Normal Brain Function


Nitric Oxide Nitric Oxide Cerebral Blood Flow NMDA Receptor Adenosine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashford ML, Sturgess NC, Trout NJ, Gardner NJ, Hales CN. Adenosine 5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurons. Pflügers Arch 1988; 412:297–304.PubMedCrossRefGoogle Scholar
  2. 2.
    Astrup J, Sorensen PM, Sorensen HR. Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke 1981; 12:726–730.PubMedGoogle Scholar
  3. 3.
    Baskys A. Metabotropic receptors and’ slow’ excitatory actions of glutamate agonists in the hippocampus. Trends Neurosci 1992; 15:92–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Berne RM, Rubio R, Curnish RR. Release of adenosine from ischemic brain: Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ. Res. 1974; 35:262–271.Google Scholar
  5. 5.
    Bettler B, Mulle C. Review: Neurotransmitter receptors II, AMPA and kainate receptors. Neuropharmacol. 1995; 34:123–139.CrossRefGoogle Scholar
  6. 6.
    Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1999; 1411:415–436.PubMedGoogle Scholar
  7. 7.
    Borst M, Schrader J. Adenine nucleatide release from isolated perfused guinea pig hearts and extracellular formation of adenosine. Circ Res 1991; 68:797–806PubMedGoogle Scholar
  8. 8.
    Bowery N. GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol. Sci. 1989; 10:401–407.PubMedCrossRefGoogle Scholar
  9. 9.
    Burt DR, Kamatchi GL. GABAA receptor subtypes: from pharmacology to molecular biology. FASEB J. 1991; 5:2916–2923.PubMedGoogle Scholar
  10. 10.
    Caliguri MA, Robin ED. Prolonged diving and recovery in the freshwater turtle IV. Effects of profound acidosis on O2 consumption in turtle vs. rat (mammalian) brain and heart slices. Comp. Biochem. Physiol. A 1985; 81:603–605.Google Scholar
  11. 11.
    Chen QX, Stelzer A, Kay AR, Wong RK. GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol Lond 1990; 420:207–221.PubMedGoogle Scholar
  12. 12.
    Collingridge GL, Bliss TVP. Memories of NMDA receptors and LTP. Trends Neurosci. 1995; 18:54–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic β-cells. Nature 1984; 311:271–273.PubMedGoogle Scholar
  14. 14.
    Crile G, Quiring DP. A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci. 1940; 40:219–259.Google Scholar
  15. 15.
    Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science Washington DC 1990; 247:1341–1344.Google Scholar
  16. 16.
    Dawson DA. Nitric oxide and focal cerebral ischemia: multiplicity of actions and diverse outcome. Cerebrovasc. Brain Metab Rev 1994; 6:299–324.Google Scholar
  17. 17.
    Edwards FA, Gibbs AJ. ATP — a fast neurotransmitter. FEBS 1993; 325:86–89.CrossRefGoogle Scholar
  18. 18.
    Edwards R, Lutz PL, Baden D. Relationship between energy expenditure and ion channel function in the rat and turtle brain. Am J Physiol 1989; 255:R1345–R1359.Google Scholar
  19. 19.
    Erecinska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab 1989; 9:2–19.PubMedGoogle Scholar
  20. 20.
    Ericinska M, Silver IA. Ions and energy in mammalian brain. Prog Neurobiol 1994; 43:37–71.Google Scholar
  21. 21.
    Evans R, Derkach V, Surprenant A. ATP mediates fast synaptic transmission in mammalian neurones. Nature 1992; 357:503–505.PubMedCrossRefGoogle Scholar
  22. 22.
    Faraci FM, Brian JE. Nitric oxide and the cerebral circulation. Stroke 1994; 25:602–703.Google Scholar
  23. 23.
    Fredholm BB. Modulation of neurotransmitter release by heteroreceptors. In: Neurotransmitter Release and its Modulation. Powis DA, Bunn SJ (eds). Cambridge: Cambridge Univ. Press, 1995: 104–121.Google Scholar
  24. 24.
    Forrester T, Harper AM, MacKenzie ET, Thomson EM. Effect of adenosine triphosphate and some derivatives on cerebral blood flow and metabolism. J Physiol 1979; 296:343–355.PubMedGoogle Scholar
  25. 25.
    Foster AC, Kemp JA. Glycine maintains excitement. Nature 1989; 338:377–378.PubMedCrossRefGoogle Scholar
  26. 26.
    Fukuto JM, Chaudhuri G. Inhibition of constitutive and inducible nitric oxide synthase: potential selective inhibition. Annu Rev Pharmacol Toxicol 1995; 35:165–194.PubMedCrossRefGoogle Scholar
  27. 27.
    Gage PW. Activation and modulation of neuronal K+ channels by GABA. Trends Neurosci 1992; 15:46–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Gaw AJ, Bevan JA. Flow-induced relaxation of the rabbit middle cerebral artery is composed of both endothelium-dependent and independent components. Stroke 1993; 24:105–110.PubMedGoogle Scholar
  29. 29.
    Gottlieb DI. GABAergic neurons. Sci Am 1988; February:38–45.Google Scholar
  30. 30.
    Göthert M. 5-Hydroxytryptamine receptors, an example for the complexity of chemical transmission of information in the brain. Arzneim-Forsch/Drug Res 1992; 42:238–246.Google Scholar
  31. 31.
    Gross SS, Wolin MS. Nitric oxide: pathophysiological mechanisms. Ann Rev Physiol 1995; 57:737–769.Google Scholar
  32. 32.
    Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J. Neurochem. 1987; 49:227–231.PubMedGoogle Scholar
  33. 33.
    Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev 1985; 65:101–148.PubMedGoogle Scholar
  34. 34.
    Hawkins RA, Mans AM. Intermediary metabolism of carbohydrates and other fuels. In: Lajtha A ed. Handbook of neurochemistry. 2nd edition, vol. 3, Metabolism of the nervous system. New York: Plenum Press, 1983: 259–294.Google Scholar
  35. 35.
    Hille B. Ionic channels of excitable membranes. 3rd edition. Sunderland, Mass: Sinauer, 2001.Google Scholar
  36. 36.
    Holmqvist BI, Ostholm T, Alm P, Ekstrom P. Nitric oxide synthase in the brain of a teleost. Neurosci Lett 1994; 171:205–208.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 1993; 75:1273–86.PubMedGoogle Scholar
  38. 38.
    Hulbert AJ, Else PL. Evolution of mammalian endothermic metabolism: mitochondrial activity and cell composition. Am J Physiol 1989; 256:R63–R69.PubMedGoogle Scholar
  39. 39.
    Hulbert AJ, Else PL. The cellular basis of endothermic metabolism: a role for “leaky” membranes? News Physiol Sci 1990; 5:25–28.Google Scholar
  40. 40.
    Hylland PH, Nilsson GE. Evidence that acetylcholine mediates increased cerebral blood flow velocity in crucian carp through a nitric oxide-dependent mechanism. J Cereb Blood Flow Metab 1995; 15:519–524.PubMedGoogle Scholar
  41. 41.
    Hylland P, Nilsson GE, Lutz PL. Time course of anoxia induced increase in cerebral blood flow rate in turtles: evidence for a role of adenosine. J Cereb Blood Flow Metab 1994; 14:877–881PubMedGoogle Scholar
  42. 42.
    Hylland PH, Nilsson GE, Lutz PL. Role of nitric oxide in the elevation of cerebral blood flow induced by acetylcholine and anoxia in the turtle. J Cereb Blood Flow Metab 1996; 16:290–295.PubMedGoogle Scholar
  43. 43.
    Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA. Nitric oxide sythase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 1994; 14:175–192.PubMedGoogle Scholar
  44. 44.
    Irikura K, Huang PL, Ma J, Lee WS, Dalkara T, Fishman MC, Dawson TM, Snyder SH, Moskowitz MA. Cerebrovascular alterations in mice lacking neuronal nitric oxide synthase gene expression. Proc Natl Acad Sci USA 1995; 92:6823–6827.PubMedGoogle Scholar
  45. 45.
    Ishii K, Chang B, Kerwin JF Jr, Huang ZJ, Murad F. NG-nitro-L-arginine a potent inhibitor of endothelium-derived relaxing factor formation. Eur J Pharmacol 1990; 176:219–223.PubMedGoogle Scholar
  46. 46.
    Jessell TM, Kandell ER. Synaptic transmission: A bidirectional and self-modifiable form of cell-cell communication. Cell 1993: 10(Suppl):1–30.Google Scholar
  47. 47.
    Jerison HJ. Brain evolution and dinosaur brains. Am Naturalist 1969; 103:575–588.CrossRefGoogle Scholar
  48. 48.
    Jiang C, Xia Y, Haddad GG. Role of ATP-sensitive K+ channels during anoxia: major differences between rat (newborn and adult) and turtle neurons. J Physiol (Lond) 1992; 448:599–612.Google Scholar
  49. 49.
    Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325:529–531.PubMedCrossRefGoogle Scholar
  50. 50.
    Johnston, GAR. GABAC receptors: relatively simple transmitter-gated ion channels. Trends Pharmacol Sci 1996; 17:319–323.PubMedCrossRefGoogle Scholar
  51. 51.
    Jonas P, Koh DS, Kampe K, Hermsteiner M, Vogel W. ATP-sensitive and Ca-activated K channels in vertebrate axons: Novel links between metabolism and excitability. Pflügers Arch 1991; 418:68–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Kaila K. Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 1994; 42:489–537.PubMedCrossRefGoogle Scholar
  53. 53.
    Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. 3rd ed. New York: Elsevier, 1992.Google Scholar
  54. 54.
    Kaufman S. Regulatory properties of phenylalanine, tyrosine and tryptophan hydroxylases. Biochem Soc Trans 1985; 13:433–436.PubMedGoogle Scholar
  55. 55.
    Kelly RB. Storage and release of neurotransmitters. Cell 1993; 72:43–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Kennedy C, Sakurada O, Shinohara M, Miyaoka M. Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol 1978; 4:293–301.PubMedCrossRefGoogle Scholar
  57. 57.
    Kirshner N. Biosynthesis of the catecholamines. In: Geiger SR ed. Handbook of Physiology. Sect. 7, Vol VI. Bethesda: American Physiological Society, 1975: 341–355.Google Scholar
  58. 58.
    Leone AM, Palmer RM, Knowles RG, Francis PL, Ashton DS, Moncada S. Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. J Biol Chem 1991; 266:23790–23795.PubMedGoogle Scholar
  59. 59.
    Lipton P, Whittingham TS. Energy metabolism and brain slice function. In: Dingledine R, ed. Brain Slices. New York: Plenum Press, 1984: 113–153.Google Scholar
  60. 60.
    Lutz PL. Mechanisms for anoxic survival in the vertebrate brain. Ann Rev Physiol 1992; 54:601–618.Google Scholar
  61. 61.
    Magistretti PJ, Hof PR, Martin J-L. Adenosine stimulates glycogenolysis in mouse cerebral cortex: a possible coupling mechanism between neuronal activity and energy metabolism. J Neurosci 1986; 6:2558–2562.PubMedGoogle Scholar
  62. 62.
    Mason ST. Catecholamines and Behaviour. Cambridge, UK: Cambridge University Press, 1984.Google Scholar
  63. 63.
    Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984; 309:261–263.PubMedCrossRefGoogle Scholar
  64. 64.
    McGeer PL, McGeer EG. Amino acid neurotransmitters. In: Siegel GJ, Agranoff B, Alberts RW (eds). Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 4th ed. New York: Raven Press, 1989: 311–332.Google Scholar
  65. 65.
    Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology 1974; 41:231–236.PubMedGoogle Scholar
  66. 66.
    Mink JW, Blumenschine RJ, Adams DB. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 1981; 241:R203–R212.PubMedGoogle Scholar
  67. 67.
    Moller, P. Electric Fishes. London: Chapman and Hall, 1995.Google Scholar
  68. 68.
    Mongaghan DT, Cotman CW. Distribution of N-methyl-D-aspartate-sensitive L-glutamate binding sites in the rat brain. J Neurosci 1985; 5:2909–2917.Google Scholar
  69. 69.
    Mongaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann Rev Pharmacol Toxicol 1989; 29:365–402.Google Scholar
  70. 70.
    Morii S, Ngai AC, Ko KR, Winn HR. Role of adenosine in regulation of cerebral blood flow: effects of theophylline during normoxia and hypoxia. Am J Physiol 1987; 253:H165–H175.PubMedGoogle Scholar
  71. 71.
    Mülsch A, Busse R N0-nitro-L-arginine (N5-([imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn-Schmiedeberg’s Arch Pharmacol 1990; 341:143–147.Google Scholar
  72. 72.
    Nagatsu T. Biochemistry of Catecholamines. Tokyo: University Park Press, 1973.Google Scholar
  73. 73.
    Newby AC, Worku Y, Meghji P, Nakazawa, M, Skladanowski AC. Adenosine: a retaliatory metabolite or not? News Physiol Sci 1990; 5:67–70.Google Scholar
  74. 74.
    Nilsson GE. Neurotransmitters and anoxia resistance — comparative physiological and evolutionary perspectives. In: Surviving Hypoxia: Mechanisms of Control and Adaptation. P. W. Hochachka, P. L. Lutz, T. Sick, M. Rosenthal and G. van den Thilart (Eds). Boca Raton, FL: CRC Press, 1993: 401–413.Google Scholar
  75. 75.
    Nilsson GE. Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain. J Exp Bio 1996; 199:603–607.Google Scholar
  76. 76.
    Nilsson GE, Hylland P, Löfman CO. Anoxia and adenosine induce increased cerebral blood flow in crucian carp. Am J Physiol 1994; 267: R590–R595.PubMedGoogle Scholar
  77. 77.
    Nilsson GE, Lutz PL. Role of GABA in hypoxia tolerance, metabolic depression and hibernation — possible links to neurotransmitter evolution. Comp Biochem Physiol 1993; 105C: 329–336.Google Scholar
  78. 78.
    Nilsson GE, Söderström V. Comparative aspects on nitric oxide in brain and its role as a cerebral vasodilator. Comp Biochem Physiol 1997; 118A:949–58.Google Scholar
  79. 79.
    Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983; 305:147–148.PubMedCrossRefGoogle Scholar
  80. 80.
    O’Dell TJ, Huang PL, Dawson TM, Dinerman JL, Snyder SH, Kandel ER, Fishman MC. Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science 1994; 265:542–546.Google Scholar
  81. 81.
    Olney JW. Neurotoxicity of NMDA receptor antagonists: an overview. Psychopharmacol Bull 1994; 30:533–540.PubMedGoogle Scholar
  82. 82.
    Oshima N. Adenosine inhibits the release of neurotransmitters from melanosome-aggregating nerves of fish. Comp Biochem Physiol C Comp Pharmacol 1989; 93:207–211.Google Scholar
  83. 83.
    Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327:524–526.PubMedCrossRefGoogle Scholar
  84. 84.
    Phillis JW, O’Regan MH, Perkins LM. Adenosine 5′-triphosphate release from the normoxic and hypoxic in vivo rat cerebral cortex. Neurosci Lett 1993; 151:94–96.PubMedCrossRefGoogle Scholar
  85. 85.
    Proctor WR, Dunwiddie TV. Pre-and postsynaptic actions of adenosine in the in vitro rat hippocampus. Brain Res 1987; 426:187–190.PubMedCrossRefGoogle Scholar
  86. 86.
    Ransom RW, Stec NL. Cooperative modulation of MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J Neurochem 1988; 51:830–836PubMedGoogle Scholar
  87. 87.
    Robin ED, Lewiston N, Newman A, Simon LM, Theodore J. Bioenergetic pattern of the turtle brain and resistance to profound loss of mitochondrial ATP generation. Proc Natl Acad Sci USA 1979; 76:3922–3926.PubMedGoogle Scholar
  88. 88.
    Rorsman P, Berggren PO, Bokvist K, Ericson H, Mohler H, Ostenson CG, Smith PA. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 1989; 341:233–236.PubMedCrossRefGoogle Scholar
  89. 89.
    Rosati AM, Traversa U, Lucchi R, Poli A. Biochemical and pharmacological evidence for the presence of Al but not A2a adenosine receptors in the brain of the low vertebrate teleost Carassius auratus (goldfish). Neurochem Int 1995; 26:411–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor — still lethal after eight years. Trends Neurosci 1995; 18:57–58.PubMedCrossRefGoogle Scholar
  91. 91.
    Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB. Adenosine and brain ischemia. Cerebrovasc. Brain Metab Rev 1992; 4:346–369.Google Scholar
  92. 92.
    Siesjö BK. Brain Energy Metabolism. Chichester: Wiley, 1978.Google Scholar
  93. 93.
    Siesjö BK. Calcium, excitotoxins, and brain damage. News Physiol Sci 1990; 5:120–125.Google Scholar
  94. 94.
    Sokoloff L, Reivich M, Kennedy C, Des Hosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anaesthetized albino rat. J Neurochem 1977; 28:897–916.PubMedGoogle Scholar
  95. 95.
    Sommer B, Seeburg PH. Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 1992; 13:291–296.PubMedCrossRefGoogle Scholar
  96. 96.
    Soubrié P. Reconciling the role of central serotonin neurons in human and animal behaviour. Behav Brain Sci 1986; 9:319–364Google Scholar
  97. 97.
    Southan GJ, Szabo C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol 1996; 51:383–394.PubMedCrossRefGoogle Scholar
  98. 98.
    Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 1995; 269:977–981.PubMedGoogle Scholar
  99. 99.
    Stiles GL. Adenosine receptors: physiological regulation and biochemical mechanisms. News Physiol Sci 1991; 6:161–165.Google Scholar
  100. 100.
    Stone TW. Physiological roles of adenosine and adenosine 5′-triphosphate in the nervous system. Neurosci 1981; 6:523–555.Google Scholar
  101. 101.
    Stone TW. Subtypes of NMDA receptors. Gen Pharmacol 1993; 24:825–832.PubMedGoogle Scholar
  102. 102.
    Suarez RK, Doll CJ, Buie AE, West TG, Funk GD, Hochachka PW. Turtles and rats: a biochemical comparison of anoxia-tolerant and anoxia-sensitive brains. Am J Physiol 1989; 26:R1083–R1088.Google Scholar
  103. 103.
    Sweeney MI. Neuroprotective effects of adenosine in cerebral ischemia: window of opportunity. Neurosci Biobehav Rev 1997; 21:207–17.PubMedCrossRefGoogle Scholar
  104. 104.
    Toda N. Nitric oxide and the reulation of cerebral arterial tone. In: Vincent S, ed. Nitric Oxide in the Nervous System. London: Academic Press, 1995.Google Scholar
  105. 105.
    Umans JG, Levi R. Nitric oxide in the regulation of blood flow and arterial pressure. Ann Rev Physiol 1995; 57:771–790.CrossRefGoogle Scholar
  106. 106.
    Valtorta F, Meldolesi J, Fesce R. Synaptic vesicles: Is kissing a matter of competence? Trends Cell Biol 2001; 11:324–328.PubMedCrossRefGoogle Scholar
  107. 107.
    Von Bonin G. Brain-weight and body-weight of mammals. J Gen Psychol 1937; 16:379–389.Google Scholar
  108. 108.
    Vincent SR. Nitric Oxide in the Nervous System. London: Academic Press, 1995.Google Scholar
  109. 109.
    White TD, Hoehn K. Release of adenosine and ATP from nervous tissue. In: Stone WT ed. Adenosine and the nervous system. London: London Academic Press, 1991: 173–195.Google Scholar
  110. 110.
    Winberg S, Nilsson GE. Roles of brain monoamines in agonistic behaviour and stress reactions, with particular reference to fish. Comp Biochem Physiol 1993; 106C:597–614.Google Scholar
  111. 111.
    Wroblewski JT, Danysz W. Modulation of glutamate receptors: molecular mechanisms and functional implications. Ann. Rev. Pharmacol Toxicol 1989; 29:441–474.CrossRefGoogle Scholar
  112. 112.
    Yarowsky P, Jehle J, Ingvar DH. Relationship between functional activity and glucose utilization in the rat superior cervical ganglion in vivo. Soc Neurosci Abstr 1979; 5:421.Google Scholar
  113. 113.
    Yoshino M, Obata T, Sho S, Kinemuchi H. Enzymatic and molecular characteristics of a new form of monoamine oxidase, distinct from form-A and form-B. Jpn J Pharmacol 1984; 35:105–115.PubMedGoogle Scholar
  114. 114.
    Zhang J, Snyder SH. Nitric oxide in the nervous system. Ann Rev Pharmacol Toxicol 1995; 35:213–233.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Personalised recommendations