Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 7))

Summary

Because of its pivotal role in photosynthetic CO2 fixation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) has become a focus for genetic engineering. An increase in carboxylase activity or a decrease in the O2 inhibition of carboxylase activity would directly improve plant productivity. Much is known about the Rubisco catalytic mechanisms, a number of X-ray crystal structures have been solved, and directed mutagenesis of prokaryotic enzymes has probed the importance of individual amino-acid residues. However, as in most cases of enzyme engineering, it is difficult to deduce which changes are needed to make Rubisco better. The eukaryotic green alga Chlamydomonas reinhardtii offers other approaches to this problem. Classical genetic methods, which are difficult to apply in prokaryotes or higher plants, have been used to recover mutations at random, identify interactions between amino-acid residues, and discover other genes that influence the ultimate expression of Rubisco function. Several regions outside the active site have now been identified that control catalytic efficiency. Molecular genetic methods have also become well established for Chlamydomonas. Directed mutagenesis and gene transformation can be used to investigate the nucleus- and chloroplast-encoded Rubisco subunits, which likely serve as the best models for ultimately engineering the Rubisco of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CABP:

2-carboxyarabinitol 1,5-bisphosphate

Kc:

Km for Co2

Ko:

Km for O2

Rubisco:

ribulose- 1,5-bisphosphate carboxylase/oxygenase

RuBP:

ribulose 1,5- bisphosphate

Vo:

Vmax for carboxylation

Vo:

Vmax for oxygenation

Ω:

CO2/O2 specificity factor

References

  • Adam M, Lentz KE and Loppes R (1993) Insertional mutagenesis to isolate acetate-requiring mutants in Chlamydomonas reinhardtii. FEMS Microbiol Lett 110: 265–268

    CAS  Google Scholar 

  • Amichay D, Levitz R and Gurevitz M (1993) Construction of a Synechocystis PCC6803 mutant suitable for the study of variant hexadecameric ribulose-bisphosphate carboxylase/oxygenase enzymes. Plant Mol Biol 23: 465–476

    Article  CAS  PubMed  Google Scholar 

  • Andersson I (1996) Large structures at high resolution: The 1.6 Å crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate. J Mol Biol 259: 160–174

    Article  CAS  PubMed  Google Scholar 

  • Andrews TJ (1988) Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J Biol Chem 263: 12213–12219

    CAS  PubMed  Google Scholar 

  • Avni A, Edelman M, Rachailovich I, Aviv D and Fluhr R (1989) A point mutation in the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase affects holoenzyme assembly in Nicotiana tabacum. EMBO J 8: 1915–1918

    CAS  PubMed  Google Scholar 

  • Badger MR and Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45: 369–392

    Article  CAS  Google Scholar 

  • Belknap WR and Togasaki RK (1982) The effects of cyanide and azide on the photoreduction of 3-phosphoglycerate and oxaloacetate by wild type and two reductive pentose phosphate cycle mutants of Chlamydomonas reinhardtii. Plant Physiol 70: 469–475

    CAS  Google Scholar 

  • Boynton JE and Gillham NW (1993) Chloroplast transformation in Chlamydomonas. Meth Enzymol 217: 510–536

    CAS  PubMed  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB and Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538

    CAS  PubMed  Google Scholar 

  • Chen Z and Spreitzer RJ (1989) Chloroplast intragenic suppression enhances the low CO2/O2 specificity of mutant ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem 264: 3051–3053

    CAS  PubMed  Google Scholar 

  • Chen Z and Spreitzer RJ (1991) Proteolysis and transition-state analogue binding of mutant forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Chlamydomonas reinhardtii. Planta 83: 597–603

    Google Scholar 

  • Chen Z and Spreitzer RJ (1992) How various factors influence the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynth Res 31: 157–164

    Article  CAS  Google Scholar 

  • Chen Z, Chastain CJ, Al-Abed SR, Chollet R and Spreitzer RJ (1988) Reduced CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 85: 4696–4699

    CAS  PubMed  Google Scholar 

  • Chen Z, Green D, Westhoff C and Spreitzer RJ (1990) Nuclear mutation restores the reduced CO2/O2 specificity of ribulose bisphosphate carboxylase/oxygenase in a temperature-conditional chloroplast mutant of Chlamydomonas reinhardtii. Arch Biochem Btophys 283: 60–67

    CAS  Google Scholar 

  • Chen Z, Yu W, Lee JH, Diao R and Spreitzer RJ (1991) Complementing amino-acid substitutions within loop 6 of the α/β-barrel active site influence the CO2/O2 specificity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 30: 8846–8850

    CAS  PubMed  Google Scholar 

  • Chen Z, Hong S and Spreitzer RJ (1993) Thermal instability of ribulose-1,5-bisphosphate carboxylase/oxygenase from a temperature-conditional chloroplast mutant of Chlamydomonas reinhardtii. Plant Physiol 101: 1189–1194

    Article  CAS  PubMed  Google Scholar 

  • Chène P, Day AG and Fersht AR (1992) Mutation of asparagine 111 of Rubisco from Rhodospirillum rubrum alters the carboxylase/oxygenase specificity. J Mol Biol 225: 891–896

    PubMed  Google Scholar 

  • Cloney LP, Bekkaoui DR and Hemmingsen SM (1993) Coexpression of plastid chaperonin genes and a synthetic plant Rubisco operon in Escherichia coli. Plant Mol Biol 23: 1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Curmi MG, Cascio D, Sweet RM, Eisenberg D and Schreuder H (1992) Crystal structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from tobacco refined at 2.0-Å resolution. J Biol Chem 267: 16980–16989

    CAS  PubMed  Google Scholar 

  • Dean C, Pichersky E and Dunsmuir P (1989) Structure, evolution and regulation of RbcS genes in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40: 415–439

    Article  CAS  Google Scholar 

  • Dedonder A, Rethy R, Fredericq H, Van Montagu M and Krebbers E (1993) Arabidopsis RbcS genes are differentially regulated by light. Plant Physiol 101: 801–808

    Article  CAS  PubMed  Google Scholar 

  • Dobberstein B, Blobel G and Chua NH (1977) In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 74: 1082–1085

    CAS  PubMed  Google Scholar 

  • Dron M, Rahire M and Rochaix JD (1982) Sequence of the chloroplast DNA region of Chlamydomonas reinhardtii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genes. J Mol Biol 162: 775–793

    Article  CAS  PubMed  Google Scholar 

  • Dron M, Rahire M, Rochaix JD and Mets L (1983) First DNA sequence of a chloroplast mutation: A missense alteration in the ribulose bisphosphate carboxylase large subunit gene. Plasmid 9: 321–324

    CAS  PubMed  Google Scholar 

  • Falcone DL and Tabita FR (1991) Expression of endogenous and foreign ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides. J Bacteriol 173: 2099–2108

    CAS  PubMed  Google Scholar 

  • Ford C and Wang WY (1980) Temperature-sensitive yellow mutants of Chlamydomonas reinhardtii. Mol Gen Genet 180: 5–10

    Article  Google Scholar 

  • Gatenby AA, van der Vies SM and Rothstein SJ (1987) Coexpression of both the maize large and wheat small subunit genes of ribulose bisphosphate carboxylase in Escherichia coli. Eur J Biochem 168: 227–231

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont M (1986) The two genes for the small subunit of RuBP carboxylase/oxygenase are closely linked in Chlamydomonas reinhardtii. Plant Mol Biol 6: 13–21

    Article  CAS  Google Scholar 

  • Goldschmidt-Clermont M and Rahire M (1986) Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/ oxygenase in Chlamydomonas reinhardtii. J Mol Biol 191: 421–432

    CAS  PubMed  Google Scholar 

  • Gotor C, Hong S and Spreitzer RJ (1994) Temperature-conditional nuclear mutation of Chlamydomonas reinhardtii decreases the CO2/O2 specificity of chloroplast ribulose bisphosphate carboxylase/oxygenase. Planta 193: 313–319

    Article  CAS  Google Scholar 

  • Gutteridge S and Gatenby AA (1995) Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7: 809–819

    Article  CAS  PubMed  Google Scholar 

  • Harpel MR and Hartman FC (1992) Enhanced CO2/O2 specificity of a site-directed mutant of ribulose bisphosphate carboxylase/ oxygenase. J Biol Chem 267: 6475–6478

    CAS  PubMed  Google Scholar 

  • Harpel MR and Hartman FC (1996) Facilitation of the terminal proton transfer reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase by active-site Lys166. Biochemistry 35: 13865–13870

    Article  CAS  PubMed  Google Scholar 

  • Harpel MR, Serpersu EH, Lamerdin JA, Huang ZH, Gage DA and Hartman FC (1995) Oxygenation mechanism of ribulose bisphosphate carboxylase/oxygenase. Structure and origin of 2-carboxytetritol 1,4-bisphosphate, a novel O2-dependent side product generated by a site-directed mutant. Biochemistry 34: 11296–11306

    Article  CAS  PubMed  Google Scholar 

  • Hartman FC and Harpel MR (1994) Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/ oxygenase. Annu Rev Biochem 63: 197–234

    Article  CAS  PubMed  Google Scholar 

  • Hong S and Spreitzer RJ (1994) Nuclear mutation inhibits expression of the chloroplast gene that encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 106: 673–678

    CAS  PubMed  Google Scholar 

  • Hong S and Spreitzer RJ (1997) Complementing substitutions at the bottom of the barrel influence catalysis and stability of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem 272: 11114–11117

    CAS  PubMed  Google Scholar 

  • Huang DD and Wang W Y (1986) Genetic control of chlorophyll biosynthesis: Regulation of delta-aminolevulinate synthesis in Chlamydomonas. Mol Gen Genet 205: 217–220

    Article  CAS  Google Scholar 

  • Hwang S, Kawazoe R and Herrin DL (1996) Transcription of tufA and other chloroplast-encoded genes is controlled by a circadian clock in Chlamydomonas. Proc Natl Acad Sci USA 93: 996–1000

    CAS  PubMed  Google Scholar 

  • Jordan DB and Ogren WL (1981) Speciesvariation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291: 513–515

    Article  CAS  Google Scholar 

  • Kanevski I and Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91: 1969–1973

    CAS  PubMed  Google Scholar 

  • Khrebtukova I and Spreitzer RJ (1996) Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 93: 13689–13693

    Article  CAS  PubMed  Google Scholar 

  • Klein U, Salvador ML and Bogorad L (1994) Activity of the Chlamydomonas chloroplast rbcL promoter is enhanced by a remote sequence element. Proc Natl Acad Sci USA 91: 10819–10823

    CAS  PubMed  Google Scholar 

  • Knight S, Andersson I and Brändén CI (1990) Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution. J Mol Biol 215: 113–160

    CAS  PubMed  Google Scholar 

  • Laing WA, Ogren WL and Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose 1,5-diphosphate carboxylase. Plant Physiol 54: 678–685

    CAS  Google Scholar 

  • Larimer FW, Lee EH, Mural RJ, Soper TS and Hartman FC (1987) Intersubunit location of the active site of ribulose-bisphosphate carboxylase/oxygenase as determined by in vivo hybridization of site-directed mutants. J Biol Chem 262: 15327–15329

    CAS  PubMed  Google Scholar 

  • Larson EM, Larimer FW and Hartman FC (1995) Mechanistic insights provided by deletion of a flexible loop at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 34: 4531–4537

    CAS  PubMed  Google Scholar 

  • Larson EM, O’Brien CM, Zhu G, Spreitzer RJ and Portis AR Jr (1997) Specificity for activase is changed by a Pro-89 to Arg substitution in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem 272: 17033–17037

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ and McFadden BA (1992) Serine-376 contributes to the binding of substrate by ribulose-bisphosphate carboxylase/ oxygenase from Anacystis nidulans. Biochemistry 31: 2304–2308

    CAS  PubMed  Google Scholar 

  • Levine RP (1969) The analysis of photosynthesis using mutant strains of algae and higher plants. Annu Rev Plant Physiol 20: 523–540

    Article  CAS  Google Scholar 

  • Lorimer GH (1981) Ribulose bisphosphate carboxylase: Amino acid sequence of a peptide bearing the activator carbon dioxide. Biochemistry 20: 1236–1240

    Article  CAS  PubMed  Google Scholar 

  • Lorimer GH, Badger MR and Andrews TJ (1976) The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions: Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15: 529–536

    Article  CAS  PubMed  Google Scholar 

  • Lorimer GH, Chen YR and Hartman FC (1993) A role for the ε-amino group of lysine-334 of ribulose-1,5-bisphosphate carboxylase in the addition of carbon dioxide to the 2,3-enediol(ate) of ribulose 1,5-bisphosphate. Biochemistry 32: 9018–9024

    Article  CAS  PubMed  Google Scholar 

  • Meagher RB, Berry-Lowe S and Rice K (1989) Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: Nucleotide substitution and gene conversion. Genetics 123: 845–863

    CAS  PubMed  Google Scholar 

  • Meier I, Callan KL, Fleming AJ and Gruissem W (1995) Organ-specific differential regulation of a promoter subfamily for the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit genes in tomato. Plant Physiol 107: 1105–1118

    Article  CAS  PubMed  Google Scholar 

  • Mets LJ and Geist LJ (1983) Linkage of aknown chloroplast gene mutation to the uniparental genome of Chlamydomonas reinhardtii. Genetics 105: 559–579

    CAS  Google Scholar 

  • Newman J and Gutteridge S (1993) The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2-Å resolution. J Biol Chem 268: 25876–25886

    CAS  PubMed  Google Scholar 

  • Newman SM, Gillham NW, Harris EH, Johnson AM and Boynton JE (1991) Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii. Mol Gen Genet 230: 65–74

    Article  CAS  PubMed  Google Scholar 

  • Pierce J, Andrews TJ and Lorimer GH (1986) Reaction intermediate partitioning by ribulose-bisphosphate carboxylase with different substrate specificities. J Biol Chem 261: 10248–10256

    CAS  PubMed  Google Scholar 

  • Pierce J, Carlson TJ and Williams JGK (1989) A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Proc Natl Acad Sci USA 86: 5753–5757

    CAS  PubMed  Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol 43: 415–437

    Article  CAS  Google Scholar 

  • Portis AR Jr (1995) The regulation of Rubisco by Rubisco activase. J Exp Bot 46: 1285–1291

    CAS  Google Scholar 

  • Rawat M, Henk MC, Lavigne LL and Moroney JV (1996) Chlamydomonas reinhardtii mutants without ribulose-1,5-bisphosphate carboxylase-oxygenase lack a detectable pyrenoid. Planta 198: 263–270

    Article  CAS  Google Scholar 

  • Read BA and Tabita FR (1992) A hybrid ribulosebisphosphate carboxylase/oxygenase enzyme exhibiting a substantial increase in substrate specificity factor. Biochemistry 31: 5553–5559

    CAS  PubMed  Google Scholar 

  • Read BA and Tabita FR (1994) High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial Rubisco containing ‘algal’ residue modifications. Arch Biochem Biophys 312: 210–218

    Article  CAS  PubMed  Google Scholar 

  • Roesler KR and Ogren WL (1990) Primary structure of Chlamydomonas reinhardtii ribulose-1,5-bisphosphate carboxylase/oxygenase activase and evidence for asingle polypeptide. Plant Physiol 94: 1837–1841

    CAS  Google Scholar 

  • Salvador ML, Klein U and Bogorad L (1993) 5′ sequences are important positive and negative determinants of the longevity of Chlamydomonas chloroplast gene transcripts. Proc Natl Acad Sci USA 90: 1556–1560

    CAS  PubMed  Google Scholar 

  • Salvucci ME and Ogren WL (1996) The mechanism of Rubisco activase: Insights from studies of the properties and structure of the enzyme. Photosynth Res 47: 1–11

    Article  CAS  Google Scholar 

  • Schmidt GW and Mishkind ML (1983) Rapid degradation of unassembled ribulose-1,5-bisphosphate carboxylase small subunits in chloroplasts. Proc NatlAcad Sci USA 80: 2632–2636

    CAS  Google Scholar 

  • Schmidt GW and Mishkind ML (1986) The transport of proteins into chloroplasts. Annu Rev Biochem 55: 879–912

    Article  CAS  PubMed  Google Scholar 

  • Schmidt GW, Devillers-Thiery A, Desruisseaux H, Blobel G and Chua NH (1979) NH2-terminal amino acids equences of precursor and mature forms of the ribulose-1,5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii. J Cell Biol 83: 615–622

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Knight S, Andersson I, Brändén CI, Lindqvist Y and Lundqvist T (1990) Comparison of the crystal structures of L2 and L8S8 Rubiscosuggests a functional role for the small subunit. EMBO J 9: 2045–2050

    CAS  PubMed  Google Scholar 

  • Schneider G, Lindqvist Y and Brändén CI (1992) Rubisco: Structure and mechanism. Annu Rev Biophys Biomol Struct 21: 119–143

    Article  CAS  PubMed  Google Scholar 

  • Schreuder HA, Knight S, Curmi MG, Andersson I, Cascio D, Brändén CI and Eisenberg D (1993) Formation of the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase by a disorder-order transition from the unactivated to the activated form. Proc Natl Acad Sci USA 90: 9968–9972

    CAS  PubMed  Google Scholar 

  • Shikanai T, Foyer CH, Dulieu H, Parry MAJ and Yokota A (1996) Apoint mutation in the gene encoding the Rubisco large subunit interferes with holoenzyme assembly. Plant Mol Biol 31: 399–403

    Article  CAS  PubMed  Google Scholar 

  • Soper TS, Larimer FW, Mural RJ, Lee EH and Hartman FC (1992) Role of asparagine-111 at theactive site of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum as explored by site-directed mutagenesis. J Biol Chem 267: 8452–8457

    CAS  PubMed  Google Scholar 

  • Spalding MH, Spreitzer RJ and Ogren WL (1985) Use of mutants in the analysis of the CO2-concentrating pathway of Chlamydomonas reinhardtii. In: Lucas WJ and Berry JA (eds) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms, pp 361–375. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Spreitzer RJ (1993) Genetic dissection of Rubisco structure and function. Annu Rev Plant Physiol Plant Mol Biol 44: 411–434

    Article  CAS  Google Scholar 

  • Spreitzer RJ and Chastain CJ (1987) Heteroplasmic suppression of an amber mutation in the Chlamydomonas chloroplast gene that encodes the large subunit of ribulosebisphosphate carboxylase/oxygenase. Curr Genet 11: 611–616

    Article  CAS  Google Scholar 

  • Spreitzer RJ and Mets L (1980) Non-mendelian mutation affecting ribulose-1,5-bisphosphate carboxylase structure and activity. Nature 285: 114–115

    Article  CAS  Google Scholar 

  • Spreitzer RJ and Mets L (1981) Photosynthesis-deficient mutants of Chlamydomonas with associated light-sensitive phenotypes. Plant Physiol 67: 565–569

    CAS  Google Scholar 

  • Spreitzer RJ and Mets L (1982) An assessment of arsenate selection as a method for obtaining nonphotosynthetic mutants of Chlamydomonas. Genetics 100: 417–425

    CAS  Google Scholar 

  • Spreitzer RJ and Ogren WL (1983a) Nuclear suppressors of the photosensitivity associated with defective photosynthesis in Chlamydomonas reinhardtii. Plant Physiol 71: 35–39

    CAS  Google Scholar 

  • Spreitzer RJ and Ogren WL (1983b) Rapid recovery of chloroplast mutations affecting ribulosebisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Proc NatlAcad Sci USA 80: 6293–6297

    CAS  Google Scholar 

  • Spreitzer RJ, Jordan DB and Ogren WL (1982) Biochemical and genetic analysis of an RuBP carboxylase/oxygenase mutant and revertants of Chlamydomonas reinhardtii. FEBS Lett 148: 117–121

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Chastain CJ and Ogren WL (1984) Chloroplast gene suppression of defective ribulosebisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii: Evidence for stable heteroplasmic genes. Curr Genet 9: 83–89

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Goldschmidt-Clermont M, Rahire M and Rochaix JD (1985a) Nonsensemutations in the Chlamydomonas chloroplast gene that codes for the large subunit of ribulosebisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 82: 5460–5464

    CAS  Google Scholar 

  • Spreitzer RJ, Rahire M and Rochaix JD (1985b) True reversion of a mutation in the chloroplast gene encoding the large subunit of ribulose bisphosphatecarboxylase/oxygenase in Chlamydomonas. Curr Genet 9: 229–231

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Al-Abed SR and Huether MJ (1988a) Temperature-sensitive photosynthesis-deficient mutants of Chlamydomonas reinhardtii. Plant Physiol 86: 773–777

    CAS  Google Scholar 

  • Spreitzer RJ, Brown T, Chen Z, Zhang D and Al-Abed SR (1988b) Missense mutation in the Chlamydomonas chloroplast gene that encodes the Rubisco large subunit. Plant Physiol 86: 987–989

    CAS  Google Scholar 

  • Spreitzer RJ, Thow G, Zhu G, Chen Z, Gotor C, Zhang D and Hong S (1992) Chloroplast and nuclear mutations that affect Rubisco structure and function in Chlamydomonas reinhardtii. In: Murata N (ed) Research in Photosynthesis, Vol 3, pp 593–367. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Spreitzer RJ, Thow G and Zhu G (1995) Pseudoreversion substitution at large-subunit residue 54 influences the CO2/O2 specificity of chloroplast ribulose-bisphosphate carboxylase/oxygenase. Plant Physiol 109: 681–686

    Article  CAS  PubMed  Google Scholar 

  • Tabita FR (1994) The biochemistry and molecular regulation of carbon dioxide metabolism in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 437–467. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tam LW and Lefebvre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135: 375–384

    CAS  PubMed  Google Scholar 

  • Thompson MD, Paavola CD, Lenvik TR and Gantt JS (1995) Chlamydomonas transcripts encoding three divergent plastid chaperonins are heat-inducible. Plant Mol Biol 27: 1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Thow G, Zhu G and Spreitzer RJ (1994) Complementing substitutions within loop regions 2 and 3 of the α/β-barrel active site influence the CO2/O2 specificity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 33: 5109–5114

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Modak HV and Tabita FR (1993) Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase. J Bacteriol 175: 7109–7114

    CAS  PubMed  Google Scholar 

  • Wang ZY, Snyder GW, Esau BD, Portis AR Jr and Ogren WL (1992) Species-dependent variation in the interaction of substrate-boundribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase. Plant Physiol 100: 1858–1862

    CAS  Google Scholar 

  • Winder TL, Anderson JC and Spalding MH (1992) Translational regulation of the large and small subunits of ribulose bisphosphate carboxylase/oxygenase during induction of the CO2-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 98: 1409–1414

    CAS  Google Scholar 

  • Winter P and Herrmann RG (1988) A five-base-pair-deletion in the gene for the large subunit causes the lesion in the ribulose bisphosphate carboxylase/oxygenase-deficient plastome mutant sigma of Oenothera hookeri. Bot Acta 101:68–75

    CAS  Google Scholar 

  • Wurtz EA, Sears BB, Rabert DK, Shepherd HS, Gillham NW and Boynton JE (1979) A specific increase in chloroplast gene mutations following growth of Chlamydomonas in 5-fluorodeoxyuridine. Mol Gen Genet 170: 235–242

    Article  CAS  PubMed  Google Scholar 

  • Yu W and Spreitzer RJ (1992) Chloroplast heteroplasmicity is stabilized by an amber-suppressor tryptophan tRNACUA. Proc Natl Acad Sci USA 89: 3904–3907

    CAS  PubMed  Google Scholar 

  • Zhang D and Spreitzer RJ (1990) Evidence for informational suppression within the chloroplast of Chlamydomonas reinhardtii. Curr Genet 17: 49–53

    Article  CAS  Google Scholar 

  • Zhu G and Spreitzer RJ (1994) Directed mutagenesis of chloroplast ribulose-bisphosphate carboxylase/oxygenase: Substitutions at large subunit asparagine 123 and serine 379 decrease CO2/O2 specificity. J Biol Chem 269: 3952–3956

    CAS  PubMed  Google Scholar 

  • Zhu G and Spreitzer RJ (1996) Directed mutagenesis of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase: Loop-6 substitutions complement for structural stability but decrease catalytic efficiency. J Biol Chem 271: 18494–18498

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Spreitzer, R.J. (1998). Genetic Engineering of Rubisco. In: Rochaix, J.D., Goldschmidt-Clermont, M., Merchant, S. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis and Respiration, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48204-5_27

Download citation

  • DOI: https://doi.org/10.1007/0-306-48204-5_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5174-0

  • Online ISBN: 978-0-306-48204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics