Clinical Perspectives


Brain Temperature Cereb Blood Flow Ischemic Brain Damage Hypoxia Response Element Anoxic Depolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel MS, McCandless DW. Elevated gamma-aminobutyric acid levels attenuate the metabolic response to bilateral ischemia. J Neurochem 1992; 58:740–744.PubMedCrossRefGoogle Scholar
  2. 2.
    Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M. Glucose, antidiabetic sulfonylureas and neurotransmitter release. Role of ATP-sensitive K+ channel. Science 1990; 247:852–854.PubMedCrossRefGoogle Scholar
  3. 3.
    Bickler PE, Gallego SM. Inhibition of brain calcium channels by plasma proteins from anoxic turtles. Am J Physiol 1993; 265:R277–R281.PubMedGoogle Scholar
  4. 4.
    Boening JA, Kass IS, Cottrell JE, Chambers G. The effect of blocking sodium influx on anoxic damage in the rat hippocampal slice. Neuroscience 1989; 33:263–268.PubMedCrossRefGoogle Scholar
  5. 5.
    Boissard CG, Lindner MD, Gribkoff VK. Hypoxia produces cell death in the rat hippocampus in the presence of an A1 adenosine receptor antagonist: an anatomical and behavioural study. Neurosci 1992; 4:807–812.CrossRefGoogle Scholar
  6. 6.
    Busto R, Globus MY, Neary JT, Ginsberg MD. Regional alterations of protein kinase C activity following transient cerebral ischemia: effects of intraischemic brain temperature modulation. J Neurochem 1994; 63:1095–1103.PubMedGoogle Scholar
  7. 7.
    Cordey R, Chiolero R, Miller JA. Resuscitation of neonates by hypothermia: report on 20 cases, with acid-base determination on 10 cases and the long term development of 33 cases. Resuscitation 1973; 2:169–181.PubMedCrossRefGoogle Scholar
  8. 8.
    Cummings TR, Jiang C, Haddad GG. Human neocortical excitability is decreased during anoxia via sodium channel modulation. J Clin Invest 1993; 91:608–615.CrossRefGoogle Scholar
  9. 9.
    Dargent B, Courand F. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurones. Proc Natl Acad Sci USA 1989; 87:5907–5911.CrossRefGoogle Scholar
  10. 10.
    Deanfield JE, Shea M, Ribiero P, de Landsheere CM, Wilson RA, Horlock P, Selwyn AP. Transient ST-segment depression as a marker of myocardial ischemia during daily life. Am J Cardiol. 1984 54(10):1195–200.PubMedCrossRefGoogle Scholar
  11. 11.
    Deedwania PC, Carbajal EV. Prevalence and patterns of silent myocardial ischemia during daily life in stable angina patients receiving conventional antianginal drug therapy. Am J Cardiol. 1990 65(16):1090–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Dessi F, Charriaut-Marlangue C, Ben-Ari Y. Anisomycin and cycloheximidide protect cerebellar neurons in culture from anoxia. Brain Res 1992; 581:323–326.PubMedCrossRefGoogle Scholar
  13. 13.
    Drew KL, Osborne PG, Frerichs KU, Hu Y, Koren RE, Hallenbeck JM, Rice ME, Ascorbate and glutathione regulation in hibernating ground squirrels. Brain Res 1999, 851(1–2):1–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Fern R, Waxman SG, Ransom BR. Modulation of anoxic injury in CNS white matter by adenosine and interaction between adenosine and GABA. J Neurophysiol 1994; 72:2609–2616.PubMedGoogle Scholar
  15. 15.
    Fern R, Waxman SG, Ransom BR. Endogenous GABA attenuates CNS white matter dysfunction following anoxia. J Neurosci 1995; 15:699–708.PubMedGoogle Scholar
  16. 16.
    Fishman GI, Kaplan ML, Buttrick PM. Tetracycline-regulated cardiac gene expression in vivo. J Clin Invest. 1994, 93(4):1864–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Frandsen A, Schousboe A. Dantroline prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral neurones. J Neurochem 1991; 56:1075–1078.PubMedCrossRefGoogle Scholar
  18. 18.
    Frerichs KU Neuroprotective strategies in nature-novel clues for the treatment of stroke and trauma. Acta Neurochir Suppl (Wien) 1999;73(1–2):57–61.Google Scholar
  19. 19.
    Ghersa P, Gobert RP, Sattonnet-Roche P, Richards CA, Merlo Pich E, Hooft van Huijsduijnen R. Highly controlled gene expression using combinations of a tissue-specific promoter, recombinant adenovirus and a tetracycline-regulatable transcription factor. Gene Ther. 1998 5:1213–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Ginsberg M, Globus M, Busto R. The protective effect of mild hypothermia on ischemic brain injury: Role of neurotransmitter release. In: Seylaz J, MacKenzie ET ed(s). Neurotransmission and cerebrovascular function I. Elsevier, 1989: 461–464.Google Scholar
  21. 21.
    Ginsberg MD, Sternau LL, Globus M. Theraputic modulation of brain temperature: Relevance to ischemic brain injury. Cerebrovasc. and Brain Metab Revs 1992; 4:189–225.Google Scholar
  22. 22.
    Gracey AY, Troll JV, Somero GN. Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci U S A. 2001, 98:1993–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Graham SH, Chen J, Sharp FR, et al. Limiting ischemic injury by inhibition of excitatory amino acid release. J Cereb Blood Flow Metab 1993; 13:88–97.PubMedGoogle Scholar
  24. 24.
    Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Aci USA 1995; 92:4666–4670.CrossRefGoogle Scholar
  25. 25.
    Hiramatsu K-I, Kassel NF, Lee KS. Thermal sensitivity of hypoxic responses in neocortical brain slices. J Cereb Blood Flow Metab 1993; 13:395–401.PubMedGoogle Scholar
  26. 26.
    Hochachka PW, Buck LT, Doll CJ, SC Land. Unifying theory of hypoxia tolerance: Molecular/ metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Nat Acad. Sci. USA. 1996, 93, 9493–9498.PubMedCrossRefGoogle Scholar
  27. 27.
    Hochachka PW and Lutz PL Mechanism, Origin, and Evolution of Anoxia Tolerance in Animals. Comp. Biochem. Physiol.B. 2001, 130, 435–459.PubMedCrossRefGoogle Scholar
  28. 28.
    Holter JB, Schellens RL. Dantrolene sodium for treatment for carbon monoxide poisoning. Br Med Jn 1988; 296:1772–1773.Google Scholar
  29. 29.
    Ikonomidou C, Mosinger JL, Olney JW. Hypothermia enhances protective effect of MK-801 against hyopxic/ischemic brain damage in infant rats. Brain Res 1989; 487:184–187.PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang C, Haddad GG. Effect of anoxia on intracellular and extracellular potassium activity in hypoglossal neurons in vitro. J Neurophysiol 1991; 66:103–111.PubMedGoogle Scholar
  31. 31.
    Johansen FF, Diemer NH. Enhancement of GABA neurotransmission after cerebral ischemia in the rat reduces loss of hippocampal CA1 pyramidal neurons. Acta Neurol Scand 1991; 84:1–6.PubMedGoogle Scholar
  32. 32.
    Katsura K-I, Minamisawa H, Ekholm, et al. Changes of labile metabolites during anoxia in moderately hyperthermic rats: correlations to membrane fluxes of K+. Brain Res 1992; 590:6–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Kitsis RN, Buttrick PM, McNally EM, Kaplan ML, Leinwand LA. Hormonal modulation of a gene injected into rat heart in vivo. Proc Natl Acad Sci U S A. 1991, 88:4138–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Lekieffre D, Meldrum BS. The pyrimidine-derivative, BW1003C87, protects CA1 and striatal neurons following transient severe forebrain ischemia in rats. A microdialysis study. Neurosci 1993; 56:93–99.CrossRefGoogle Scholar
  35. 35.
    Lucas LF, West CA, Rigor BM, et al. Protection against cerebral hypoxia by local anesthetics: a study using brain slices. J Neurosci Meths 1989; 28:47–50.CrossRefGoogle Scholar
  36. 36.
    Lyden PD, Lonzo L. Combination therapy protects ischemic brain in rats, a glutamate antagonist plus a gamma-aminobutyric acid agonist. Stroke 1994; 25:189–196.PubMedGoogle Scholar
  37. 37.
    Madden K.P. Effect of gamma-aminobutyric acid modulation on neuronal ischemia in rabbits. Stroke 1994; 25:2271–2275.PubMedGoogle Scholar
  38. 38.
    Meldrum BS, Swan JH, Leach MJ, Millan MH, Gwinn R, Kadota K, Graham SH, Chen J, Simon RP. Reduction of glutamate release and protection against ischemic brain damage by BW 1003C87. Brain Res 1992; 593:106.CrossRefGoogle Scholar
  39. 39.
    Minamisawa H, Nordstrom CH, Smith ML, Siesjo BK. The influence of mild body and brain hypothermia on ischemic brain damage. J Cereb Blood Flow Metab 1990; 10:365–374.PubMedGoogle Scholar
  40. 40.
    Miyashita K, Nakajima T, Ishikawa A, et al. An adenosine uptake blocker, propentofylline, reduces glutamate release in gebril hippocampus following transient forebrain ischemia. Neurochem Res 1992; 17:147–150.PubMedCrossRefGoogle Scholar
  41. 41.
    Perez-Pinzon M, Rosenthal M, Sick T, Lutz PL. Down-regulation of sodium channels during anoxia: A putative survival strategy of turtle brain. Am J Physiol 1992; 262:R712–R715.PubMedGoogle Scholar
  42. 42.
    Philis JW, Walter GA, Simpson RE. Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: Effects of the adenosine deaminase inhibitor deoxycoformycin. J Neurochem 1991; 56:644–650.CrossRefGoogle Scholar
  43. 43.
    Prentice H, Bishopric NH, Hicks MN, Discher DJ, Wu X, Wylie AA, Webster KA. Regulated expression of a foreign gene targeted to the ischaemic myocardium. Cardiovasc Res. 1997: 35(3):567–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Ravindran J, Shuaib A, Ijaz S, Galazka P, Waqar T, Ishaqzay R, Miyashita H, Liu L. High extracellular GABA levels in hippocampus — as a mechanism of neuronal protection in cerebral ischemia in adrenalectomized gerbils. Neurosci Lett 1994; 176:209–211.PubMedCrossRefGoogle Scholar
  45. 45.
    Rice ME, Cammack J. Anoxia-resistant turtle brain maintains ascorbic acid contents in vitro. Neurosci Lett 1991; 132:141–145.PubMedCrossRefGoogle Scholar
  46. 46.
    Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther. 1998; 80:35–47.PubMedCrossRefGoogle Scholar
  47. 47.
    Rothman SM. Excitotoxic neuronal death: mechanisms and clinical relevance. Seminars in The Neurosciences 1994; 6:315–322.CrossRefGoogle Scholar
  48. 48.
    Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor — still lethal after eight years. Trends Neurosci 1995; 18:57–58.PubMedCrossRefGoogle Scholar
  49. 49.
    Sancibrian M, Serrano JS, Minano FJ. Opioid and prostaglandin mechanisms involved in the effects of GABAergic drugs on body temperature. Gen Pharmacol 1991; 22:259–262.PubMedGoogle Scholar
  50. 50.
    Schaeffer P, Lazdunski M. K+ efflux pathways and neurotransmitter release associated to hippocampal ischemia: effects of glucose and of K+ channel blockers. Brain Res 1991; 539:155–158.PubMedCrossRefGoogle Scholar
  51. 51.
    Schwartz RD, Huff RA, Yu X. Postischemic diazepam is neuroprotective in the gerbil hippocampus. Brain Res 1994; 647:153–160.PubMedCrossRefGoogle Scholar
  52. 52.
    Schwartz RD, Yu X, Katzman MR, Hayden-Hixson DM, Perry JM. Diazepam, given postischemia, protects selectively vulnerable neurons in the rat hippocampus and striatum. J Neurosci 1995; 15:529–539.PubMedGoogle Scholar
  53. 53.
    Shuaib A, Ijaz S, Hasan S, Kalra J. Gamma-vinyl GABA prevents hippocampal and substantia nigra reticulata damage in repetitive transient forebrain ischemia. Brain Res 1992; 590:13–17.PubMedCrossRefGoogle Scholar
  54. 54.
    Shuaib A, Mazagri R, Ijaz S. GABA agonist “muscimol” is neuroprotective in repetitive forebrain ischemia in gerbils. Exp Neurol 1993; 123:284–288.PubMedCrossRefGoogle Scholar
  55. 55.
    Siebke H, Rod T, Breivik H, Link B. Survival after 40 minutes submersion without cerebral sequelae. Lancet 1975; 7919:1275–1277.CrossRefGoogle Scholar
  56. 56.
    Siesjo BK, Smith ML. Brain resuscitation: Yesterday, Today and Tomorrow. In: Takeshita H, Siesjo BK, Miller JD ed(s). Advances in Brain Resuscitation. Berlin: Springer, 1988: 3–19.Google Scholar
  57. 57.
    Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 1992; 77:337–354.PubMedGoogle Scholar
  58. 58.
    Silver B, Weber J, Fisher M. Medical therapy for ischemic stroke. Clin Neuropharmacol 1996; 19:101–128.PubMedCrossRefGoogle Scholar
  59. 59.
    Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci. 1999; 19(14):5731–40.PubMedGoogle Scholar
  60. 60.
    Stea A, Jackson A, Nurse CA. Hypoxia and N6, O2′-dibutyryladenosine 3′,5′-cyclic monophosphate, but not nerve growth factor, induce Na+ channels and hypertrophy in chromaffin-like arterial chemoreceptors. Proc Natl Acad Sci 1992; 89:9496–9473.CrossRefGoogle Scholar
  61. 61.
    Steen PA, Soule EH, Michenfelder JD. Detrimental effects of prolonged hypothermia in cats and monkeys with and without regional cerebral ischemia. Stroke 1979; 10:522–533.PubMedGoogle Scholar
  62. 62.
    Steen PA. The role of calcium entry blockers in brain ischemia. In: Takeshita H, Siesjo BK, Miller JD ed(s). Advances in Brain Resuscitation. Berlin: Springer, 1988:211–219.Google Scholar
  63. 63.
    Swanson RA, Chen J, Graham SH. Glucose can fuel glutamate uptake in ischemic brain. J Cereb Blood Flow and Metab 1994; 14:1–6.Google Scholar
  64. 64.
    Sweeney MI. Neuroprotective effects of adenosine in cerebral ischemia: window of opportunity. Neurosci and Biobehav Revs 1997 20 in press.Google Scholar
  65. 65.
    Urenjak J, Obrenovitch TP. Pharmacological modulation of volyage-gated Na+ channels: A rational and effective strategy against ischemic brain damage Pharmacol Rev 1996; 48:21–67.PubMedGoogle Scholar
  66. 66.
    Valentino K, Newcomb R, Gadbois T, Singh T, Bowersox S, Bitner S, Justice A, Yamashiro D, Hoffman BB, Ciaranello R. A selective N-type calcium channel antagonist protects against neuronal loss after global ischemia. Proc Natl Acad Sci USA 1993; 90:7894–7897.PubMedCrossRefGoogle Scholar
  67. 67.
    Vannucci RC, Mujsce DJ. Effect of glucose on perinatal hypoxic-ischemic brain damage. Biol Neonate 1992; 62:215–224.PubMedGoogle Scholar
  68. 68.
    Webster, KA. Molecular switches for regulating therapeutic genes. Gene Therapy 1998, 6, 951–953CrossRefGoogle Scholar
  69. 69.
    Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol. 2000; 203:1253–63.PubMedGoogle Scholar
  70. 70.
    Ye X, AI-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000; 287(5451):303–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Xia Y, Haddad GG. Major differences in CNS sulfonylurea receptor distribution between the rat (newborn, adult) and turtle. J Comp Neur 1991; 314:278–289.PubMedCrossRefGoogle Scholar
  72. 72.
    Xie Y, Dengler K, Zacharias E, et al. Effects of sodium channel blocker tetrodotoxin (TTX) on cellular ion homeostasis in rat brain subjected to complete ischemia. Brain Res 1994; 52:216–224.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Personalised recommendations