Skip to main content

The Brain in Crisis

  • Chapter
The Brain Without Oxygen
  • 211 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K, Aoki M, Kawagoe J, Yoshida T, Hattori A, Kogure K, Itoyama Y. Ischemic delayed neuronal death, a mitochondrial hypothesis. Stroke 1995; 26:1478–1489.

    PubMed  CAS  Google Scholar 

  2. Andine P, Orwar O, Jacobson I, Sandberg M, Hagberg H. Changes in extracellular amino acids and spontaneous neuronal activity during ischemia and extended reflow in the CA1 of the rat hippocampus. J Neurochem 1991; 57:222–229.

    PubMed  CAS  Google Scholar 

  3. Beal MF, Hyman BT, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 1993; 16:125–131.

    Article  PubMed  CAS  Google Scholar 

  4. Beckman JS, Crow JP. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 1993; 21: 330–334.

    PubMed  CAS  Google Scholar 

  5. Bertorello AM, Hopfield JF, Aperia A, Greengard P. Inhibition by dopamine of (Na+-K+) ATPase activity through D1 and D2 dopamine receptor synergisms. Nature 1990; 347:386–388.

    Article  PubMed  CAS  Google Scholar 

  6. Berndt C, Henke W, Gross J. Hypoxia induces different responses of striatal high and low affinity dopamine uptake sites. Mol and Chem Neuropath 1993; 18:179–187.

    CAS  Google Scholar 

  7. Broderick PA, Gibson GE. Dopamine and serotonin in rat striatum during in vivo hypoxichypoxia. Met Brain Dis 1989; 4:143–153.

    Article  CAS  Google Scholar 

  8. Brooks KJ, Porteous R, Bachelard HS. Effects of hypoglycemia and hypoxia on the intracellular pH of cerebral tissue as measured by 31P nuclear magnetic resonance. J Neurochem 1989; 52:604–610.

    PubMed  CAS  Google Scholar 

  9. Burnstock G. Hypoxia, endothelium, and purines. Drug Development Res 1993; 28:301–305

    CAS  Google Scholar 

  10. Carafoli E: Intracellular calcium homeostasis. Annu Rev Biochem 1987; 56:395–433.

    Article  PubMed  CAS  Google Scholar 

  11. Cazevieille C, Muller A, Meynier F, Bonne C. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radical Biol Med 1993; 14: 389–395.

    CAS  Google Scholar 

  12. Chalmers-Redman RM, Fraser AD, Ju WY, Wadia J, Tatton NA, Tatton WG. Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. Int Rev Neurobiol. 1997; 40:1–25.

    PubMed  CAS  Google Scholar 

  13. Chan PH. Role of oxidants in ischemic brain damage. Stroke 1996; 27:1124–9.

    PubMed  CAS  Google Scholar 

  14. Choi D. Ionic dependence of glutamate neurotoxicity in cortical cell culture. J Neurosci 1987; 7:380–390.

    Google Scholar 

  15. Choi DW: Calcium: still center stage in hypoxic-ischemic neuronal death. Trends Neurosci 1995; 18:58–60.

    Article  PubMed  CAS  Google Scholar 

  16. Czéh G, Aitken PG, Somjen GG. Whole-cell membrane current and membrane resistance during hypoxic spreading depression. Neuro Report 1992; 3:197–200.

    Google Scholar 

  17. Dawson DA: Nitric oxide and focal cerebral ischemia: multiplicity of actions and diverse outcome. Cerebrovasc Brain Metab Rev 1994; 6:299–324.

    PubMed  CAS  Google Scholar 

  18. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 1993; 13:2651–2661.

    PubMed  CAS  Google Scholar 

  19. DeCourten-Meyers G, Myers RE, Schoolfield L. Hyperglycemia enlarges infarct size in cerebrovascular occlusion in cats. Stroke 1988; 19:623–630.

    Google Scholar 

  20. Ekholm A, Asplund B, Siesjö BK. Perturbation of cellular energy state in complete ischemia: relationship to dissipative ion fluxes. Exp Brain Res 1992; 90:47–53.

    Article  PubMed  CAS  Google Scholar 

  21. Ekholm A, Katsura K, Siesjö BK. Coupling of energy failure and dissipative K+ flux during ischemia: role of preischemic plasma glucose concentration. J Cereb Blood Flow Metab 1993; 13:193–200.

    PubMed  CAS  Google Scholar 

  22. Erecinska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab 1989; 9:2–19.

    PubMed  CAS  Google Scholar 

  23. Fernandez MP, Belmonte MJ, Meizoso MJ, Garcia-Novio M. Desmethyl tirilazad reduces brain nitric oxide synthase activity and cyclic guanosine monophosphate during cerebra global ischemia in rats. Res. Commun. Mol. Pathol. Pharmacol. 1997; 95:33–42.

    PubMed  CAS  Google Scholar 

  24. Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J. Free radicals in cerebral ischemia. Stroke 1978; 9:445–447.

    PubMed  CAS  Google Scholar 

  25. Folbergrova J, Kiyota Y, Pahlmark K, Memezawa H, Smith ML, Siesjo BK. Does ischemia with reperfusion lead to oxidative damage to proteins in the brain. J Cereb Blood Flow Metab 1993; 13:145–152.

    PubMed  CAS  Google Scholar 

  26. Fujisawa H, Dawson D, Browne SE, MacKay KB, Bullock R, McCulloch J. Pharmacological modification of glutamate neurotoxicity in vivo. Brain Res 1993; 629:73–78.

    Article  PubMed  CAS  Google Scholar 

  27. Fukuto JM, Chaudhuri G. Inhibition of constitutive and inducible nitric oxide synthase: potential selective inhibition. Ann Rev Pharmacol Toxicol 1995; 35:165–194.

    Article  CAS  Google Scholar 

  28. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of ischemia on the in vivo release of striatal dopamine, glutamate and □-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 1988; 51:1455–1464.

    PubMed  CAS  Google Scholar 

  29. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Direct evidence for acute and massive norepinephrine release in the hippocampus during transient ischemia. J Cereb Blood Flow Metab 1989; 9:892–896.

    PubMed  CAS  Google Scholar 

  30. Globus MY-T, Ginsberg MD, Busto R. Excitotoxic index-a biochemical marker of selective vulnerability. Neurosci Letters 1991; 127:39–42.

    Article  CAS  Google Scholar 

  31. Globus MY, Busto R, Martinez E, Valdes I, Dietrich WD, Ginsberg MD. Comparative effects of transient global ischemia on extracellular levels of glutamate, glycine, and □-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J Neurochem 1991; 57:470–478.

    PubMed  CAS  Google Scholar 

  32. Globus MY-T, Prado R, Sanchez-Ramos J, Zhao W, Deitrich WD, Busto R, Ginsberg MD. A dual role for nitric oxide in NMDA-mediated toxicity in vivo. J Cereb Blood Flow Metab 1995; 15:904–913.

    PubMed  CAS  Google Scholar 

  33. Grigg JJ, Anderson EG. Glucose and sulfonyureas modify different phases of the membrane potential changes during hypoxia in rat hippocampal slices. Brain Res 1989; 409:302–310.

    Google Scholar 

  34. Hagberg H, Lehmann A, Sandberg M, Nystrom B, Jacobson I, Hamberger A. Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments. J Cereb Blood Flow Metab 1985; 5:413–419.

    PubMed  CAS  Google Scholar 

  35. Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. 2nd ed. Oxford: Clarendon Press, 1989.

    Google Scholar 

  36. Hammer B, Parker WD, Bennett JP. NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C Neuro Report 1993; 5:72–74.

    CAS  Google Scholar 

  37. Hansen AJ. The extracellular potassium concentration in brain cortex following ischemia in hypo-and hyperglycemic rats. Acta Physiol Scand 1978; 102:324–329.

    PubMed  CAS  Google Scholar 

  38. Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev 1985; 65:101–148.

    PubMed  CAS  Google Scholar 

  39. Hansen AJ, Olsen CE. Brain extracellular space during spreading depression and ischemia. Acta Physiol Scand 1980; 108:355–365.

    PubMed  CAS  Google Scholar 

  40. Hashimoto N, Matsumoto T, Mabe H, Hashitani T, Nishino H. Dopamine has inhibitory and accelerating effects on ischemia-induced neuronal cell damage in the rat striatum. Brain Res Bull 1994; 33:281–288.

    Article  PubMed  CAS  Google Scholar 

  41. Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 1993; 7:1124–1134.

    PubMed  CAS  Google Scholar 

  42. Hillered L, Chan PH. Role of archidonic acid and other fatty acids in mitochondrial dysfunction in brain ischemia. J Neurosci Res 1988; 20:451–456.

    Article  PubMed  CAS  Google Scholar 

  43. Hochachka PW, Mommsen TP. Protons and anaerobiosis. Science 1983; 219:1391–1397.

    PubMed  CAS  Google Scholar 

  44. Hochachka PW, Somero GN. Biochemical Adaptation. Princeton: Princeton University Press, 1984.

    Google Scholar 

  45. Hogg N, Darley-Usmar VM, Wilson MT, Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J 1992; 281:419–424.

    PubMed  CAS  Google Scholar 

  46. Huang C-C, Lajevardi NS, Tammela O, Pastuszko A, Delivoria-Papadopoulos M, Wilson DF. Relationship of extracellular dopamine in striatum of newborn piglets to cortical oxygen pressure. Neurochem Res 1994; 19:649–655.

    PubMed  CAS  Google Scholar 

  47. Hylland P, Nilsson GE, Johansson D. Anoxic brain failure in an ectothermic vertebrate: release of amino acids and K+ in rainbow trout thalamus. Am J Physiol 1995; 269:R1077–R1084.

    PubMed  CAS  Google Scholar 

  48. Iadecola C, Zhang F, Xu X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 1995; 268:R286–R292.

    PubMed  CAS  Google Scholar 

  49. Ikeda M, Nakazawa T, Abe K, Kaneko T, Yamatsu K. Extracellular accumulation of glutamate in the hippocampus induced by ischemia is not calcium dependant-in vitro and in vivo evidence. Neurosci Lett 1989; 96:202–206.

    PubMed  CAS  Google Scholar 

  50. Isozumi K, Fukuuchi Y, Takeda H, Itoh Y. Mechanisms of CBF augmentation during hypoxia in cats: probable participation of prostacyclin, nitric oxide and adenosine. Keio J Med 1994; 43:31–36.

    PubMed  CAS  Google Scholar 

  51. Jiang C, Xia Y, Haddad GG. Role of ATP-sensitive K+ channels during anoxia: major differences between rat (newborn and adult) and turtle neurones. J Physiol Lond 1992; 448:599–612.

    PubMed  CAS  Google Scholar 

  52. Jing J, Aitken PG, Somjen GG. Role of calcium channels in spreading depression in rat hippocampal slices. Brain Res 1993; 604:251–259.

    Article  PubMed  CAS  Google Scholar 

  53. Jonas P, Koh DS, Kampe K, Hermsteiner M, Vogel W. ATP-sensitive and Ca-activated K channels in vertebrate axons: novel links between metabolism and excitability. Pflugers Arch 1991; 418:68–73.

    Article  PubMed  CAS  Google Scholar 

  54. Kader A, Frazzini VI, Solomon RA, Trifiletti RR. Nitric oxide production during focal cerebral ischemia in rats. Stroke 1993; 24:1709–1716.

    PubMed  CAS  Google Scholar 

  55. Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, Tsubokawa T. Calcium-dependent glutamate release concommitant with massive potassium flux during cerebral ischemia in vivo. Brain Res 1991; 558:136–140.

    Article  PubMed  CAS  Google Scholar 

  56. Katchman AN, Hershkowitz N. Early anoxia-induced vesicular glutamate release results from mobolization of calcium from intracellular stores. J Neurophysiol 1993; 70:1–7.

    PubMed  CAS  Google Scholar 

  57. Katsura K, Kristián T, Siesjö BK. Energy metabolism, ion homeostasis, and cell damage in the brain. Biochem Soc Trans 1994; 22:991–996.

    PubMed  CAS  Google Scholar 

  58. Kim D, Sladek CD, Aguado-Velasco C, Mathiasen JR. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J Physiol 1995; 484:643–660.

    PubMed  CAS  Google Scholar 

  59. Koike T, Martin DP, Johnson EM Jr. Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci USA 1989; 86:6421–6425.

    PubMed  CAS  Google Scholar 

  60. Korf J, Klein HC, Venema K, Postema F. Increases in striatal and hippocampal impedance and extracellular levels of amino acids by cardiac arrest in freely moving rats. J Neurochem 1988; 50:1087–1096.

    PubMed  CAS  Google Scholar 

  61. Kozniewska E, Oseka M, Stys T. Effects of endothelium-derived nitric oxide on cerebral circulation during normoxia and hypoxia in the rat. J Cereb Blood Flow Metab 1992; 12:311–317.

    PubMed  CAS  Google Scholar 

  62. Krnjevic MB. Adenosine triphoshpate-sensitive potassium channels in anoxia. Stroke 1990; Supplement III. 21:190–193.

    Google Scholar 

  63. Krnjevic K. Membrane current activation during hypoxia in hippocampal neurones. In: Surviving Hypoxia: Mechanisms of Control and Adaptation. P. W. Hochachka, P. L. Lutz, T. Sick, M. Rosenthal and G. van den Thilart (Eds). Boca Raton, FL: CRC Press, 1993: 365–388.

    Google Scholar 

  64. Kumagae Y, Matsui Y. Output, tissue levels, and synthesis of acetylcholine during and after transient forebrain ischemia in the rat. J Neurochem 1991; 56:1169–1173.

    PubMed  CAS  Google Scholar 

  65. Kwon NS, Stuehr DJ, Nathan CF. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med 1991; 174:761–767.

    Article  PubMed  CAS  Google Scholar 

  66. Lawrence AJ, Jarrott, B. Nitric oxide increases interstitial excitatory amino acid release in the rat dorsomedial medulla oblongata. Neurosci Lett 1993; 151:126–129.

    Article  PubMed  CAS  Google Scholar 

  67. Leblond J, Krnjevic K. Hypoxic changes in hippocampal neurones. J Neurophysiol 1989; 62:1–14.

    PubMed  CAS  Google Scholar 

  68. Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest. 2000; 106:723–31.

    PubMed  CAS  Google Scholar 

  69. Lees GJ. Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res Rev 1991; 16:283–300.

    Article  PubMed  CAS  Google Scholar 

  70. Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 1992; 8:1087–1099.

    Article  PubMed  CAS  Google Scholar 

  71. Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke. 1993; 24:2002–2008.

    PubMed  CAS  Google Scholar 

  72. Lipton SA, Kater SB. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci 1989; 12:265–270.

    Article  PubMed  CAS  Google Scholar 

  73. Lipton, P. Ischemic Cell Death in Brain Neurons. Physiol. Rev. 1999. 79:1431–1568

    PubMed  CAS  Google Scholar 

  74. Lipton P, Whittingham TS. Reduced ATP concentrations as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J Physiol 1982; 325:51–56.

    PubMed  CAS  Google Scholar 

  75. Lipton P, Whittingham TS. Energy metabolism and brain slice function. In: Dingledine D ed(s). Brain Slices. New York: Plenum, 1984: 113–153.

    Google Scholar 

  76. Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY. Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 1989; 256:H589–H593.

    PubMed  CAS  Google Scholar 

  77. Lomneth RS, Medrano EI, Gruenstein. The role of transmembrane pH gradients in the lactic acid induced swelling of astroctytes. Brain Res 1992; 523:69–77.

    Google Scholar 

  78. MacManus JP, Linnik MD. Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab. 1997; 17:815–32

    PubMed  CAS  Google Scholar 

  79. Madl JE, Burgesser K. Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices. J Neurosci 1993; 13:4429–2222.

    PubMed  CAS  Google Scholar 

  80. Malinski T, Bailey F, Zhang ZG, Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 1993; 13:355–358.

    PubMed  CAS  Google Scholar 

  81. Manzoni O, Prezeau I, Martin P, Deshager S, Bockaert J, Fagni L. Nitric-oxide induced blockade of NMDA receptors. Neuron 1992; 8:653–662.

    Article  PubMed  CAS  Google Scholar 

  82. Martz D, Rayos G, Schielke GP, Betz AL. Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in the rat. Stroke 1989; 20:488–494.

    PubMed  CAS  Google Scholar 

  83. Matsumoto K, Ueda S, Hashimoto T, Kuriyama K. Ischemic neuronal injury in the rat hippocampus following transient forebrain ischemia: evaluation using in vivo microdialysis. Brain Res 1991; 543:236–242.

    Article  PubMed  CAS  Google Scholar 

  84. Moghaddam B, Schenk JO, Stewart WB, Hansen AJ. Temporal relationship between neurotransmitter release and ion flux during spreading depression and anoxia. Can J Physiol Pharmacol 1987; 65:1105–1110.

    PubMed  CAS  Google Scholar 

  85. Mourre C, Ben Ari Y, Bernardi H, Fosset M, Lazdunski M. Antidiabetic sulfonylurea: location of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 1989; 486:159–164.

    Article  PubMed  CAS  Google Scholar 

  86. Nellgard B, Wieloch T. Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cereb Blood Flow Metab 1992; 12:2–11.

    PubMed  CAS  Google Scholar 

  87. Nagafuji T, Sugiyama M, Muto A, Makino T, Miyauchi T, Nabata H. The neuroprotective effect of a potent and selective inhibitor of type I NOS (L-MIN) in a rat model of focal cerebral ischaemia. Neuroreport. 1995; 6:1541–1545.

    PubMed  CAS  Google Scholar 

  88. Nilsson GE, Perez-Pinzon M, Dimberg K, Winberg S. Brain sensitivity to anoxia in fish as reflected by changes in extracellular K+ activity. Am J Physiol 1993; 264:R250–R253.

    PubMed  CAS  Google Scholar 

  89. Nowicki JP, Duval D, Poignet H, Scatton B. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 1991; 204:339–340.

    Article  PubMed  CAS  Google Scholar 

  90. Obrenovitch TP, Richards DA. Extracellular neurotransmitter changes in cerebral ischaemia. Cerebrovasc Brain Metab Rev 1995; 7:1–54.

    PubMed  CAS  Google Scholar 

  91. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 1990; 87:5144–5147.

    PubMed  CAS  Google Scholar 

  92. Paschen W, Djuricic B, Mies G, Schmidt-Kastner R, Linn F. Lactate and pH in the brain: association and dissociation in different pathophysiological states. J Neurochem 1987; 48:154–159.

    PubMed  CAS  Google Scholar 

  93. Pérez-Pinzón MA, Nilsson G, Lutz PL. Relationship between ion gradients and neurotransmitter release in the newborn rat striatum during anoxia. Brain Res 1993; 602:228–233.

    PubMed  Google Scholar 

  94. Phillis JW, Simpson RE, Walter GA. The effect of hyperglycemia on extracellular levels of adenosine in the hypoxic rat cerebral cortex. Brain Res 1990; 524:336–338.

    Article  PubMed  CAS  Google Scholar 

  95. Phillis JW, Walter GA, Simpson RE. Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: effects of the adenosine deaminase inhibitor deoxycoformycin. J Neurochem 1991; 56:644–650.

    PubMed  CAS  Google Scholar 

  96. Pulsinelli WA. Selective neuronal vulnerability: morphological and molecular characteristics. In: Kogure K, Hossman KA, Siesjö BK, (eds). Molecular Mechanisms of Ischemic Brain Damage: Progress in Brain Research. Amsterdam: Elsevier Science, 1985: 29–37.

    Google Scholar 

  97. Pulsinelli WA, Levy DE, Duffy TE. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 1982; 11:499–502.

    PubMed  CAS  Google Scholar 

  98. Puro DG. Stretch-activated channels in human retinal Muller cells. Glia 1991; 4:456–460.

    Article  PubMed  CAS  Google Scholar 

  99. Rehncrona S, Rosen I, Siesjö BK. Excessive cellular acidosis: an important mechanism of neuronal damage in brain? Acta Physiol Scand 1980; 110:435–437.

    PubMed  CAS  Google Scholar 

  100. Robertson, GS, Crocker, SJ, Nicholson, DW and Schulz, JB. Neuroprotection by the inhibition of apoptosis. Brain Pathol. 2000; 10:283–292.

    PubMed  CAS  Google Scholar 

  101. Rossen R, Kabat H, Anderson JP. Acute arrest of cerebral circulation in man. Arch Neurol Psychiatry 1943; 50:510–528.

    Google Scholar 

  102. Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor — still lethal after eight years. Trends Neurosci 1995; 18:57–58.

    Article  PubMed  CAS  Google Scholar 

  103. Rothman SM, Thurston JG, Hauhart RE. Delayed neurotoxicity of excitatory amino acids in vitro. Neurosci 1987; 22:471–480.

    Article  CAS  Google Scholar 

  104. Rothman SM: Excitotoxins: possible mechanisms of action. Ann. New York Acad Sci 1992; 648:132–139.

    CAS  Google Scholar 

  105. Sancesario G, Lannone M, Morello M, Nisticò G, Bernardi G. Nitric oxide inhibition aggavates ischemic damage of hippocampal but not of NADPH neurons in gerbils. Stroke 1994; 25:436–444.

    PubMed  CAS  Google Scholar 

  106. Sánchez-Prieto J, González P. Occurence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals. J Neurochem 1988; 50:1322–1324.

    Article  PubMed  Google Scholar 

  107. Sarna GS, Obrenovitch TP, Matsumoto T, Symon L, Curzon G. Effect of transient cerebral ischaemia and cardiac arrest on brain extracellular dopamine and serotonin as determined by in vivo dialysis in the rat. J Neurochem 1990; 55:937–940.

    PubMed  CAS  Google Scholar 

  108. Schmidley JW. Free radicals in central nervous system ischemia. Stroke 1990; 21:1086–1090.

    PubMed  CAS  Google Scholar 

  109. Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 1999; 45: 421–429.

    PubMed  CAS  Google Scholar 

  110. Schurr A, Dong WQ, Reid KH, West CA, Rigor BM. Lactic acidosis and recovery of neuronal function following cerebral hypoxia in vitro. Brain Res 1988; 438:311–314.

    Article  PubMed  CAS  Google Scholar 

  111. Schurr A, Rigor BM: Cerebral ischemia revisited: new insights as revealed using in vitro brain slice preparation. Experientia 1989; 45:684–695.

    Article  PubMed  CAS  Google Scholar 

  112. Shigeno T, Yamasaki Y, Kato G, Kusaka K, Mima T, Takakura K, Graham DI, Furukawa S. Reduction of delayed neuronal death by inhibition of protein synthesis. Neurosci Lett 1990; 120: 117–119.

    Article  PubMed  CAS  Google Scholar 

  113. Sick TJ, Rosenthal M, LaManna JC, Lutz PL. Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. Am J Physiol 1982; 243:R281–R288.

    PubMed  CAS  Google Scholar 

  114. Siesjö BK. Brain Energy Metabolism. New York: John Wiley, 1978.

    Google Scholar 

  115. Siesjö BK. Calcium, excitotoxins, and brain damage. News Physiol Sci 1990; 5:120–125.

    Google Scholar 

  116. Siesjö BK, Katsura K. Ischemic brain damage: focus on lipids and lipid mediators. Adv Exp Med Biol 1992; 318:41–56.

    PubMed  Google Scholar 

  117. Siesjo BK, Zhao Q, Pahlmark K, Siesjo P, Katsura K, Folbergrova J. Glutamate, calcium, and free radicals as mediators of ischemic brain damage. Ann Thorac Surg 1995; 59:1316–20.

    PubMed  CAS  Google Scholar 

  118. Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg 1992; 77:169–184.

    PubMed  Google Scholar 

  119. Siesjö BK. Calcium-mediated processes in neuronal degeneration. Ann NY Acad Sci 1994; 747:140–161.

    PubMed  Google Scholar 

  120. Siesjö BK, Katsura K, Kristián T. The biochemical basis of cerebral ischemic damage. J Neurosurgical Anesthesiology 1995; 7:47–52.

    Google Scholar 

  121. Silver IA, Erecinska M. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 1990; 95:837–865.

    Article  PubMed  CAS  Google Scholar 

  122. Somjen GG, Aitken PG, Czeh GL, Herreras O, Jing J, Young JN. Mechanisms of spreading depression: a review of recent findings and a hypothesis. Can J Physiol Pharmacol 1992; 70:S248–S254.

    PubMed  CAS  Google Scholar 

  123. Somjen GG, Aitken PG, Czeh G, Jing J, Young JN. Cellular physiology of hypoxia of the mammalian central nervuos system. In: Waxman SG ed(s). Molecular and cellular approaches in treatment of neurological diseases. New York: Raven Press, 1993: 51–65.

    Google Scholar 

  124. Swanson RA. Glucose can fuel glutamate uptake in ischemic brain. J Cerebral Blood Flow Metab 1994; 14:1–6.

    CAS  Google Scholar 

  125. Szatkowski M, Attwell D. Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci 1994; 17:359–65.

    Article  PubMed  CAS  Google Scholar 

  126. Taylor CP, Geer JJ, Burke SP. Endogenous extracellular glutamate accumulation in rat neocortical cultures by reversal of the transmembrane sodium gradient. Neurosci Lett 1992; 145:197–200.

    Article  PubMed  CAS  Google Scholar 

  127. Tirilazad International Steering Committee. Tirilazad mesylate in acute ischemic stroke, a systematic review. Stroke 2000; 31:2257–2265.

    Google Scholar 

  128. Tombaugh GC, Sapolsky RM. Evolving concepts about the role of acidosis in ischemia neuropathology. J Neurochem 1993; 61:793–803.

    PubMed  CAS  Google Scholar 

  129. Ungerstedt U. Measurement of neurotransmitter release by intracranial dialysis. In: Marsden CA ed(s). Measurement of Neurotransmitter Release In Vivo. New York: Wiley, 1984: 81–105.

    Google Scholar 

  130. Valentino K, Newcomb R, Gadbois T. A selective N-type calcium channel antagonist protects against neuronal loss after global ischemia. Proc Natl Acad Sci USA 1993; 90:7894–7897.

    PubMed  CAS  Google Scholar 

  131. Xia Y, Jaing C, Haddad GG. Oxidative and glycolytic pathways in rat (newborn and adult) and turtle brain: role during anoxia. Am J Physiol 1992; 262:R595–R603.

    PubMed  CAS  Google Scholar 

  132. Xie Y, Dengler K, Zacharias E, Wilffert B, Tegtmeier F. Effects of the sodium channel blocker tetrodotoxin (TTX) on cellular ion homeostasis in rat brain subjected to complete ischemia. Brain Research 1994; 652, 216–224.

    Article  PubMed  CAS  Google Scholar 

  133. Yamamoto S, Golanov EV, Berger SB, Reis DJ. Inhibition of nitric oxide synthesis increases focal ischemic infarction in rat. J Cereb Blood Flow Metab 1992; 12:717–726.

    PubMed  CAS  Google Scholar 

  134. Zeevalk GD, Nicklas WJ. Evidence that the loss of the voltage-dependent Mg2+ block at the N-methyl-D-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism. J Neurochem 1992; 59:1211–1220.

    PubMed  CAS  Google Scholar 

  135. Zhang F, Ladecola C. Nitroprusside improves blood flow and reduces brain damage after focal ischemia. Neuro Report 1993; 4:559–562.

    CAS  Google Scholar 

  136. Zhang F, White JG, Adecola C. Nitric oxide donors increase blood flow and reduc brain damage in focal ischemia: evidence that nitric oxide is beneficial in early stages of cerebral ischemia. J Cereb Blood Flow Metab 1994a; 14:217–226.

    PubMed  CAS  Google Scholar 

  137. Zhang J, Snyder SH. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 1992; 89:9382–9385.

    PubMed  CAS  Google Scholar 

  138. Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly poly(ADP-ribose) synthetase in neurotoxicity. Science 1994b; 263:687–689.

    PubMed  CAS  Google Scholar 

  139. Zhang ZG, Chopp M, Zaloga C, Pollock JS, Förstermann U. Cerebral endothelial nitric oxide synthase expression after focal cerebral ischemia in rats. Stroke 1993; 24:2016–2022.

    PubMed  CAS  Google Scholar 

  140. Zhang ZG, Chopp M, Gautam S, Zaloga C, Zhang RL, Schmidt HH, Pollock JS, Forstermann U. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat. Brain. Res. 1994c; 654:85–95.

    PubMed  CAS  Google Scholar 

  141. Zhang ZG, Reif D, Macdonald J, Tang WX, Kamp DK, Gentile RJ, Shakespeare WC, Murray RJ, Chopp M. ARL 17477, a potent and selective neuronal NOS inhibitor decreases infarct volume after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 1996; 16:599–604.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). The Brain in Crisis. In: The Brain Without Oxygen. Springer, Dordrecht. https://doi.org/10.1007/0-306-48197-9_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48197-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1165-8

  • Online ISBN: 978-0-306-48197-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics