, Tarabichi A, Babic R, Schildberg FW. Urokinase plasminogen activator receptor (uPA-R): one potential characteristic of metastatic phenotypes in minimal residual disease. Cancer Res. 1997; 57: 1394–99.

    PubMed  CAS  Google Scholar 

  138. Kerner T, Hauzenberger T, Jauch KW. Nachweis und Bedeutung der Tumorzell dissemination beim Magenkarzinom. Onkologe. 1998; 4: 294–300.

    CrossRef  Google Scholar 

  139. Liu F, Li J, Zhang J. Detection of micrometastases in the bone marrow in patients with gastric cancer. Zhonghua Wai Ke Za Zhi. 1995; 33: 554–56.

    PubMed  CAS  Google Scholar 

  140. Funaki NO, Tanaka J, Itami A, Kasamatsu T, Ohshio G, Onodera H, Monden K, Okino T, Imamura M. Detection of colorectal carcinoma cells in circulating peripheral blood by reverse transcription-polymerase chain reaction targeting cytokeratin-20 mRNA. Life Sci. 1997; 60: 643–52.

    CrossRef  PubMed  CAS  Google Scholar 

  141. Nishida S, Kitamura K, Ichikawa D, Koike H, Tani N, Yamagishi H. Molecular detection of disseminated cancer cells in the peripheral blood of patients with gastric cancer. Anticancer Res. 2000; 20: 2155–59.

    PubMed  CAS  Google Scholar 

  142. Miyazono F, Takao S, Natsugoe S, Uchikura K, Kijima F, Aridome K, Shinchi H, Takashi A. Molecular detection of circulating cancer cells during surgery in patients with biliary-pan-creatic cancer. Am J Surg. 1999; 117: 475–79.

    Google Scholar 

  143. Murphy PD, Wadhera V, Griffin SM, Burgess P, Farell D, Taylor I, Hair T, Clague MB, Griffith CD. Free peritoneal tumor cell identification in patients with gastric and colorectal cancer. J R Coll Surg Edinb. 1993; 38: 28–32.

    PubMed  CAS  Google Scholar 

  144. Benevelo M, Mottolese M, Cosimelli M, Tedesco M, Giannarelli D, Vasselli S, Carlini M, Garofalo A, Natali PG. Diagnostic and prognostic value of peritoneal immunocytology in gastric cancer. J Clin Oncol. 1998; 16: 3406–11.

    Google Scholar 

  145. Imada T, Rino Y, Cyo H, Oshima T, Hatori S, Wakebe S, Kabara K, Shiozawa M, Takahashi M, Takanashi Y. The detection of microscopically disseminated cancer cells in the abdominal cavity by intraoperative lavage cytology combined with an immunocytochemical method in gastric cancer. Anticancer Res. 1999; 1: 4965–68.

    Google Scholar 

  146. Nekarda H, Gess C, Stark M, Mueller JD, Fink U, Schenk U, Siewert JR. Immunocytochemically detected free peritoneal tumour cells (FPTC) are a strong prognostic factor in gastric carcinoma. Br J Cancer. 1999; 79: 611–19.

    CrossRef  PubMed  CAS  Google Scholar 

  147. Abe N, Wantanabe T, Toda H, Machida H, Suzuki K, Masaki T, Mori T, Sugiyama M, Atomi Y, Nakaya Y. Prognostic influence of carcinoembryonic antigen levels in peritoneal washes in patients with gastric cancer. Am J Surg. 2001; 181: 356–61.

    CrossRef  PubMed  CAS  Google Scholar 

  148. Kodera Y, Yamamura Y, Shimizu Y, Torii A, Hirai T, Yasui K, Morimoto T, Kato T, Kito T, Tatematsu M. Prognostic value and clinical implications of disseminated cancer cells in the peritoneal cavity detected by reverse transcriptase-polymerase chain reaction and cytology. Int J Cancer. 1998; 79: 429–33.

    CrossRef  PubMed  CAS  Google Scholar 

  149. Nakanishi H, Kodera Y, Yamamura Y, Tatematsu M. Rapid quantitative detection of free cancer cells in the peritoneal cavity of gastric cancer patients with real-time RT-PCR, and its prognostic significance. Gan To Kagaku Ryoho 2001; 28: 784–88.

    PubMed  CAS  Google Scholar 

  150. Fujimura T, Ohta T, Kitagawa H, Fushida S, Nishimura GI, Yonemura Y, Elnemr A, Miwa K, Nakanuma Y. Trypsinogen expression and early detection for peritoneal dissemination in gastric cancer. J Surg Oncol. 1998; 69: 71–75.

    CrossRef  PubMed  CAS  Google Scholar 

  151. Schuhmacher C, Becker KF, Reich U, Schenk U, Mueller J, Siewert JR, Hofler H. Rapid detection of mutated E-cadherin in peritoneal lavage specimens from patients with diffusetype gastric carcinoma. Diagn Mol Pathol. 1999; 8: 66–70.

    CrossRef  PubMed  CAS  Google Scholar 

  152. Mori N, Oka M, Hazama S, Iizuka N, Yamamoto K, Yoshino S, Tangoku A, Noma T, Hirose K. Detection of telomerase activity in peritoneal fluid from patients with gastric cancer using immunomagnetic beads. Br J Cancer. 2000; 83: 1026–32.

    CrossRef  PubMed  CAS  Google Scholar 

  153. Hosch SB, Knoefel WT, Metz S, Stoecklein N, Niendorf A, Broelsch CE, Izbicki JR. Early lymphatic tumor cell dissemination in pancreatic cancer: frequency and prognostic significance. Pancreas. 1997; 15: 154–59.

    PubMed  CAS  Google Scholar 

  154. Tamagawa E, Ueda M, Takahashi S, Sugano K, Uematsu S, Mukai M, Ogata Y, Kitajima M. Pancreatic lymph nodal and plexus micrometastases detected by enriched polymerase chain reaction and nonradioisotopic single-strand conformation polymorphism analysis: a new predictive factor for recurrent pancreatic carcinoma. Clin Cancer Res. 1997; 3: 2143–49.

    PubMed  CAS  Google Scholar 

  155. Ridwelski K, Meyer F, Fahlke J, Kasper U, Roessner A, Lippert H. Stellenwert von Cytokeratin-und Ca19-9-Antigen im immunhistochemischen Nachweis disseminierter Tumorzellen in Lymphknoten beim Pankreaskarzinom. Chirurg. 2001; 72: 920–26.

    PubMed  CAS  Google Scholar 

  156. Ando N, Nakao A, Nomoto S, Takeda S, Kaneko T, Kurokawa T, Nonami T, Takagi H. Detection of mutant k-ras in dissected paraaortic lymph nodes of patients with pancreatic adenocarcinoma. Pancreas. 1997; 15: 374–78.

    PubMed  CAS  Google Scholar 

  157. Demeure MJ, Doffek KM, Komorowski RA, Wilson SD. Adenocarcinoma of the pancreas. Detection of occult metastases in regional lymph nodes by polymerase chain reaction-based assay. Cancer. 1998; 83: 1328–34.

    CrossRef  PubMed  CAS  Google Scholar 

  158. Demeure MJ, Doffek KM, Komorowski RA, Redlich PN, Zhu Y, Eickson BA, Ritch PS, Pitt HA, Wilson SD. Molecular metastases in stage I pancreatic cancer: improved survival with adjuvant chemoradiation. Surgery. 1998; 124: 663–69.

    CrossRef  PubMed  CAS  Google Scholar 

  159. Brown HM, Ahrendt SA, Komorrowski RA, Doffek KM, Wilson SD, Demeure MJ. Immunohistochemistry and molecular detection of nodal micrometastases in pancreatic cancer. J Surg Res. 2001; 95: 141–46.

    CrossRef  PubMed  CAS  Google Scholar 

  160. Vogel I, KrÜger U, Marxsen J, Soeth E, Kalthoff H, Henne-Bruns D, Kremer B, Juhl H. Disseminated tumor cells in pancreatic cancer patients detected by immunocytology: a new prognostic factor. Clin Cancer Res. 1999; 5: 593–99.

    PubMed  CAS  Google Scholar 

  161. Thorban S, Roder JD, Pantel K, Siewert JR. Epithelial tumor cells in bone marrow of patients with pancreatic carcinoma detected by immunocytochemical staining. Eur J Cancer 1996; 32A: 363–65.

    PubMed  CAS  Google Scholar 

  162. Thorban S, Roder JD, Siewert JR. Detection of micrometastasis in bone marrow of pancreatic cancer patients. Ann Oncol. 1999 10 (Suppl. 4): 111–13.

    PubMed  Google Scholar 

  163. Roder JD, Thorban S, Pantel K, Siewert JR. Micrometastases in bone marrow: prognostic indicators for pancreatic cancer. World J Surg. 1999; 23: 888–91.

    CrossRef  PubMed  CAS  Google Scholar 

  164. Z’graggen K, Centeno BA, Fernandez-del Castillo C, Jimenez RE, Werner J, Warshaw AL. Biological implications of tumor cells in blood and bone marrow of pancreatic cancer patients. Surgery. 2001; 129: 537–46.

    Google Scholar 

  165. Tada M, Omata M, Kawai S, Saishio H, Ohto M, Saikiri RK, Sninsky JJ. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res. 1993; 53: 2472–74.

    PubMed  CAS  Google Scholar 

  166. Nomoto S, Nakao A, Kasai Y, Harada A, Nonami T, Takagi H. Detection of ras gene mutations in perioperative peripheral blood with pancreatic adenocarcinoma. Jpn J Cancer Res. 1996; 87: 793–97.

    PubMed  CAS  Google Scholar 

  167. Miyazono F, Natsugoe S, Takao S, Tokuda K, Kijima F, Aridome K, Hokita S, Baba M, Eizuru Y, Aikou T. Surgical maneuvers enhance molecular detection of circulating tumor cells during gastric cancer surgery. Ann Surg. 2001; 233: 189–94.

    CrossRef  PubMed  CAS  Google Scholar 

  168. Kuroki T, Tomiokas T, Tajima Y, Inoue K, Ikemastsu Y, Ichinose K, Furui J, Kanematsu T. Detection of the pancreas-specific gene in the peripheral blood of patients with pancreatic carcinoma. Br J Cancer. 1999; 81: 350–53.

    CrossRef  PubMed  CAS  Google Scholar 

  169. Bilchik A, Miyashiro M, Kelly M, Kuo C, Fujiwara Y, Nakamori S, Monden M, Hoon DS. Molecular detection of metastatic pancreatic carcinoma cells using a multimarker reverse transcriptase-polymerase chain reaction assay. Cancer. 2000; 88:103–4.

    CrossRef  Google Scholar 

  170. Makary MA, Warshaw AL, Centeno BA, Willett CG, Rattner DW, Fernandez-del Castillo C. Implications of peritoneal cytology for pancreatic cancer management. Arch Surg. 1998; 133: 361–65.

    PubMed  CAS  Google Scholar 

  171. Nakao A, Oshima K, Takeda S, Kaneko T, Kanazumi N, Inoue S, Nomoto S, Kawase Y, Kasuya H. Peritoneal washings cytology combined with immunocytochemical staining in pancreatic cancer. Hepatogastroenterology. 1999; 46: 2974–77.

    PubMed  CAS  Google Scholar 

  172. Nomoto S, Nakao A, Kasai Y, Inoue S, Harada A, Nonami T, Takagi H. Peritoneal washing cytology combined with immunocytochemical staining and detecting mutant K-ras in pancreatic cancer: comparison of the sensitivity and availability of various methods. Pancreas. 1997; 14: 126–32.

    PubMed  CAS  Google Scholar 

  173. Rall CJ, Rivera JA, Centeno BA, Fernandez-del Castillo C, Rattner DW, Warshaw AL, Rustgi AK. Peritoneal exfoliative cytology and Ki-ras mutation analysis in patients with pancreatic adenocarcinoma. Cancer Lett. 1995; 97: 203–11.

    CrossRef  PubMed  CAS  Google Scholar 

  174. Inoue S, Nakao A, Kasai Y, Harada A, Nonami T, Takagi H. Detection of hepatic micrometastasis in pancreatic adenocarcinoma patients by two-stage polymerase chain reaction/restriction fragment length polymorphism analysis. Jpn J Cancer Res. 1995; 86: 626–30.

    PubMed  CAS  Google Scholar 

  175. Maxwell-Amstrong CA, Durrant LG, Scholefield JH. Immunotherapy for colorectal cancer. Am J Surg. 1999; 177: 344–48.

    Google Scholar 

  176. RiethmÜller G, Holz E, Schlimok G, Schmiegel W, Raab R, Hoffken K, Gruber R, Funke I, Pichlmaier H, Hirche H, Buggisch P, Witte J, Pichlmayr R. Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: 7-year outcome of a multicenter randomized trial. J Clin Oncol. 1998; 16: 1788–94.

    PubMed  Google Scholar 

  177. Schlimok G, Pantel K, Loibner H, Fackler-Schwalbe I, RiethmÜller G. Reduction of metastatic carcinoma cells in bone marrow by intravenously administered monoclonal antibody: towards a novel surrogate test to monitor adjuvant therapies of solid tumors. Eur J Cancer. 1995; 31A: 1799–1803.

    PubMed  CAS  Google Scholar 

  178. Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S, Scheper RJ, Meijer CJ, Bloemena E, Ransom JH, Hanna MG, Jr, Pinedo HM. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet. 1999; 353: 345–50.

    PubMed  CAS  Google Scholar 

  179. Putz E, Witter K, Offner S, Stosiek P, Zippelius A, Johnson J, Zahn R, RiethmÜller G, Pantel K. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res. 1999; 59: 241–48.

    PubMed  CAS  Google Scholar 

  180. Funaki NO, Tanaka J, Kasamatsu T, Ohshio G, Hosotani R, Okino T, Imamura M. Identification of carcinoembryonic antigen mRNA in circulating peripheral blood of pancreatic carcinoma and gastric carcinoma patients. Life Sci 1996; 59: 2187–99.

    CrossRef  PubMed  CAS  Google Scholar 

  181. Ikeguchi M, Fukuda K, Oka S, Hisamitsu K, Katano K, Tsujitani S, Kaibara N. Microlymph node metastasis and its correlation with cathepsin D expression in early gastric cancer. J Surg Oncol 2001; 77: 188–94.

    PubMed  CAS  Google Scholar 

  182. Vlems FA, Ladanyi A, Gertler R, Rosenberg R, Diepstra JH, Röder C, Nekarda H, Molnar B, Tulassay Z, van Muijen GN, Vogel I. Reliability of quantitative reverse-transcriptase-PCR-based detection of tumour cells in the blood between different laboratories using a standardised protocol. Eur J Cancer 2003;39:388–96.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vogel, I., Kalthoff, H. (2003). Clinical Relevance of Tumor Cell Dissemination in Colorectal, Gastric and Pancreatic Carcinoma. In: Pantel, K. (eds) Micrometastasis. Cancer Metastasis - Biology and Treatment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48355-6_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48355-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1155-9

  • Online ISBN: 978-0-306-48355-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics