Advertisement

Acclimation to Hypoxia in Mammals: Preconditioning

Summary

Ischemic preconditioning is a particularly important phenomenon in heart and brain and is defined by models of tissue protection whereby a brief mild ischemic episode protects a tissue from a later more severe ischemic insult. The molecular pathways that underlie this tissue protection are best understood in heart but, for late preconditioning in particular, the pathways in heart and brain appear very similar. KATP channels of the plasma membrane or the mitochondria play a role as an effector of tissue protection by responding to a variety of upstream triggers including adenosine receptor activation, NO generation and reactive oxygen species. Protein kinase C isoform specific activation has been implicated as part of a major signal transduction pathway for preconditioning that may in turn signal through a downstream ERK pathway. In the oxygen glucose deprivation model of neuronal preconditioning activation of the NMDA receptor, calcium influx and generation of NO leads to activation of the an alternative pathway for preconditioning; the Ras pathway. Thus alternative activators including adenosine receptor agonists, growth factors and reactive oxygen species, will elicit protection through downstream signaling pathways such as the Ras or PKC pathways. Recent studies on VEGF expression in brain illustrate how such protective signaling pathways may also translate their lasting functional effects through regulation of synthesis and release of neuroprotective growth factors.

Keywords

Adenosine Receptor KATP Channel Ischemic Precondition Myocardial Stunning Ischemic Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auchampach JA, Grover GJ, Gross GJ. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res. 1992 Nov;26(11):1054–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Auchampach JA, Rizvi A, Qiu Y, Tang XL, Maldonado C, Teschner S, Bolli R. Selective activation of A3 adenosine receptors with N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits. Circ Res. 1997 Jun;80(6):800–9.PubMedGoogle Scholar
  3. 3.
    Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997 Jan;29(1):207–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Baines CP, Liu GS, Birincioglu M, Critz SD, Cohen MV, Downey JM. Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. Am J Physiol. 1999 Apr;276(4 Pt 2):H1361–8.PubMedGoogle Scholar
  5. 5.
    Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9328–32.PubMedGoogle Scholar
  6. 6.
    Bolli R The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview. Basic Res Cardiol. 1996 Jan–Feb; 91(1):57–63.PubMedGoogle Scholar
  7. 7.
    Bolli R. The late phase of preconditioning. Circ Res. 2000 Nov 24;87(11):972–83.PubMedGoogle Scholar
  8. 8.
    Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, Zhang Q, Jadoon AK. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as atrigger and as a mediator of the late phase of ischemic preconditioning. Circ Res. 1997 Dec;81(6):1094–107.PubMedGoogle Scholar
  9. 9.
    Cobbs CS, Chen J, Greenberg DA, Graham SH. Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett. 1998 Jun 19;249(2–3):79–82.PubMedGoogle Scholar
  10. 10.
    Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: from adenosine receptor of KATP channel. Annu Rev Physiol. 2000;62:79–109.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen MV, Yang XM, Downey JM. Conscious rabbits become tolerant to multiple episodes of ischemic preconditioning. Circ Res. 1994 May;74(5):998–1004.PubMedGoogle Scholar
  12. 12.
    Currie RW, Karmazyn M, Kloc M, Mailer K. Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res. 1988 Sep;63(3):543–9.PubMedGoogle Scholar
  13. 13.
    Dawson VL, Dawson TM. Neuronal ischaemic preconditioning. Trends Pharmacol Sci. 2000 Nov;21(11):423–4.PubMedCrossRefGoogle Scholar
  14. 14.
    de Weille JR, Schmid-Antomarchi H, Fosset M, Lazdunski M. Regulation of ATP-sensitive K+ channels in insulinoma cells: activation by somatostatin and protein kinase C and the role of cAMP. Proc Natl Acad Sci U S A 1989 Apr;86(8):2971–5.PubMedGoogle Scholar
  15. 15.
    Dunne MJ, Bullett MJ, Li GD, Wollheim CB, Petersen OH. Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. EMBO J 1989 Feb;8(2):413–20PubMedGoogle Scholar
  16. 16.
    Fredholm BB, Dunwiddie TV. How does adenosine inhibit transmitter release? Trends Pharmacol Sci 1988 Apr;9(4):130–4PubMedCrossRefGoogle Scholar
  17. 17.
    Furukawa K, Mattson MP. The transcription factor NF-kappa B mediates increases in calcium currents and decreases in NMDA-and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem. 1998 May;70(5):1876–86.PubMedGoogle Scholar
  18. 18.
    Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res. 1997 Dec;81(6):1072–82.PubMedGoogle Scholar
  19. 19.
    Ghosh S, Strum JC, Bell RM. Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J. 1997 Jan;11(1):45–50PubMedGoogle Scholar
  20. 20.
    Gidday JM, Shah AR, Maceren RG, Wang Q, Pelligrino DA, Holtzman DM, Park TS. Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 1999 Mar;19(3):331–40PubMedGoogle Scholar
  21. 21.
    Gonzalez-Zulueta M, Feldman AB, Klesse LJ, Kalb RG, Dillman JF, Parada LF, Dawson TM, Dawson VL. Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc Natl Acad Sci U S A 2000 Jan 4;97(1):436–41PubMedCrossRefGoogle Scholar
  22. 22.
    Goodman Y, Mattson MP. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid beta-peptide toxicity. J Neurochem. 1996 Feb;66(2):869–72.PubMedGoogle Scholar
  23. 23.
    Grabb MC, Choi DW. Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci 1999 Mar 1; 19(5): 1657–62PubMedGoogle Scholar
  24. 24.
    Gross GJ, Auchampach JA Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res. 1992 Feb;70(2):223–33.PubMedGoogle Scholar
  25. 25.
    Grover GJ, D’Alonzo AJ, Hess T, Sleph PG, Darbenzio RB. Glyburide-reversible cardioprotective effect of BMS-180448 is independent of action potential shortening. Cardiovasc Res. 1995 Nov;30(5):731–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11507–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Hayashi T, Abe K, Suzuki H, Itoyama Y. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke. 1997 Oct;28(10):2039–44.PubMedGoogle Scholar
  28. 28.
    Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A 1995 May 9;92(10):4666–70PubMedGoogle Scholar
  29. 29.
    Hide EJ, Thiemermann C. Limitation of myocardial infarct size in the rabbit by ischaemic preconditioning is abolished by sodium 5-hydroxydecanoate. Cardiovasc Res. 1996 Jun;31(6):941–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaszala K, Vegh A, Papp JG, Parratt JR. Time course of the protection against ischaemia and reperfusion-induced ventricular arrhythmias resulting from brief periods of cardiac pacing. J Mol Cell Cardiol. 1996 Oct;28(10):2085–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Kawata H, Yoshida K, Kawamoto A, Kurioka H, Takase E, Sasaki Y, Hatanaka K, Kobayashi M, Ueyama T, Hashimoto T, Dohi K. Ischemic preconditioning upregulates vascular endothelial growth factor mRNA expression and neovascularization via nuclear translocation of protein kinase C epsilon in the rat ischemic myocardium. Circ Res. 2001 Apr 13;88(7):696–704.PubMedGoogle Scholar
  32. 32.
    Kim SJ, Kahn CR. Insulin regulation of mitogen-activated protein kinase kinase (MEK), mitogen-activated protein kinase and casein kinase in the cell nucleus: a possible role in the regulation of gene expression. Biochem J 1997 May 1;323(Pt 3):621–7PubMedGoogle Scholar
  33. 33.
    Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990 Sep;259(3 Pt 2):H820–6PubMedGoogle Scholar
  34. 34.
    Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 1994 May 6;77(3):325–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Kovacs Z, Ikezaki K, Samoto K, Inamura T, Fukui M. VEGF and flt. Expression time kinetics in rat brain infarct. Stroke. 1996 Oct;27(10):1865–72; discussion 1872–3.PubMedGoogle Scholar
  36. 36.
    Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993 Jun;72(6):1293–9.PubMedGoogle Scholar
  37. 37.
    Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol. 1998 Sep;57(9):874–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999 Oct;79(4):1431–568PubMedGoogle Scholar
  39. 39.
    Liu J, Ginis I, Spatz M, Hallenbeck JM. Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 2000 Jan;278(1):C144–53PubMedGoogle Scholar
  40. 40.
    Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K. Activation of NF-kappa B protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res. 1997 Sep 15;49(6):681–97.PubMedCrossRefGoogle Scholar
  41. 41.
    McCullough JR, Normandin DE, Conder ML, Sleph PG, Dzwonczyk S, Grover GJ. Specific block of the anti-ischemic actions of cromakalim by sodium 5-hydroxydecanoate. Circ Res. 1991 Oct;69(4):949–58.PubMedGoogle Scholar
  42. 42.
    Miki T, Cohen MV, Downey JM. Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits. Mol Cell Biochem. 1998 Sep;186(1–2):3–12.PubMedGoogle Scholar
  43. 43.
    Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee A. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res. 1995 Jan;76(1):73–81.PubMedGoogle Scholar
  44. 44.
    Parratt JR. Protection of the heart by ischaemic preconditioning: mechanisms and possibilities for pharmacological exploitation. Trends Pharmacol Sci. 1994 Jan;15(1):19–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Pichiule P, Chavez JC, Xu K, LaManna JC. Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain. Brain Res Mol Brain Res. 1999 Dec 10;74(1–2):83–90.PubMedGoogle Scholar
  46. 46.
    Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC, Banerjee S, Dawn B, Balafonova Z, Bolli R. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res. 1999 Mar 19;84(5):587–604.PubMedGoogle Scholar
  47. 47.
    Ping P, Zhang J, Cao X, Li RC, Kong D, Tang XL, Qiu Y, Manchikalapudi S, Auchampach JA, Black RG, Bolli R. PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol 1999 May;276(5 Pt 2):H1468–81PubMedGoogle Scholar
  48. 48.
    Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R. Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res. 1997 Sep;81(3):404–14.PubMedGoogle Scholar
  49. 49.
    Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, Takano H, Balafanova Z, Bolli R. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res. 1999 Sep 17;85(6):542–50.PubMedGoogle Scholar
  50. 50.
    Prosser, C. L., Barr, L. M., Pinc, R. D., and Lauer, C. Y. 1957. Acclimation of goldfish to low concentrations of oxygen. Physiol. Zool. 30, 137–141.Google Scholar
  51. 51.
    Qiu Y, Rizvi A, Tang XL, Manchikalapudi S, Takano H, Jadoon AK, Wu WJ, Bolli R. Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol. 1997 Dec;273(6Pt 2):H2931–6.PubMedGoogle Scholar
  52. 52.
    Routley, M. H., Nilsson, G. E., and Renshaw, G. M. C. Exposure to hypoxia primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia. Comp. Biochem. Physiol. A, in press.Google Scholar
  53. 53.
    Rubino A, Yellon DM. Ischaemic preconditioning of the vasculature: an overlooked phenomenon for protecting the heart? Trends Pharmacol Sci 2000 Jun;21(6):225–30PubMedCrossRefGoogle Scholar
  54. 54.
    Shamloo M, Rytter A, Wieloch T. Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 1999;93(1):81–8PubMedCrossRefGoogle Scholar
  55. 55.
    Shinmura K, Tang XL, Wang Y, Xuan YT, Liu SQ, Takano H, Bhatnagar A, Bolli R. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10197–202.PubMedCrossRefGoogle Scholar
  56. 56.
    Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev. 1999 Jun;10(2):119–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Strohm C, Barancik T, Bruhl ML, Kilian SA, Schaper W. Inhibition of the ER-kinase cascade by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J Cardiovasc Pharmacol 2000 Aug;36(2):218–29PubMedGoogle Scholar
  58. 58.
    Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res. 1998 Jul 13;83(1):73–84.PubMedGoogle Scholar
  59. 59.
    Takano H, Tang XL, Bolli R. Differential role of K(ATP) channels in late preconditioning against myocardial stunning and infarction in rabbits. Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2350–9.PubMedGoogle Scholar
  60. 60.
    Takano H, Bolli R, Black RG Jr, Kodani E, Tang XL, Yang Z, Bhattacharya S, Auchampach JA. A(1) or A(3) adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms. Circ Res. 2001 Mar 16;88(5):520–8.PubMedGoogle Scholar
  61. 61.
    Thornton JD, Liu GS, Olsson RA, Downey JM. Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation. 1992 Feb;85(2):659–65.PubMedGoogle Scholar
  62. 62.
    Xuan YT, Tang XL, Qiu Y, Banerjee S, Takano H, Han H, Bolli R. Biphasic response of cardiac NO synthase isoforms to ischemic preconditioning in conscious rabbits. Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2360–71.PubMedGoogle Scholar
  63. 63.
    Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med. 1999 Jun 7;189(11):1699–706.PubMedCrossRefGoogle Scholar
  64. 64.
    Yang XM, Baxter GF, Heads RJ, Yellon DM, Downey JM, Cohen MV. Infarct limitation of the second window of protection in a conscious rabbit model. Cardiovasc Res. 1996 May;31(5):777–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation. 1994 Apr;89(4):1769–75.PubMedGoogle Scholar
  66. 66.
    Ytrehus K, Liu Y, Downey JM. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol. 1994 Mar;266(3 Pt 2):H1145–52.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Personalised recommendations