Skip to main content

The Structure of Reaction Centers from Purple Bacteria

  • Chapter
The Photochemistry of Carotenoids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 8))

  • 980 Accesses

Summary

The function of photosynthetic bacterial reaction centers (RCs) is closely related to their structure. In the last 15 years a wealth of structural data has been accumulated on bacterial RCs, mainly through X-ray structure analysis of three-dimensional RC crystals. In this chapter, the arrangement of protein subunits and cofactors in the RC complexes of the non-sulfur purple bacteria Rhodobacter (Rb.) sphaeroides and Rhodopseudomonas (Rp.) viridis are delineated. A prominent feature of the bacterial RCs is their location in the photosynthetic membrane. Inside the RC complex, a finely tuned arrangement of amino acid residues and cofactors maintains a highly ordered system. The positions and likely functions of hydrogen bonds are described, since they play a key role in protein-cofactor interactions. Special emphasis is placed on the symmetry relations in the RC and on the functional asymmetry of electron and proton transfer that contradicts the observed pseudo two-fold structural symmetry.

The structures of the RCs from Rb. sphaeroides and Rp. viridis show a striking identity, apart from the cytochrome-c subunit found only in the latter RC. The core regions around the bacteriochlorophylls and bacteriopheophytins, including the carotenoid, are particularly similar. New observations of water clusters close to the primary and secondary quinones are described and their impact on proton transfer processes is discussed. These findings help elucidate the intermeshed processes of electron-proton coupling in the RC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

φA:

bacteriopheophytin (A branch)

φB:

bacteriopheophytin (B branch)

A:

active branch

B:

inactive branch

BA:

accessory bacteriochlorophyll (A branch)

Ba:

accessory bacteriochlorophyll (B branch)

D:

primary electron donor (’special pair’)

D*:

excited state of D

D+:

oxidation state of D

DA:

bacteriochlorophyll of the primary donor (A branch)

DB:

bacteriochlorophyll of the primary donor (B branch)

ET:

electron transfer

FTIR:

Fourier transform infrared

H:

subunit of the reaction center

HQH:

quinol (dihydroxyquinone)

L:

subunit of the reaction center

LDAO:

N,N-dimethyl-dodecylamine-N-oxide

LH:

light-harvesting protein

M:

subunit of the reaction center

PEG:

polyethylene glycol

PS II:

Photosystem II

QA:

primary electron acceptor quinone (A branch)

QB:

secondary electron acceptor quinone (B branch)

Rb.:

Rhodobacter

RC:

reaction center

Rc.:

Rhodocyclus

Rp.:

Rhodopseudomonas

Rs.:

Rhodospirillum

References

  • Abresch EC, Paddock ML, Stowell MHB, McPhillips TM, Axelrod HL, Soltis SM, Rees DC, Okamura MY and Feher G (1998) Identification of proton transfer pathways in the X-ray crystal structure of the bacterial reaction center from Rhodobacter sphaeroides. Photosynth Res 55: 119–125

    Article  CAS  Google Scholar 

  • Adir N, Axelrod HL, Beroza P, Isaacson RA, Rongey SH, Okamura M YandFeher G (1996) Co-crystallization and characterization of the photosynthetic reaction center cytochrome c-2 complex from Rhodobacter sphaeroides. Biochemistry 35: 2535–2547

    Article  CAS  PubMed  Google Scholar 

  • Agalidis I, Ivancich A, Mattioli TA and Reiss-Husson F (1997) Characterization of the Rhodocyclus tenuis photosynthetic reaction center. Biochim Biophys Acta 1321: 31–46

    CAS  Google Scholar 

  • Allen JP (1994) Crystallization of the reaction center from Rhodobacter sphaeroides in a new tetragonal form. Proteins 20: 283–286

    Article  CAS  PubMed  Google Scholar 

  • Allen JP and Feher G (1991) Crystallization of reaction centers from Rhodobacter sphaeroides. In: Michel H (ed) Crystallization of Membrane Proteins, pp 137–153. CRC Press, Boca Raton, Ann Arbor, Boston

    Google Scholar 

  • Allen JP, Feher G, Yeates TO, Deisenhofer J, Michel H and Huber R (1986) Structural homology of reaction centers from Rhodobacter sphaeroides and Rhodopseudomonas viridis as determined by X-ray diffraction. Proc Natl Acad Sci USA 83: 8589–8593

    CAS  PubMed  Google Scholar 

  • Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H and Zinth W (1993) The accessory bacteriochlorophyll: A real electron carrier in primary photosynthesis. Proc Natl Acad Sci USA 90: 11757–11761

    CAS  PubMed  Google Scholar 

  • Arnoux B and Reiss-Husson F (1996) Pigment-protein interactions in Rhodobacter sphaeroides Y photochemical reaction center; comparison with other reaction center structures. Eur Biophys J 24: 233–242

    Article  CAS  Google Scholar 

  • Arnoux B, Ducruix A, Reiss-Husson F, Lutz M, Morris J, Schiffer M and Chang CH (1989) Structure of spheroidene in the photosynthetic reaction center from Rhodobacter sphaeroides Y. FEBS Lett 258: 47–50

    Article  CAS  PubMed  Google Scholar 

  • Arnoux B, Gaucher JF, Ducruix A and Reiss-Husson F (1995) Structure of the photochemical reaction centre of a spheroidene-containing purple bacterium, Rhodobacter sphaeroides Y, at 3 Å resolution. Acta Cryst D51: 368–379

    Article  CAS  Google Scholar 

  • Baciou L, Bylina EJ and Sebban P (1993) Study of wild type and genetically modified reaction centers from Rhodobacter capsulatus: Structural comparison with Rhodopseudomonas viridis and Rhodobacter sphaeroides. Biophys J 65: 652–660

    CAS  PubMed  Google Scholar 

  • Bautista JA, Chynwat V, Cua A, Jansen FJ, Lugtenburg J, Gosztola D, Wasiliewski MR and Frank H (1998) The spectroscopic and photochemical properties of locked-15, 15′-cis-spheroidene in solution and incorporated into the reaction center of Rhodobacter sphaeroides R-26.1. Photosynth Res 55: 49–65

    Article  CAS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Shimanouchi T and Tasumi M (1977) The Protein Data Bank: A computer-based archival file for macromolecular structures. J Mol Biol 112: 535–542

    CAS  PubMed  Google Scholar 

  • Blankenship RE, Madigan MT and Bauer CE (eds) (1995) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Breton J (1997) Efficient exchange of the primary quinone acceptor Q-A in isolated reaction centers of Rhodopseudomonas viridis. Proc Natl Acad Sci USA 94: 11318–11323

    Article  CAS  PubMed  Google Scholar 

  • Breton J and Verméglio A (eds) (1988) The Photosynthetic Bacterial Reaction Center: Structure and Dynamics. Plenum Press, New York

    Google Scholar 

  • Breton J and Verméglio A (eds) (1992) The Photosynthetic Bacterial Reaction Center II, NATO-ASI Series A, Life Sciences 237. Plenum Press, New York

    Google Scholar 

  • Breton J, Boullais C, Burie J-R, Nabedryk E and Mioskowski C (1994) Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: Assignment of the interactions of each carbonyl of QA in Rhodobacter sphaeroides using site-specific 13C-labeled ubiquinone. Biochemistry 33: 14378–14386

    CAS  PubMed  Google Scholar 

  • Brudler R, de Groot HJM, van Liemt WBS, Steggerda WF, Esmeijer R, Gast P, Hoff AJ, Lugtenburg J and Gerwert K (1994) Asymmetric binding of the 1-and 4-C=O groups of QA in Rhodobacter sphaeroides R26 reaction centres monitored by Fourier transform infra-red spectroscopy using site-specific isotopically labelled ubiquinone-10. EMBO J 13: 5523–5530

    CAS  PubMed  Google Scholar 

  • Brzezinski P and Andréasson L-E (1995) Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: Protein structural changes follow charge separation. Biochemistry 34: 7498–7506

    Article  CAS  PubMed  Google Scholar 

  • Buchanan SKB, Fritzsch G, Ermler U and Michel H (1993) New crystal form of the photosynthetic reaction centre from Rhodobacter sphaeroides of improved diffraction quality. J Mol Biol 230: 1311–1314

    Article  CAS  PubMed  Google Scholar 

  • Bylina EJ and Wong R (1992) Analysis of spontaneous herbicide resistant revertants derived from Rhodobacter capsulatus in which Ser L223 of the reaction center is replaced with alanine. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 369–372. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bylina EJ, Kirmeier C, McDowell L, Molten D and Yuovan DC (1988) Influence of an amino-acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction centre complex. Nature 336: 182–184

    Article  CAS  Google Scholar 

  • Chamorovsky SK, Zakhorova NI, Remennikov SM, Sabo YA and Rubin AB (1998) The cytochrome subunit structure in the photosynthetic reaction center of Chromatium minutissimum. FEBS Lett 422: 231–234

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Tiede D, Tang J, Smith U, Norris J and Schiffer M (1986) Structure of Rhodobacter sphaeroides R-26 reaction center. FEBS Lett 205: 82–86

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, El Kabbani O, Tiede D, Norris J and Schiffer M (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30: 5352–5360

    CAS  PubMed  Google Scholar 

  • Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC, Paddock ML, Feher G and Rees DC (1994) Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 33: 4584–4593

    Article  CAS  PubMed  Google Scholar 

  • Claus D, Lack P and New B (1989) Catalogue of Strains, 4. Edition, p 280. DSM-Deutsche Sammlung von Mikro-organismen und Zellkulturen GmbH, Braunschweig, Germany

    Google Scholar 

  • Debus RJ, Feher G and Okamura MY (1986) Iron-depleted reaction centers from Rhodobacter sphaeroides R-26: Characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. Biochemistry 25: 2276–2287

    Article  CAS  PubMed  Google Scholar 

  • De Groot HJM, Gebhard R, van der Hoef I, Hoff AJ, Lugtenburg J, Violette CA and Frank HA (1992) 13C Magic angle spinning NMR evidence for a 15,15′-cis configuration of the spheroidene in the Rhodobacter sphaeroides photosynthetic reaction center. Biochemistry 31: 12446–12450

    PubMed  Google Scholar 

  • Deisenhofer J and Michel H (1989a) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245: 1463–1473

    CAS  Google Scholar 

  • Deisenhofer J and Michel H (1989b) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J 8: 2149–2170

    CAS  PubMed  Google Scholar 

  • Deisenhofer J and Norris JR (eds) (1993) The Photosynthetic Reaction Center. Academic Press, San Diego

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex: electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618–642

    Article  Google Scholar 

  • Deisenhofer J, Epp O, Sinnig I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 246: 429–457

    Article  CAS  PubMed  Google Scholar 

  • Dohse B, Mathis P, Wachtveitl J, Laussermair E, Iwata S, Michel H and Oesterhelt D (1995) Electron transfer from the tetraheme cytochrome to the special pair in the Rhodopseudomonas viridis reaction center: Effects of mutations of tyrosine L162. Biochemistry 34: 11335–11343

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Â resolution: Cofactors and protein-cofactor interactions. Structure 2: 925–936

    Article  CAS  PubMed  Google Scholar 

  • Evans SV (1993) SETOR: Hardware lighted three-dimensional solid model representations of macromolecules. J Mol Graphics 11: 134–138

    CAS  Google Scholar 

  • Feher G and Okamura MY (1978) Chemical composition and properties of reaction centers. In: Clayton RC and Sistrom WR (eds) The Photosynthetic Bacteria, pp 349–386. Plenum Press, New York

    Google Scholar 

  • Frank HA and Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Pholobiol 63: 257–264

    CAS  Google Scholar 

  • Frank HA and Violette CA (1989) Monomeric bacteriochlorophyll is required for the triplet energy transfer between the primary donor and the carotenoid in photosynthetic bacterial reaction centers. Biochim Biophys Acta 976: 222–232

    CAS  PubMed  Google Scholar 

  • Frank HA, Taremi SS, Knox JR and Mäntele W (1988) Single crystals of the photochemical reaction center from Rhodobacter sphaeroides wild type strain 2.4.1 analyzed by polarized light. In: Breton J and Verméglio A (eds) The Photosynthetic Bacterial Reaction Center, pp 27–32. Plenum Press, New York

    Google Scholar 

  • Frank HA, Chynwat V, Hartwich G, Meyer M, Katheder I and Scheer H (1993) Carotenoid triplet state formation in Rhodobacter sphaeroides R-26 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene. Photosynth Res 37: 193–203

    Article  CAS  Google Scholar 

  • Fritzsch G (1998) Obtaining crystal structures from bacterial photosynthetic reaction centers. Methods Enzymol 297: 57–77

    CAS  Google Scholar 

  • Fritzsch G, Buchanan S and Michel H (1989) Assignment of cytochrome hemes in crystallized reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta 977: 157–162

    CAS  Google Scholar 

  • Fritzsch G, Ermler U, Merckel M and Michel H (1996) Crystallization and structure of the photosynthetic reaction centres from Rhodobacter sphaeroides–wild type and mutants. In: Michel-Beyerle M-E (ed) ReactionCenters of Photosynthetic Bacteria. Structure and Dynamics, pp 3–13. Springer-Verlag, Berlin

    Google Scholar 

  • Fritzsch G, Kampmann L, Kapaun G and Michel H (1998) Water clusters in the reaction centre of Rhodobacter sphaeroides. Photosynth Res 55: 127–132

    Article  CAS  Google Scholar 

  • Hantke K and Braun V (1973) Covalent binding of lipid to protein. Eur J Biochem 34: 284–296

    Article  CAS  PubMed  Google Scholar 

  • Heller B A, Holten D and Kirmaier C (1995a) Control of electron transfer between the L-and M-sides of photosynthetic reaction centers. Science 269: 940–945

    CAS  PubMed  Google Scholar 

  • Heller B A, Holten D and Kirmaier C (1995b) Characterization of bacterial reaction centers having mutations of aromatic residues in the binding site of the bacteriopheophytin intermediary electron carrier. Biochemistry 34: 5294–5302

    Article  CAS  PubMed  Google Scholar 

  • Hodel A, Kim SH and Brünger AT (1992) Model bias in macromolecular crystal structures. Acta Crystallogr A 48: 851–858

    Article  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1990) Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 5168–5172

    CAS  PubMed  Google Scholar 

  • Ippolito JA, Alexander RS and Christianson DW (1990) Hydrogen bond stereochemistry in protein structure and function. J Mol Biol 215: 457–471

    CAS  PubMed  Google Scholar 

  • Kapaun G (1998) Röntgenkristallographische Untersuchungen am Reaktionszentrum von Rb. sphaeroides: hochaufgelöste Wildtypstruktur und Cofaktor-Austausch. Diploma thesis, Johann Wolfgang Goethe-Universität, Frankfurt

    Google Scholar 

  • Kirmaier C and Holten D (1991) An assessment of the mechanism of initial electron transfer in bacterial reaction centers. Biochemistry 30: 609–613

    Article  CAS  PubMed  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985) Picosecond-photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K. Effects of electron transfer on the six bacteriochlorin pigments. Biochim Biophys Acta 810: 49–61

    CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The Crystal Structure of the Light-Harvesting Complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y, Takatsuka I, Kanaji M, Tomimoto K, Kito M, Shimamura T, Yamashita J, Saiki K and Tsukida K (1990) Configurations of carotenoids in the reaction center and light-harvesting complex of Rhodospirillum rubrum. Natural selection of carotenoid configurations by pigment protein complexes. Photochem Photobiol 51: 119–128

    CAS  Google Scholar 

  • Krauss N, Schubert WD, Klukas O, Fromme P, Witt T and Saenger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nature Struct Biol 3: 965–973

    CAS  PubMed  Google Scholar 

  • Kuglstatter A (1999) Röntgenkristallographische Untersuchungen am photosynthetischen Reaktionszentrum des Purpurbakteriums Rhodoabcter sphaeroides: Punktmutationen und Kofaktoraustausch. Diploma thesis, Johann Wolfgang Geothe-Universität, Frankfurt

    Google Scholar 

  • Kuglstatter A, Fritzsch G and Michel H (1999) Crystallographic analysis of the mutant reaction center M 197 (FY) from Rhodobacter sphaeroides.In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 699–702. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Laible PD, Chynwat V, Thurnauer MC, Schiffer M, Hanson DK and Frank H (1998) Protein modifications affecting triplet energy transfer inbacterial photosynthetic reaction centers. Biophys J 74: 2623–2637

    CAS  PubMed  Google Scholar 

  • Lancaster CRD and Michel H (1996) New insights into the X-ray structure of the reaction center from Rhodopseudomonas viridis. In: Michel-Beyerle ME (ed) Reaction Centers of Photosynthetic Bacteria. Structure and Dynamics, pp 23–35. Springer-Verlag, Berlin

    Google Scholar 

  • Lancaster CRD and Michel H (1997) The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB, Structure 5: 1339–1359

    Article  CAS  PubMed  Google Scholar 

  • Lancaster CRD and Michel H (1999a) The structure of the Rhodopseudomonas viridis reaction centre—an overview and recent advances. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 673–678. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lancaster CRD and Michel H (1999b) Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J Mol Biol 286: 883–898

    Article  CAS  PubMed  Google Scholar 

  • Lancaster CRD, Ermler U and Michel H (1995) The structures of photosynthetic reaction centers from purple bacteria as revealed by X-ray crystallography. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxy genic Photosynthetic Bacteria, pp 503–526. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lancaster CRD, Michel H, Honig B and Gunner MR (1996) Calculated coupling of electron and proton transfer in the photosynthetic reaction centre of Rhodopseudomonas viridis. Biophys J 70: 2469–2492

    CAS  PubMed  Google Scholar 

  • Lous EJ and Hoff AJ (1989) Isotropic and linear dichroitic triplet-minus-singlet absorbance difference spectra of two carotenoid-containing bacterial photosynthetic reaction centers in the temperature range 10–288 K. Ananalysis of the bacteriochlorophyll-carotenoid triplet-transfer. Biochim Biophys Acta 974: 88–103

    CAS  Google Scholar 

  • Lutz M, Szponarski W, Berger G, Robert B and Neuman JM (1987) The stereoisomerism of bacterial, reaction-center-bound carotenoids revisited: an electronic absorption, resonance Raman and 1H-NMR study. Biochim Biophys Acta 894: 423–433

    CAS  Google Scholar 

  • Luzzati PV (1952) Trai tement statistique des erreurs dans la détermination des structures cristallines. Acta Crystallogr 5: 802–810

    Article  Google Scholar 

  • Martinez SE, Huang D, Ponomarev M, Cramer WA and Smith JL (1996) The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Science 5: 1081–1092

    CAS  PubMed  Google Scholar 

  • Mathis P (1994) Electron transfer between cytochrome c2 and the isolated reaction center of purple bacterium Rhodobacter sphaeroides. Biochim Biophys Acta 1187: 177–180

    CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornwaite-Lawless AM, Papiz MZ, Cogdelt RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Michel H (1982) Three-dimensional crystals of a membrane protein complex. J Mol Biol 158: 567–572

    Article  CAS  PubMed  Google Scholar 

  • Michel H (1983) Crystallization of membrane proteins. Trends Biochem Sci 8: 56–59

    Article  CAS  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7

    Article  CAS  Google Scholar 

  • Michel H, Weyer KA, Gruenberg K, Dunger I, Oesterhelt D and Lottspeich F (1986a) The ‘light’ and ‘medium’ subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: Isolation of the genes, nucleotide and amino acid sequence. EMBO J 5: 1149–1158

    CAS  PubMed  Google Scholar 

  • Michel H, Epp O and Deisenhofer J (1986b) Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J 5: 2445–2451

    CAS  PubMed  Google Scholar 

  • Michel-Beyerle ME (ed) (1985) Antennas and Reaction Centers of Photosynthetic Bacteria. Structure, Interactions, and Dynamics. Springer-Verlag, Berlin

    Google Scholar 

  • Michel-Beyerle ME (ed) (1990) Reaction Centers of Photosynthetic Bacteria. Springer-Verlag, Berlin

    Google Scholar 

  • Michel-Beyerle ME (ed) (1996) Reaction Centers of Photosynthetic Bacteria. Structure and Dynamics. Springer-Verlag, Berlin

    Google Scholar 

  • Monger TG, Cogdell RJ and Parson WW (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta 449: 136–159

    CAS  PubMed  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84: 109–112

    CAS  Google Scholar 

  • Morris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of signal 1 in photosynthesis. Proc Natl Acad Sci USA 68: 625–628

    Google Scholar 

  • Okamura MY, Isaacson RA and Feher G (1975) Primary acceptor in bacterial photosynthesis: Obligatory role of ubiquinone in photoactive reaction centers of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 72: 3491–3495

    CAS  PubMed  Google Scholar 

  • Ortega JM and Mathis P (1993) Electron transfer from the tetraheme cytochrome to the special pair inisolated reaction centers of Rhodopseudomonas viridis. Biochemistry 32: 1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Ostermeier C, Harrenga A, Ermler U and Michel H (1997) Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci USA 94: 10547–10553

    Article  CAS  PubMed  Google Scholar 

  • Paddock ML, McPherson PH, Feher G and Okamura MY (1990) Pathway of proton transfer in bacterial reaction centers: Replacement of serine-L223 by alanine inhibits electron and proton transfers associated with reduction of quinone to dihydroquinone. Proc Natl Acad Sci USA 87: 6803–6807

    CAS  PubMed  Google Scholar 

  • Peloquin JM, Violette CA, Frank HA and Bocian DF (1990) Temperature dependent conformational changes in the bacteriopheophytins of Rhodobacter sphaeroides reaction centers. Biochemistry 29: 4892–4898

    CAS  PubMed  Google Scholar 

  • Peloquin JM, Bylina EJ, Youvan DC and Bocian DF (1991) Effects of pigment-protein interactions on the conformation of the primary electron acceptor in Rhodopseudomonas capsulatus reaction centers. Biochim Biophys Acta 1065: 85–88

    Google Scholar 

  • Rhee KH, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W and Barber J (1997) Two-dimensional structure of plant Photosystem II at 8-Å resolution. Nature 389: 522–526

    CAS  Google Scholar 

  • Sebban P (1988) pH effect on the biphasicity of the P+Q A charge recombination kinetics in the reaction centers from Rhodobacter sphaeroides, reconstituted with anthraquinones. Biochim Biophys Acta 936: 124–132

    CAS  Google Scholar 

  • Sharp KA (1998) Calculation of electron transfer reorganization energies using the finite difference Poisson-Boltzmann model. Biophys J 73: 1241–1250

    Google Scholar 

  • Sinning I, Michel H, Mathis P and Rutherford AW (1989) Characterization of four herbicide-resistant mutants of Rhodopseudomonas viridis by genetic analysis, electron paramagnetic resonance and optical spectroscopy. Biochemistry 28: 5544–5553

    Article  CAS  PubMed  Google Scholar 

  • Stilz HU, Finkele U, Holzapfel W, Lauterwasser C, Zinth W and Oesterhelt D (1994) Influence of M subunit Thr222 and Trp252 on quinone binding and electron transfer in Rhodobacter sphaeroides reaction centres. Eur J Biochem 223: 233–242

    Article  CAS  PubMed  Google Scholar 

  • Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E and Feher G (1997) Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 276: 812–816

    Article  CAS  PubMed  Google Scholar 

  • Takahashi E and Wraight CA (1996) Potentiation of proton transfer function by electrostatic interactions in photosynthetic reaction centers from Rhodobacter sphaeroides: First results from site-directed mutation of the H subunit. Proc Natl Acad Sci USA 93: 2640–2645

    CAS  PubMed  Google Scholar 

  • Takiff L and Boxer SG (1988a) Phosphorescence from the primary electron donor in Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Biochim. Biophys. Acta 932: 325–334

    CAS  Google Scholar 

  • Takiff L and Boxer SG (1988b) Phosphorescence spectra of bacteriochlorophylls. J Am Chem Soc 110: 4425–4426

    Article  CAS  Google Scholar 

  • Tiede DM, Vázquez J, Córdova J and Marone PA (1996) Timeresolved electrochromism associated with the formation of quinone anions in the Rhodobacter sphaeroides R26 reaction center. Biochemistry 35: 10763–10775

    Article  CAS  PubMed  Google Scholar 

  • Wachtveitl J, Farchaus JW, Das R, Lutz M, Robert B and Mattioli TA (1993) Structure, spectroscopic, and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry 32: 12875–12886

    CAS  PubMed  Google Scholar 

  • Wang S, Lin S, Lin X, Woodbury NW and Allen JP (1994) Comparative study of reaction centers from purple photosynthetic bacteria: Isolation and optical spectroscopy. Photosynth Res 42: 203–215

    Article  CAS  Google Scholar 

  • Weyer KA, Schäfer W, Lottspeich F and Michel H (1987) The cytochrome subunit of the photosynthetic reaction center from Rhodopseudomonas viridis is a lipoprotein. Biochemistry 26: 2909–2914

    Article  CAS  Google Scholar 

  • Wiemken V and Bachofen R (1984) Probing the smallest functional unit of the reaction center of Rhodospirillum rubrum G-9 with proteinases. FEBS Lett 166: 155–159

    Article  CAS  Google Scholar 

  • Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW and Allen JP (1992) Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31: 11029–11037

    CAS  PubMed  Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: Protein-cofactor bacterio-chlorophyll bacteriopheophytin and carotenoid interactions. Proc Natl Acad Sci USA 85: 7993–7997

    CAS  PubMed  Google Scholar 

  • Zinth W, Knapp EW, Fischer SF, Kaiser W, Deisenhofer J and Michel H (1985) Correlation of structural and spectroscopic properties of a photosynthetic reaction center. Chem Phys Lett 119: 1–4

    Article  CAS  Google Scholar 

  • Zinth W, Arlt T, Schmidt S., Penzkofer H, Wachtveitl J, Huber H, Nägele T, Hamm P, Bibikova M, Oesterhelt D, Meyer M and Scheer H (1996) The first femtoseconds of primary photosynthesis—the process of the initial electron transfer reaction. In: Michel-Beyerle ME (ed) The Reaction Center of Photosynthetic Bacteria, pp 160–173. Springer-Velag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fritzsch, G., Kuglstatter, A. (1999). The Structure of Reaction Centers from Purple Bacteria. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics