Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 7))

  • 783 Accesses

Summary

The unicellular green alga Chlamydomonas has found widespread use as a model experimental system for diverse studies in cell and molecular biology. The ability of C. reinhardtii to grow heterotrophically with acetate as its sole carbon source has made this species especially useful for investigation of chloroplast biogenesis and function, since mutants unable to carry out photosynthesis are viable. The simple vegetative and sexual cycles are easily manipulated in the laboratory, making this organism a powerful tool for genetic analysis of photosynthesis as well as many other cellular functions. The usual laboratory strain of C. reinhardtii is the descendant ofan isolate made in Massachusetts in 1945. Several additional strains interfertile with this one have been isolated from nature, all from North America, and are providing a useful source of molecular diversity. More than 300 genetic and molecular loci have now been identified in seventeen linkage groups in the nuclear genome. Maps, references, cultures and other resources for Chlamydomonas research are available from the Chlamydomonas Genetics Center and other collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair WS and Sncll WJ (1990) The Chlamydomonas reinhardtii cell wall. Structure, biochemistry and molecular biology. In: Adair, WS, and RP Mecham (eds) Biology of Extracellular Matrix: Organization and Assembly of Plant and Animal Extracellular Matrix, pp 15–84. Academic Press, San Diego

    Google Scholar 

  • Beck CF and Haring MA (1996) Gametic differentiation of Chlamydomonas. Int Rev Cytol 168: 259–302

    CAS  Google Scholar 

  • Bernstein M (1995) Flagellar kinesins: New moves with an old beat. Cell Motil Cytoskeleton 32: 125–128

    Article  CAS  PubMed  Google Scholar 

  • Boudreau E and Turmel M (1996) Extensive gene rearrangements in the chloroplast DNAs of Chlamydomonas species featuring multiple dispersed repeats. Mol Biol Evol 13: 233–243

    CAS  PubMed  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosier JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB and Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538

    CAS  PubMed  Google Scholar 

  • Buchanan MJ, Imam SH, Eskue WA and Snell WJ (1989) Activation of the cell wall degrading protease, lysin, during sexual signalling in Chlamydomonas: The enzyme is stored as an inactive, higher relative molecular mass precursor in the periplasm. J Cell Biol 108: 199–207

    Article  CAS  PubMed  Google Scholar 

  • Buchheim MA, Tunnel M, Zimmer EA, and Chapman RL (1990) Phylogeny of Chlamydomonas (Chlorophyta) based on cladistic analysis of nuclear 18S ribosomal RNA sequence data. J Phycol 26: 689–699

    Google Scholar 

  • Buchheim MA, McAuley MA, Zimmer EA, Theriot EC and Chapman RL (1994) Multiple origins of colonial green flagellates from unicells: Evidence from molecular and organismal characters. Mol Phylogen Evol 3: 322–343

    CAS  Google Scholar 

  • Buchheim MA, Lemieux C, Otis C, Gutell RR, Chapman RL and Tunnel M (1996) Phylogeny of the Chlamydomonadales (Chlorophyceae): A comparison of ribosomal RNA gene sequences from the nucleus and the chloroplast. Mol Phylogenet Evol 5: 391–402

    CAS  PubMed  Google Scholar 

  • Cerutti H, Johnson AM, Gillham NW and Boynton JE (1997a) A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: Integration into the nuclear genome and gene expression. Genetics 145: 97–110

    CAS  PubMed  Google Scholar 

  • Cerutti H, Johnson AM, Gillham NW and Boynton JE (1997b) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9: 925–945

    Article  CAS  PubMed  Google Scholar 

  • Chapman RL and Buchheim MA (1992) Green algae and the evolution of land plants: Inferences from nuclear-encoded rRNA gene sequences. BioSystems 28: 127–137

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW and Mai JC (1997) Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol 45: 168–177

    CAS  PubMed  Google Scholar 

  • Crescitelli F, James TW, Erickson JM, Loew ER and McFarland WN (1992) The eyespot of Chlamydomonas reinhardtii. A comparative microspectrophotometric study. Vision Res 32: 1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Curry AM and Rosenbaum JL (1993) Flagellar radial spoke: A model molecular genetic system for studying organelle assembly. Cell Motil Cytoskeleton 24: 224–232

    Article  CAS  PubMed  Google Scholar 

  • Debuchy R, Purton S and Rochaix J-D (1989) The arginino-succinate lyase gene of Chlamydomonas reinhardtii: An important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EM BO J 8: 2803–2809

    CAS  Google Scholar 

  • Deininger W, Kroeger P, Hegemann U, Lottspeich F and Hegemann P (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14: 5849–5858

    CAS  PubMed  Google Scholar 

  • Dentler W and Witman G (eds) (1995) Cilia and Flagella. Methods in Cell Biology, Vol 47. Academic Press, San Diego

    Google Scholar 

  • Derguini F, Mazur P, Nakanishi K, Starace DM, Saranak J and Foster KW (1991) All-trans retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii. Photochem Photobiol 5: 1017–1022

    Google Scholar 

  • Derzaph TLM and Weger HG (1996) Immunological identification of the alternative oxidase in Chlamydomonas reinhardtii (Chlorophyta). J Phycol 32: 521–523

    Article  Google Scholar 

  • Dutcher SK (1995a) Flagellar assembly in two hundred and fifty casy-to-follow steps. Trends Genet 11: 398–404

    Article  CAS  PubMed  Google Scholar 

  • Dutcher SK (1995b) Mating and tetrad analysis in Chlamydomonas reinhardtii. Methods Cell Biol 47: 531–540

    CAS  PubMed  Google Scholar 

  • Dutcher SK, Power J, Galloway RE and Porter ME (1991) Reappraisal of the genetic map of Chlamydomonas reinhardtii. J Hered 82: 295–301

    CAS  PubMed  Google Scholar 

  • Dutcher SK, Galloway RE, Barclay WR and Poortinga G (1992) Tryptophan analog resistance mutations in Chlamydomonas reinhardtii. Genetics 131: 593–607

    CAS  PubMed  Google Scholar 

  • Eriksson M, Gardeström P and Samuelsson G (1995) Isolation, purification, and characterization of mitochondria from Chlamydomonas reinhardtii. Plant Physiol 107: 479–483

    CAS  PubMed  Google Scholar 

  • Ettl H (1976) Die Gattung Chlamydomonas Ehrenberg. Beihefte zur Nova Hedwigia 49. J. Cramer, Vaduz

    Google Scholar 

  • Ettl H and Schlösser UG (1992) Towards a revision of the systematics of the genus Chlamydomonas Chlorophyta. 1. Chlamydomonas applanata Pringsheim. Bot Acta 105: 323–330

    Google Scholar 

  • Ferris PJ (1989) Characterization of a Chlamydomonas transposon, Gulliver, resembling those in higher plants. Genetics 122: 363–377

    CAS  PubMed  Google Scholar 

  • Ferris PJ and Goodenough UW (1994) The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell 76: 1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Ferris PJ and Goodenough UW (1997) Mating type in Chlamydomonas is specified by mid, the minus-dominance gene. Genetics 146: 859–869.

    CAS  PubMed  Google Scholar 

  • Ferris PJ, Woessner JP and Goodenough UW (1996) A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii. Mol Biol Cell 7: 1235–1248

    CAS  PubMed  Google Scholar 

  • Fujiwara S, Ishida N and Tsuzuki M (1996) Circadian expression of the carbonic anhydrase gene, Cah1, in Chlamydomonas reinhardtii. Plant Mol Biol 32: 745–749

    Article  CAS  PubMed  Google Scholar 

  • Geraghty AM and Spalding MH (1996) Molecular and structural changes in Chlamydomonas under limiting CO12—A possible mitochondrial role in adaptation. Plant Physiol 111: 1339–1347

    CAS  PubMed  Google Scholar 

  • Gloeckner G and Beck CF (1995) Genes involved in light control of sexual differentiation in Chlamydomonas reinhardtii. Genetics 141: 937–943

    CAS  PubMed  Google Scholar 

  • Gloeckner G and Beck CF (1997) Cloning and characterization of LRG5, a gene involved in blue light signaling in Chlamydomonas gametogenesis. Plant J 12: 677–683

    Google Scholar 

  • Goodenough UW (1992) Green yeast. Cell 70: 533–538

    Article  CAS  PubMed  Google Scholar 

  • Goodenough UW and Heuser JE (1985) The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J Cell Biol 101: 1550–1568

    CAS  PubMed  Google Scholar 

  • Goodenough UW, Armbrust EV, Campbell AM and Ferris PJ (1995) Molecular genetics of sexuality in Chlamydomonas. Annu Rev Plant Physiol Plant Mol Biol 46: 21–44

    Article  CAS  Google Scholar 

  • Goto K and Johnson CH (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol 129: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Gowans CS (1963) The conspccificity of Chlamydomonas eugametos and Chlamydomonas moewusii: An experimental approach. Phycologia 3: 37–44

    Google Scholar 

  • Gross CH, Ranum LPW and Lefebvre PA (1988) Extensive restriction fragment length polymorphisms in a new isolate of Chlamydomonas reinhardtii. Curr Genet 13: 503–508

    Article  CAS  PubMed  Google Scholar 

  • Hails T. Jobling M and Day A (1993) Large arrays of tandemly repeated DNA sequences in the green alga Chlamydomonas reinhardtii. Chromosoma 102: 500–507

    Article  CAS  PubMed  Google Scholar 

  • Hall JL and Luck D (1995) Basal body-associated DNA: In situ studies in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 92: 5129–5133

    CAS  PubMed  Google Scholar 

  • Hall JL, Ramanis Z and Luck DJL (1989) Basal body/centriolar DNA: Molecular genetic studies in Chlamydomonas. Cell 59: 121–132

    CAS  PubMed  Google Scholar 

  • Hall LM, Taylor KB and Jones DD (1993) Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 124: 75–81

    Article  CAS  PubMed  Google Scholar 

  • Harper J, Wu L, Sakuanrungsirikul S and John P (1995) Isolation and partial characterization of conditional cell division cycle mutants in Chlamydomonas. Protoplasma 186: 149–162

    Article  Google Scholar 

  • Harris EH (1989) The Chlamydomonas Sourcebook. A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego

    Google Scholar 

  • Harris EH (1993) Chlamydomonas reinhardtii. In: O’Brien SJ (ed) Genetic Maps. Locus Maps of Complex Genomes, 6th edition, pp 2.157–2.169. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Harris EH, Boynton JE, Gillham NW, Burkhart BD and Newman SM (1991) Chloroplast genome organization in Chlamydomonas. Arch Protistenk 139: 183–192

    Google Scholar 

  • Hegemann P (1997) Vision in microalgae. Planta 203: 265–274

    Article  CAS  PubMed  Google Scholar 

  • Holland EM, Braun FJ, Nonnengaesser C, Harz H and Hegemann P (1996) Nature of rhodopsin-triggered photocurrents in Chlamydomonas. 1. Kinetics and influence of divalentions. Biophys J 70: 924–931

    CAS  PubMed  Google Scholar 

  • Holland EM, Harz H, Uhl R and Hegemann P (1997) Control of phobic behavioral responses by rhodopsin-induced photo-currents in Chlamydomonas. Biophys J 73: 1395–1401.

    CAS  PubMed  Google Scholar 

  • Holmes JA, Johnson DE and Dutcher SK (1993) Linkage group XIX of Chlamydomonas reinhardtii has a linear map. Genetics 133: 865–874

    CAS  PubMed  Google Scholar 

  • Hoshaw RW (1965) Mating types of Chlamydomonas from the collection of Gilbert M. Smith. J Phycol 1: 194–196

    Google Scholar 

  • Hoshaw RW and Ettl H (1966) Chlamydomonas smithii sp. nov.-a Chlamydomonad interfertile with Chlamydomonas reinhardtii. J Phycol 2: 93–96

    Google Scholar 

  • Howell SH and Naliboff JA (1973) Conditional mutants in Chlamydomonas reinhardtii blocked in the vegetative cell cycle. I. An analysis of cell cycle block points. J Cell Biol 57: 760–772

    Article  CAS  PubMed  Google Scholar 

  • Hutner SH and Provasoli L (1951) The phytoflagellates. In: Lwoff A (ed) Biochemistry and Physiology of Protozoa, Vol 1, pp 27–128. Academic Press, New York

    Google Scholar 

  • Hwang S, Kawazoe R and Herrin DL (1996) Transcription of tufA and other chloroplast-encoded genes is controlled by a circadian clock in Chlamydomonas. Proc Natl Acad Sci USA 93: 996–1000

    CAS  PubMed  Google Scholar 

  • Jacobshagen S, Kindle KL and Johnson CH (1996) Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. Plant Mol Biol 31: 1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Jarvik JW and Suhan JP (1991) The role of the flagellar transition region: Inferences from the analysis of a Chlamydomonas mutant with defective transition region structures. J Cell Sci 99: 731–740

    Google Scholar 

  • Johnson DE and Dutcher SK (1991) Molecular studies of linkage group XIX of Chlamydomonas reinhardtii: Evidence against a basal body location. J Cell Biol 113: 339–346

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA (1995) Keeping the beat: Form meets function in the Chlamydomonas flagellum. BioEssays 17: 847–854

    Article  Google Scholar 

  • Johnson KA and Rosenbaum JL (1990) The basal bodies of Chlamydomonas reinhardtii do not contain immunologically detectable DNA. Cell 62: 339–346

    Google Scholar 

  • Johnson KA and Rosenbaum JL (1992) Replication of basal bodies and centrioles. Curr Opin Cell Biol 4: 80–85

    CAS  PubMed  Google Scholar 

  • Johnson KA and Rosenbaum JL (1993) Flagellar regeneration in Chlamydomonas: A model system for studying organelle assembly. Trends Cell Biol 3: 156–161

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 1228–1232

    CAS  PubMed  Google Scholar 

  • Kindle KL, Schnell RA, Fernández E and Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109: 2589–2601

    Article  CAS  PubMed  Google Scholar 

  • Kreimer G (1994) Cell biology of phototaxis in flagellate algae. Int Rev Cytol 148: 229–310

    Google Scholar 

  • Kroeger P and Hegemann P (1994) Photophobic responses and phototaxis in Chlamydomonas arc triggered by a single rhodopsin photoreceptor. FEBS Lett 341: 5–9

    CAS  Google Scholar 

  • Kurvari V (1997) Cell wall biogenesis in Chlamydomonas: Molecular characterization of a novel protein whose expression is up-regulated during matrix formation. Mol Gen Genet 256: 572–580

    CAS  PubMed  Google Scholar 

  • Lawson MA and Satir P (1994) Characterization of the eyespot regions of ‘blind’ Chlamydomonas mutants after restoration of photophobic responses. J Euk Microbiol 41: 593–601

    CAS  PubMed  Google Scholar 

  • Lechtreck KF and Melkonian M (1991) An update on fibrous flagellar roots in green algae. Protoplasma 164: 38–44

    Article  Google Scholar 

  • Lechtreck KF and Silflow CD (1997) SF-assemblin in Chlamydomonas: Sequence conservation and localization during the cell cycle. Cell Motil Cytoskeleton 36: 190–201

    Article  CAS  PubMed  Google Scholar 

  • Lemieux B, Tunnel M and Lemieux C (1985) Chloroplast DNA variation in Chlamydomonas and its potential application to the systematics of this genus. BioSystems 18: 293–298

    Article  CAS  PubMed  Google Scholar 

  • Levine RP (1969) The analysis of photosynthesis using mutant strains of algae and higher plants. Annu Rev Plant Physiol 20: 523–540

    Article  CAS  Google Scholar 

  • Levine RP and Goodenough UW (1970) The genetics of photosynthesis and the chloroplast in Chlamydomonas reinhardi. Annu Rev Genet 4: 397–408

    Article  CAS  PubMed  Google Scholar 

  • Lewin RA (1949) Genetics of Chlamydomonas—paving the way. Biol Bull 97: 243–244

    Google Scholar 

  • Lewin RA (1951) Isolation of sexual strains of Chlamydomonas. J Gen Microbiol 5: 926–929

    CAS  PubMed  Google Scholar 

  • Lewin RA (1952) Ultraviolet induced mutations in Chlamydomonas moewusii Gerloff. J Gen Microbiol 6: 233–248

    CAS  PubMed  Google Scholar 

  • Lewin RA (1953) The genetics of Chlamydomonas moewusii Gerloff. J Genet 51: 543–560

    Google Scholar 

  • Lewin RA (1954) Mutants of Chlamydomonas moewusii with impaired motility. J Gen Microbiol 11: 358–363

    CAS  PubMed  Google Scholar 

  • Liss M, Kirk DL, Beyser K and Fabry S (1997) Intron sequences provide a tool for high-resolution phylogenetic analysis of volvocine algae. Curr Genet 31: 214–227

    Article  CAS  PubMed  Google Scholar 

  • Luykx P, Hoppenrath M, Robinson DG (1997) Structure and behavior of contractile vacuoles in Chlamydomonas reinhardtii. Protoplasma 198: 73–84.

    Article  Google Scholar 

  • Matsuda Y (1988) The Chlamydomonas cell walls and their degrading enzymes. Japan J Phycol 36: 246–264

    CAS  Google Scholar 

  • Matsuda Y, Shimada T and Sakamoto Y (1992) Ammonium ions control gametic differentiation and dedifferentiation in Chlamydomonas reinhardtii. Plant Cell Physiol 33: 909–914

    CAS  Google Scholar 

  • Musgrave A (1993) Mating in Chlamydomonas. Prog Phycol Res 9: 193–237

    CAS  Google Scholar 

  • Nonnengaesser C, Holland EM, Harz H and Hegemann P (1996) The nature of rhodopsin-triggered photocurrents in Chlamydomonas. 2. Influence of monovalentions. Biophys J 70: 932–938

    CAS  Google Scholar 

  • Pan JM, Having MA and Beck CF (1997) Characterization of blue light signal transduction chains that control development and maintenance of sexual competence in Chlamydomonas reinhardtii. Plant Physiol 115: 1241–1249

    CAS  PubMed  Google Scholar 

  • Pazour GJ, Sineshchekov OA and Witman GB (1995) Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol 131: 427–440.

    Article  CAS  PubMed  Google Scholar 

  • Porter ME (1996) Axonemal dyneins: Assembly, organization, and regulation. Curr Opin Cell Biol 8: 10–17

    Article  CAS  PubMed  Google Scholar 

  • Porter ME, Knott JA, Myster SH and Farlow SJ (1996) The dynein gene family in Chlamydomonas reinhardtii. Genetics 144: 569–585

    CAS  PubMed  Google Scholar 

  • Pringsheim EG (1937) Beiträge zur Physiologie saprotropher Algen und Flagellaten. 3. Mitteilung: Die Stellung der Azetatflagellaten in einem physiologischen Ernährungssystem. Planta 27: 61–72

    Article  CAS  Google Scholar 

  • Quarmby LM (1994) Signal transduction in the sexual life of Chlamydomonas. Plant Mol Biol 26: 1271–1287

    Article  CAS  PubMed  Google Scholar 

  • Ramanis Z and Luck DJL (1986) Loci affecting flagellar assembly and function map to an unusual linkage group in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 83: 423–426

    CAS  PubMed  Google Scholar 

  • Ranum LPW, Thompson MD, Schloss JA, Lefebvre PA and Silflow CD (1988) Mapping flagellar genes in Chlamydomonas using restriction fragment length polymorphisms. Genetics 120: 109–122

    CAS  PubMed  Google Scholar 

  • Rochaix J-D (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29: 209–230

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Zeyl C, Bell G, Sharbel T, Reboud X, Bernhardt T and Koelewyn H (1994) Isolation of four news trains of Chlamydomonas reinhardtii (Chlorophyta) from soil samples. J Phycol 30: 770–773

    Article  CAS  Google Scholar 

  • Sager R (1954) Mendelian and non-Mendelian inheritance of streptomycin resistance in Chlamydomonas reinhardi. Proc Natl Acad Sci USA 40: 356–363

    Google Scholar 

  • Sager R (1955) Inheritance in the green alga Chlamydomonas reinhardi. Genetics 40: 476–489

    Google Scholar 

  • Sager R and Granick S (1953) Nutritional studies with Chlamydomonas reinhardi. Ann New York Acad Sci 56: 831–838

    CAS  Google Scholar 

  • Sager R and Granick S (1954) Nutritional control of sexuality in Chlamydomonas reinhardi. J Gen Physiol 37: 729–742

    Article  CAS  PubMed  Google Scholar 

  • Sager R and Palade GE (1954) Chloroplast structure in green and yellow strains of Chlamydomonas. Exp Cell Res 7: 584–588

    CAS  PubMed  Google Scholar 

  • Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7: 39–45

    CAS  PubMed  Google Scholar 

  • Savard F, Richard C and Guertin M (1996) The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI/II genes that is regulated during the cellcycle and in response to illumination. Plant Mol Biol 32: 461–473

    Article  CAS  PubMed  Google Scholar 

  • Schlösser UG (1994) SAG—Sammlung von Algenkulturen at the University of Göttingen. Bot Acta 107: 111–186

    Google Scholar 

  • Schlösser UG, Sachs H and Robinson DG (1976) Isolation of protoplasts by means of a’ species-specific’ autolysine in Chlamydomonas. Protoplasma 88: 51–64.

    Article  PubMed  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A and Usuda H (1998) High efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics, in press

    Google Scholar 

  • Sizova IA, Lapina TV, Frolova ON, Alexandrova NN, Akopiants KE and Danilenko VN (1996) Stable nuclear transformation of Chlamydomonas reinhardtii with a Streptomyces rimosus gene as the selective marker. Gene 181: 13–18

    Article  CAS  PubMed  Google Scholar 

  • Smith GM (1946) The nature of sexuality in Chlamydomonas. Amer J Bot 33: 625–630

    Google Scholar 

  • Smith EF and Lefebvre PA (1997) The role of central apparatus components in flagellar motility and microtubule assembly. Cell Motil Cytoskeletonj 38: 1–8

    CAS  Google Scholar 

  • Smith GM and Regnery DC (1950) Inheritance of sexuality in Chlamydomonas reinhardii. Proc Natl Acad Sci USA 36: 246–248

    Google Scholar 

  • Spanier JG, Graham JE and Jarvik JW (1992) Isolation and preliminary characterisation of three Chlamydomonas strains interfertile with Chlamydomonas reinhardtii (Chlorophyta). J Phycol 28: 822–828

    Article  Google Scholar 

  • Spessert R and Waffenschmidt S (1990) Studies on the vegetative autolysin during the vegetative life cycle in Chlamydomonas reinhardtii. Eur J Cell Biol 51: 17–22

    Google Scholar 

  • Spreitzer RJ and Mets L (1981) Photosynthesis-deficient mutants of Chlamydomonas reinhardii with associated light-sensitive phenotypes. Plant Physiol 67: 565–569

    CAS  Google Scholar 

  • Starr RC and Zeikus JA (1993) UTEX—the culture collection of algae at the University of Texas at Austin. J Phycol 29 suppl: 1–106

    Article  Google Scholar 

  • Stevens DR, Rochaix JD and Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251: 23–30

    CAS  PubMed  Google Scholar 

  • Taillon BE, Adler SA, Suhan JP and Jarvik JW (1992) Mutational analysis of centrin: An EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas. J Cell Biol 119: 1613–1624

    Article  CAS  PubMed  Google Scholar 

  • Tam LW and Lefebvre PA (1995) Insertional mutagenesis and isolation of tagged genes in Chlamydomonas. Methods Cell Biol 47: 519–523

    CAS  PubMed  Google Scholar 

  • van den Ende H (1994) Vegetative and gametic development in the green alga Chlamydomonas. Adv Bot Res 20: 125–161

    Google Scholar 

  • van den Ende H (1995) Sexual development in the homothallic green alga Chlamydomonas monoica Strehlow. Sexual Plant Reprod 8: 139–142

    Article  Google Scholar 

  • Van Winkle-Swift KP and Aubert B (1983) Uniparental inheritance in a homothallic alga. Nature 303: 167–169

    Google Scholar 

  • Van Winkle-Swift KP and Hahn JH (1986) The search for mating-type-limited genes in the homothallic alga Chlamydomonas monoica. Genetics 113: 601–619

    Google Scholar 

  • Voigt J, Hinkelmann B, Liebich I and Mix M (1996) Alteration of the cell surface during the vegetative cell cycle of the unicellular green alga Chlamydomonas reinhardtii. Plant Cell Physiol 37: 726–733

    CAS  Google Scholar 

  • Voigt J, Hinkelmann B and Harris EH (1997) Production of cell wall polypeptides by different cell wall mutants of the unicellular green alga Chlamydomonas reinhardtii. Microbiol Res 152: 189–198

    CAS  PubMed  Google Scholar 

  • Waffenschmidt S, Woessner JP, Beer K and Goodenough UW (1993) Isodityrosine cross-linking mediates insolubilization of cell walls in Chlamydomonas. Plant Cell 5: 809–820

    Article  CAS  PubMed  Google Scholar 

  • Walne PL and Gualtieri P (1994) Algal visual proteins: An evolutionary point of view. Crit Rev Plant Sci 13: 185–197

    CAS  Google Scholar 

  • Weger HG (1996) Interactions between respiration and inorganic phosphate uptake in phosphate-limited cells of Chlamydomonas reinhardtii. Physiol Plant 97: 635–642

    Article  CAS  Google Scholar 

  • Weger HG, Chadderton AR, Lin M, Guy RD and Turpin DH (1990) Cytochrome and alternative pathway respiration during transient ammonium assimilation by N-limited Chlamydomonas reinhardtii. Plant Physiol 94: 1131–1136

    CAS  Google Scholar 

  • Wilson NF, Foglesong MJ, Snell WJ (1997) The Chlamydomonas mating type plus fertilization tubule, a prototypic cell fusion organelle: Isolation, characterization, and in vitro adhesion to mating type minus gametes. J Cell Biol 137: 1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Witman GB (1993) Chlamydomonas phototaxis. Trends Cell Biol 3: 403–408

    Article  CAS  PubMed  Google Scholar 

  • Woessner JP and Goodenough UW (1989) Molecular characterization of a zygote wall protein: An extensin-like molecule in Chlamydomonas reinhardtii. Plant Cell 1: 901–911

    Article  CAS  PubMed  Google Scholar 

  • Woessner JP and Goodenough UW (1992) Zygote and vegetative cell wall proteins in Chlamydomonas reinhardtii share a common epitope, (SerPro)x. Plant Sci 83: 65–76.

    Article  CAS  Google Scholar 

  • Woessner JP and Goodenough UW (1994) Volvocine cell walls and their constituent glycoproteins: An evolutionary perspective. Protoplasma 181: 245–258

    Article  Google Scholar 

  • Woessner JP, Molendijk AJ, Van Egmond P, Klis FM, Goodenough UW and Haring MA (1994) Domain conservation in several volvocalean cell wall proteins. Plant Mol Biol 26: 947–960

    Article  CAS  PubMed  Google Scholar 

  • Wu LP, Hepler PK, John PCL (1997) The met 1 mutation in Chlamydomonas reinhardtii causes arrest at mitotic metaphase with persisting p34cdc2-like H1 histone kinase activity that can promote mitosis when injected into higher-plant cells. Protoplasma 199: 135–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Harris, E.H. (1998). Introduction to Chlamydomonas. In: Rochaix, J.D., Goldschmidt-Clermont, M., Merchant, S. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis and Respiration, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48204-5_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48204-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5174-0

  • Online ISBN: 978-0-306-48204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics