Skip to main content

Prognosis of Minimal Residual Disease in Bone Marrow, Blood and Lymph Nodes in Breast Cancer

  • Chapter
  • 229 Accesses

Part of the Cancer Metastasis - Biology and Treatment book series (CMBT,volume 5)

Abstract

The most important factor affecting the outcome of patients with invasive cancers is whether the tumor has spread, either regionally (to regional lymph nodes) or systemically (to the bone marrow). However, a proportion of patients with no evidence of systemic dissemination will develop recurrent disease after primary therapy. Clearly, these patients had occult systemic spread of disease that was undetectable by methods routinely employed (careful pathological, clinical, biochemical and radiological evaluation). This early dissemination of tumor cells is known as occult metastases (or micrometastases). In addition, the success of adjuvant therapy is assumed to stem from its ability to eradicate occult metastases before they become clinically evident. Therefore, methods for the detection of occult metastases in patients with the earliest stage of cancer, i.e., prior to detection of metastases by any other clinical or pathological analysis, have received a great deal of attention. This chapter focuses on the detection and significance of occult metastatic cells in the peripheral blood bone marrow and lymph nodes of patients with breast cancer.

Keywords

  • Breast Cancer
  • Bone Marrow
  • Sentinel Lymph Node
  • Axillary Lymph Node Dissection
  • Bone Marrow Sample

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schabel FM. Rationale for adjuvant chemotherapy. Cancer. 1977; 39: 2875–2882.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Redding WH, Monaghan P, Imrie SF. Detection of micrometastases in patients with primary breast cancer. Lancet. 1982: 1271–1274.

    Google Scholar 

  3. Osborne MP, Asina S, Wong GY. Immunofluorescent monoclonal antibody detection of breast cancer in bone marrow: sensitivity in a model system. Cancer Res. 1989; 49: 2510.

    PubMed  CAS  Google Scholar 

  4. Osborne MP, Wong GY, Asina S. Sensitivity of immunocytochemical detection of breast cancer cells in human bone marrow. Cancer Res. 1991; 51: 2706.

    PubMed  CAS  Google Scholar 

  5. Ellis G, Fergusson M, Yamanaka E. Monoclonal antibodies for detection of occult carcinoma cells in bone marrow of breast cancer patients. Cancer. 1989; 63: 2509–2514.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J. Clin. Oncol. 1991; 9: 1749–1756.

    PubMed  CAS  Google Scholar 

  7. Schlimok G, Funke I, Bock B, Witte J, Riethmuller G. Epithelial tumor cells in bone marrow of patients with colorectal cancer: immunocytochemical detection, phenotypic characterization, and prognostic significance. J. Clin. Oncol. 1990; 8: 831–837.

    PubMed  CAS  Google Scholar 

  8. Lindeman F, Schlimok G, Dirschedl P, Witte J, Riethmuller G. Prognostic significance of micrometastatic tumor cells in bone marrow of colorectal cancer patients. Lancet. 1992; 340: 685–689.

    CrossRef  Google Scholar 

  9. Silly H, Samanigg H, Stoger H, Brezinschek HP, Wilders-Trusching M. Micrometastatic tumor cells in bone marrow in colorectal carcinoma. Lancet. 1992; 340: 1288.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Moreno JG, Croce CM, Fischer R et al. Detection of hematogenous micrometastases in patients with prostate cancer. Cancer Res. 1992; 52: 6110–6112.

    PubMed  CAS  Google Scholar 

  11. Oberneder R, Riesenberg R, Kriegmair M et al. Immunocytochemical detection and phenotypic characterization of micrometastatic tumour cells in bone marrow of patients with prostate cancer. Urol. Res. 1994; 22: 3–8.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Bretton PR, Melamed MR, Fair WR, Cote RJ. Detection of occult micrometastases in the bone marrow of patients with prostate carcinoma. Prostate. 1994; 25: 108–114.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Wood DPJ, Banks ER, Humphreys S et al. Identification of bone marrow micrometastases in patients with prostate cancer. Cancer. 1994; 74: 2533–2540.

    CrossRef  PubMed  Google Scholar 

  14. Frew AJ, Ralkaier N, Ghosh AK, Gatter KC, Mason DY. Immunohistochemistry in the detection of bone marrow micrometastases in patients with primary lung cancer. Brit. J. Cancer. 1986; 53: 555–556.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Leonard RCF, Duncan LW, Hay FG. Immunocytological detection of residual marrow disease at clinical remission predicts metastatic relapse in small cell lung cancer. Cancer Res. 1990; 50: 6545–6548.

    PubMed  CAS  Google Scholar 

  16. Pantel K, Izbicki JR, Angswurm M et al. Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res. 1993; 53(5): 1027–1031.

    PubMed  CAS  Google Scholar 

  17. Pantel K, Isbicki J, Passlick B et al. Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small cell lung cancer without overt metastases. Lancet. 1996; 347: 649–653.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Cote RJ, Beattie EJ, Chaiwun B ret al. Detection of occult bone marrow metastases in patients with operable lung carcinoma. Ann. Surg. 1995; 222: 415–425.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Datta YH, Adams PT, Drobski WR et al. Sensitive detection of occult breast cancer by reverse-transcriptase polymerase chain reaction. J. Clin. Oncol. 1994; 12: 475–482.

    PubMed  CAS  Google Scholar 

  20. Bostick PJ, Chatterjee S, Chi DD et al. Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. J. Clin. Oncol. 1998; 16: 2632–2640.

    PubMed  CAS  Google Scholar 

  21. Zippelius P, Kufer P, Honold G et al. Limitations of reverse-transcriptase polymerase chain reaction analysis for detection of micrometastatic epithelial cancer cells in bone marrow. J. Clin. Oncol. 1997; 15: 2701–2708.

    PubMed  CAS  Google Scholar 

  22. Grunewald K, Haun M, Urbanek M et al. Mammoglobin gene expression; a superior marker of breast cancer cells in peripheral blood in comparison to epidermal-growth-factor receptor and cytokeratin-19. Laboratory Investigations. 2000; 80: 1071–1077.

    CrossRef  CAS  Google Scholar 

  23. Watson MA, Dintzis S, Darrow CM et al. Mammoglobin expression in primary, metastatic, and occult breast cancer. Cancer Res. 1999; 59: 3028–3031.

    PubMed  CAS  Google Scholar 

  24. Zach O, Kasparu H, Kriegar O et al. Detection of circulating mammary carcinoma cells in the peripheral blood of breast cancer patients via nested reverse transcriptase polymerase chain reaction assay for mammoglobin mRNA. J. Clin. Oncol. 1999; 17: 2015–2019.

    PubMed  CAS  Google Scholar 

  25. Gross HJ, Verwer B, Houck D, Hoffman RA, Recketenwald D. Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10-7. Proc. Natl. Acad. Sci. USA. 1995; 92: 537–541.

    CrossRef  PubMed  CAS  ADS  Google Scholar 

  26. Leslie DS, Johnston WW, Daly L et al. Detection of breast carcinoma cells in human bone marrow using fluorescent-activated cell sorting and conventional cytology. Am. J. Clin. Pathol. 1990; 94: 8–13.

    PubMed  CAS  Google Scholar 

  27. Kim SJ, Ikeda N, Shiba E, Takamura Y, Noguchi S. Detection of breast cancer micrometastases in peripheral blood using immunomagnetic separation and immunocytochemistry. Breast Cancer. 2001; 8: 63–69.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Slade MJ, Smith BM, Sinnett D, Cross NCP, Coombes RC. Quantitiative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J. Clin. Oncology. 1999; 17: 870–879.

    CAS  Google Scholar 

  29. Theriult RL, Hortobagy GN. Bone metastases in breast cancer. Anticancer Drugs. 1992; 3: 455–462.

    CrossRef  Google Scholar 

  30. Body JJ. Metastatic bone disease: clinical and therapeutic aspects. Bone. 1992; 13(Suppl.): 857–862.

    Google Scholar 

  31. Cote RJ, Rosen PP, Hakes TB et al. Monoclonal antibodies detect occult breast carcinoma metastases in bone marrow of patients with early-stage disease. Am. J. Surg. Pathol. 1988; 12: 333.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Berger U, Bettelheim R, Mansi JL, Easton D, Coombes RC, Neville AM. The relationship between micrometastases in the bone marrow, histopathologic features in the primary tumor in breast cancer and prognosis. Am. J. Clin. Pathol. 1988; 90: 1–6.

    PubMed  CAS  Google Scholar 

  33. Osborne MP, Rosen PP. Detection and management of bone marrow micrometastases in breast cancer. Oncology (Huntingt). 1994; 8: 25–31.

    CAS  Google Scholar 

  34. Mansi JL, Berger U, Easton D et al. Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br. Med. J. 1987; 295: 1093–1096.

    CrossRef  CAS  Google Scholar 

  35. Porro G, Ménard S, Tagliabue E et al. Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients. Cancer. 1988; 61: 2407.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Diel IJ, Kaufmann M, Costa SD et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J. Natl. Cancer Inst. 1997; 88: 1652–1658.

    Google Scholar 

  37. Mansi JL, Gogas H, Bliss JM, Gazet J-C, Berger U, Coombes RC. Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet. 1999; 354: 197–202.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Braun S, Pantel K, Muller P et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N. Eng. J. Med. 2000; 342: 525–533.

    CrossRef  CAS  Google Scholar 

  39. Dearnaley DP, Ormerod MG, Sloane JP. Micrometastases in breast cancer: long-term follow-up of the first patient cohort. Eur. J. Cancer. 1991; 27: 236.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Mansi JL, Easton U, Berger JC et al. Bone marrow micrometastases in primary breast cancer: prognostic significance after six years’ follow-up. Eur. J. Cancer. 1991; 27: 1552.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Diel IJ, Kaufman M, Goener R et al. Detection of tumor cells in bone marrow of patients with primary breast cancer: a prognostic factor for distant metastases. J. Clin. Oncol. 1992; 10: 1534–1539.

    PubMed  CAS  Google Scholar 

  42. Kessinger A, Armitage JO, Smith DM et al. High-dose therapy and autologous peripheral blood stem cell transplantation for patients with lymphoma. Blood. 1989; 74: 1260–1265.

    PubMed  CAS  Google Scholar 

  43. Moss TJ, Reynolds CP, Sather SN et al. Prognostic value of immunohistochemical detection of bone marrow metastases in neuroblastoma. N. Eng. J. Med. 1991; 324: 219–226.

    CrossRef  CAS  Google Scholar 

  44. Gusterson BA, Ott R. Occult axillary lymph node micrometastases in breast cancer. Lancet. 1990; 336: 434–435.

    CrossRef  Google Scholar 

  45. Neville AM. Breast cancer micrometastases in lymph nodes and bone marrow are prognostically important. Ann. Oncol. 1989; 2: 13–14.

    MATH  CAS  Google Scholar 

  46. Saphir O, Amromin GD. Obscure axillary lymph node metastases in carcinoma of the breast. Cancer. 1948; 1: 238–241.

    CrossRef  PubMed  CAS  Google Scholar 

  47. Pickren JW. Significance of occult metastases. A study of breast cancer. Cancer. 1961; 14: 1266–1271.

    CrossRef  PubMed  CAS  Google Scholar 

  48. Fisher ER, Saminoss S, Lee CH et al. Detection and significance of occult axillary node metastases in patients with invasive breast cancer. Cancer. 1978; 42: 2025–2031.

    CrossRef  PubMed  CAS  Google Scholar 

  49. Wilkinson EJ, Hause LL, Hoffman RG et al. Occult axillary lymph node metastases in invasive breast carcinoma: characteristics of the primary tumor and the significance of metastases. Pathol. Ann. 1982; 17: 67–91.

    Google Scholar 

  50. International (LUDWIG) Breast Cancer Study Group. Prognostic importance of occult lymph node micrometastases from breast cancers. Lancet. 1990; 335: 1565–1568.

    Google Scholar 

  51. de Mascarel I, Bonichon F, Coindre JM, Trojani M. Prognostic significance of breast cancer axillary lymph node micrometastases assessed by two special techniques: reevaluation with longer follow-up. Brit. J. Cancer. 1992; 66: 523–527.

    CrossRef  PubMed  Google Scholar 

  52. Wells CA, Heryt A, Brochier J et al. The immunohistochemical detection of axillary micrometastases in breast cancer. Brit. J. Cancer. 1984; 50: 193–197.

    CrossRef  PubMed  CAS  Google Scholar 

  53. Bussolati G, Gugliotta P, Morra Z et al. The immunohistochemical detection of lymph node micrometastases from infiltrating lobular carcinoma of the breast. Brit. J. Cancer. 1986; 54: 631–636.

    CrossRef  PubMed  CAS  Google Scholar 

  54. Byrne J, Waldron R, McAvinchy D et al. The use of monoclonal antibodies for the histological detection of mammary axillary micrometastases. Eur. J. Surg. Oncol. 1987; 13: 409.

    PubMed  CAS  Google Scholar 

  55. Trojani L, de Mascarel I, Bonichon F et al. Micrometastases to axillary lymph nodes from carcinoma of the breast: detection by immunohistochemistry and prognostic significance. Brit. J. Cancer. 1987; 55: 303–306.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Apostolikas N, Petraki C, Agnantis NJ. The reliability of histologically negative axillary lymph nodes in breast cancer. Pathol. Res. Pract. 1989; 184: 35–38.

    Google Scholar 

  57. Sedmak DD, Meinke TA, Knechtges DS et al. Prognostic significance of cytokeratin-positive breast cancer metastases. Mod. Pathol. 1989; 2: 516–520.

    PubMed  CAS  Google Scholar 

  58. Cote RJ, Chaiwun B, Qu J, Agnantis NJ et al. Prognostic importance of occult lymph node metastases in patients with breast cancer. Proc. Am. Assoc. Cancer Res. 1992; 33: 202.

    Google Scholar 

  59. Neville AM, Price KN, Gelber RD et al. Axillary lymph node micrometastases and breast cancer. Lancet. 1991; 337: 110.

    CrossRef  Google Scholar 

  60. Elson CE, Kufe D, Johnston WW. Immunohistochemical detection and significance of axillary lymph node micrometastases in breast cancer — a study of 97 cases. Anal. Quant. Cytol. Histol. 1993: 171–178.

    Google Scholar 

  61. Nasser IA, Lee AKC, Bosari S, Saganich R, Heatly G, Silverman ML. Occult axillary lymph node metastases in ‘node-negative’ breast cancer. Hum. Pathol. 1993; 24: 950–957.

    CrossRef  PubMed  CAS  Google Scholar 

  62. Hainsworth PJ, Tjandra JJ, Stillwell RG et al. Detection and significance of occult metastases in node-negative breast cancer. Brit. J. Surg. 1993; 80: 459–463.

    CrossRef  PubMed  CAS  Google Scholar 

  63. Neville AM. Prognostic factors and primary breast cancer. Diag. Oncol. 1991; 1: 53.

    Google Scholar 

  64. Schoenfeld A, Luqmani Y, Smith D et al. Detection of breast cancer micrometastases in axillary nodes using polymerase chain reaction. Cancer Res. 1994; 54: 2986–2990.

    PubMed  CAS  Google Scholar 

  65. Noguchi S, Aihara T, Nakamori S et al. The detection of breast cancer micrometastases in axillary lymph nodes by means of reverse-transcriptase polymerase chain reaction. Cancer. 1994; 74: 1595–1600.

    CrossRef  PubMed  CAS  Google Scholar 

  66. Cote RJ, Peterson HF, Chaiwun B et al. Role of immunohistochemical detection of lymph-node metastases in management of breast cancer. Lancet. 1999; 354: 896–900.

    CrossRef  PubMed  CAS  Google Scholar 

  67. Giuliano AE, Jones RC, Brennan M, Statman R. Sentinel lymphadenectomy in breast cancer. J. Clin. Oncol. 1997; 15: 2345.

    PubMed  CAS  Google Scholar 

  68. Veronesi U, Paganelli G, Galimberti V et al. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet. 1997; 349: 1864–1867.

    CrossRef  PubMed  CAS  Google Scholar 

  69. Alex JC, Krag DN. The gamma-probe-guided resection of radiolabeled primary lymph nodes. Surg. Oncol. Clin. N. Am. 1996; 5: 33–41.

    PubMed  CAS  Google Scholar 

  70. Albertini JJ, Lyman GH, Cox C et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA. 1996; 276: 1818–1822.

    CrossRef  PubMed  CAS  Google Scholar 

  71. Krag DN, Weaver D, Ashikaga T et al. The sentinel node in breast cancer: a multicenter validation study. N. Eng. J. Med. 1998; 339(14): 941–995.

    CrossRef  CAS  Google Scholar 

  72. Turner RR, Ollila DW, Krasne DL, Giuliano AE. Histopathologic validation of the sentinel lymph node hypothesis for breast carcinoma. Ann. Surg. 1997; 226: 271–278.

    CrossRef  PubMed  CAS  Google Scholar 

  73. Cote RJ, Hawes D, Chaiwun B, Beattie EJ. Detection of occult metastases in lung carcinomas: progress and implications for staging. J. Surg. Oncol. 1998; 69: 265–274.

    CrossRef  PubMed  CAS  Google Scholar 

  74. Chaiwun B, Saad A, Chatterjee SJ, Taylor CR, Beattie EJ, Cote RJ. Advances in the pathologic staging of lung cancer: detection of regional and systemic occult metastases. In: Marchevsky AM, Koss MN, eds. State of the Art Reviews. Philadelphia: Hanley & Belfus, 1996, pp. 155–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hawes, D., Neville, A.M., Cote, R.J. (2003). Prognosis of Minimal Residual Disease in Bone Marrow, Blood and Lymph Nodes in Breast Cancer. In: Pantel, K. (eds) Micrometastasis. Cancer Metastasis - Biology and Treatment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48355-6_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48355-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1155-9

  • Online ISBN: 978-0-306-48355-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics