Skip to main content

Bandgap references

  • Chapter
Structured Electronic Design

Part of the book series: The International Series in Engineering and Computer Science ((SECS,volume 604))

  • 498 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R.J. van de Plassche. Integrated Analog-to-Analog and Digital-to-Analog Converters. Kluwer, Boston, 1994.

    Google Scholar 

  2. M.M. Martins and J.A.S. Dias. CMOS shunt regulator with bandgap reference for automotive environment. In IEE Proceeding Circuits Devices and Systems, volume 141, pages 157–161, June 1994.

    Google Scholar 

  3. H. Tanaka et al. Sub-1-μA dynamic reference voltage generator for battery-operated DRAMs. IEEE Journal of Solid-State Circuits, 29(4):448–453, April 1994.

    Google Scholar 

  4. D.F. Hilbiber. A new semiconductor voltage standard. In ISSCC Digest Technical Papers, volume 7, pages 32–33, 1964.

    Google Scholar 

  5. R.J. Widlar. New developments in IC voltage regulators. IEEE Journal of Solid-State Circuits, 6(1):2–7, February 1971.

    Article  Google Scholar 

  6. R.J. Widlar. Some circuit design techniques for linear integrated circuits. IEEE Transactions on Circuit Theory, 12(4):586–590, December 1965.

    Google Scholar 

  7. K.E. Kuijk. A precision reference voltage source. IEEE Journal of Solid-State Circuits, 8(3):222–226, June 1973.

    Article  Google Scholar 

  8. A.P. Brokaw. A simple three-terminal IC bandgap reference. IEEE Journal of Solid-State Circuits, 9(6):388–393, December 1974.

    Article  Google Scholar 

  9. G.C.M. Meijer and J.B. Verhoeff. An integrated bandgap reference. IEEE Journal of Solid-State Circuits, 11:403–406, June 1976.

    Article  Google Scholar 

  10. R.J. Widlar. Low voltage techniques. IEEE Journal of Solid-State Circuits, 13(6):838–846, December 1978.

    Article  Google Scholar 

  11. R.J. Widlar. A new breed of linear ICs runs at 1-volt levels. Electronics, pages 115–119, March 29 1979.

    Google Scholar 

  12. C.R. Dobkin and R.C. Palmer. A curvature corrected micropower voltage reference. In ISSCC Digest Technical Papers, pages 58–59, February 1981.

    Google Scholar 

  13. G.C.M. Meijer, P.C. Schmale, and K. van Zalinge. A new curvature-corrected bandgap reference. IEEE Journal of Solid State Circuits, 17(6):1139–1143, December 1982.

    Article  Google Scholar 

  14. I. Lee, G. Kim, and W. Kim. Exponential curvature-compensated BiCMOS bandgap references. IEEE Journal of Solid-State Circuits, 29(11):1396–1403, November 1994.

    Google Scholar 

  15. E.A. Vittoz and J. Fellrath. CMOS analog integrated circuits based on weak inversion operation. IEEE Journal of Solid-State Circuits, 12(3):224–231, June 1977.

    Article  Google Scholar 

  16. E.A. Vittoz and O. Neyroud. A low-voltage CMOS bandgap reference. IEEE Journal of Solid-State Circuits, 14(3):573–577, June 1979.

    Google Scholar 

  17. G. Tzanateas, C.A.T. Salama, and Y.P. Tsividis. A CMOS bandgap voltage reference. IEEE Journal of Solid-State Circuits, 14(3):655–657, June 1979.

    Article  Google Scholar 

  18. B.S. Song and P.R. Gray. A precision curvature-compensated CMOS bandgap reference. IEEE Journal of Solid-State Circuits, 18(6):634–643, December 1983.

    Article  Google Scholar 

  19. S.L. Lin and C.A.T. Salama. A V be (T) model with application to bandgap reference design. IEEE Journal of Solid-State Circuits, 20(6):1283–1285, December 1985.

    Article  Google Scholar 

  20. O. Salminen and K. Halonen. The higher order temperature compensation of bandgap voltage references. In Proceedings of the IEEE International Symposium on Circuits and Systems, pages 10–13, May 1992.

    Google Scholar 

  21. E.A. Vittoz. MOS transistors operated in the lateral bipolar mode and their application in CMOS technology. IEEE Journal of Solid-State Circuits, 18(3):273–279, June 1983.

    Article  Google Scholar 

  22. M.G.R. Degrauwe et al. CMOS voltage references using lateral bipolar transistors. IEEE Journal of Solid-State Circuits, 20(6):1151–1156, December 1985.

    Article  Google Scholar 

  23. H.J. Oguey and B. Gerber. MOS voltage reference based on polysilicon gate work function difference. IEEE Journal of Solid-State Circuits, 15(3):264–269, June 1980.

    Article  Google Scholar 

  24. G.C.M. Meijer. Bandgap references. In J.H. Huijsing et al., editors, Analog Circuit Design, pages 243–268. Kluwer, Dordrecht, 1995.

    Google Scholar 

  25. S.M. Sze. Physics of Semiconductor Devices. John Wiley & Sons, New York, 1969.

    Google Scholar 

  26. Y.P Tsividis. Accurate analysis of temperature effects in I C -V BE characteristics with application to bandgap reference sources. IEEE Journal of Solid-State Circuits, 15(6):1076–1084, December 1980.

    Google Scholar 

  27. K. v.d. Lingen. Bipolar Transistors for usage in Monolithic Bandgap References and Temperature Transducers. PhD thesis, Delft University of Technology, Delft, 1996.

    Google Scholar 

  28. J.W. Slotboom and H.C. de Graaf. Bandgap narrowing in silicon bipolar transistors. Solid-State Electronics, 19:857–862, October 1976.

    Article  Google Scholar 

  29. B. Gilbert. Unusual voltage and current references for IC realization. In J.H. Huijsing et al., editors, Analog Circuit Design, pages 268–352. Kluwer, Dordrecht, 1995.

    Google Scholar 

  30. Y.P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34:149–154, 1967.

    Article  Google Scholar 

  31. A. van Staveren, J. van Velzen, C.J.M. Verhoeven, and A.H.M. van Roermund. An integratable second-order compensated bandgap reference for 1 V supply. Analog Integrated Circuits and Signal Processing, 8:69–81, 1995.

    Article  Google Scholar 

  32. I.E. Getrue. Modeling the Bipolar Transistor. Elsevier, New York, 1978.

    Google Scholar 

  33. MicroSim Corporation. Manual PSPICE 4.05.

    Google Scholar 

  34. L.K. Nanver, E.J.G. Goudena, and H.W. van Zeijl. DIMES-01, a baseline BIFET process for smart sensor experimentation. Sensors and Actuators Physical, 36(2):139–147, 1993.

    Google Scholar 

  35. A. van Staveren. Chapter 5, Integrable DC sources and references. In W.A. Serdijn, C.J.M. Verhoeven, and A.H.M. van Roermund, editors, Analog IC Techniques for Low-Voltage Low-Power Electronics. Delft University Press, 1995.

    Google Scholar 

  36. A. van Staveren, C.J.M. Verhoeven, and A.H.M. van Roermund. The influence of the reverse early effect on the performance of bandgap references. IEEE Transactions on Circuits and Systems I, 43(5):418–421, May 1996.

    Google Scholar 

  37. V.I. Anisimov et al. Circuitdesign of low-power reference voltage sources. Telecommunications and radio engineering, Part I, 48(1):11–17, 1993.

    MathSciNet  Google Scholar 

  38. E.H. Nordholt. Design of High-Performance Negative-Feedback Amplifiers. Elsevier, Amsterdam, 1983.

    Google Scholar 

  39. A. van Staveren, C.J.M. Verhoeven, and A.H.M. van Roermund. The design of low-noise bandgap references. IEEE Transactions on Circuits and Systems I, 43(4):290–300, April 1996.

    Google Scholar 

  40. C.J.M. Verhoeven, A. van Staveren, and G.L.E. Monna. Structured electronic design, negative-feedback amplifiers. Lecture notes ET4 041, Delft University of Technology, 1999. To appear at John Wiley & Sons LTD, Chichester.

    Google Scholar 

  41. A. Bilotti and E. Mariani. Noise characteristics of current mirror sinks/sources. IEEE Journal of Solid-State Circuits, 10(6):516–524, December 1975.

    Article  Google Scholar 

  42. J.J. Ebers and J.L. Moll. Large-signal behavior of junction transistors. In Proceedings of the I.R.E., volume 42, pages 1761–1772, December 1954.

    Google Scholar 

  43. H.C. Lin et al. Lateral complementary transistor structure for the simultaneous fabrication of functional blocks. IEEE Proceedings, 52:1491–1495, December 1964.

    Article  Google Scholar 

  44. J. Lindmayer and W. Schneider. Theory of lateral transistors. Solid-State Electronics, 10:225–234, 1967.

    Article  Google Scholar 

  45. B.L. Hart. Direct verification of the Ebers-Moll reciprocity condition. International Journal of Electronics, 31(3):293–295, 1971.

    MathSciNet  Google Scholar 

  46. H.C. de Graaff and F.M. Klaassen. Compact Transistor Modeling for Circuit Design. Springer-Verlag, Wien, 1990.

    Google Scholar 

  47. W.C. Dillard and R.C. Jaeger. The temperature dependence of the amplification factor of bipolar-junction transistors. IEEE Transactions on Electron Devices, 34(1):139–142, January 1987.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). Bandgap references. In: Structured Electronic Design. The International Series in Engineering and Computer Science, vol 604. Springer, Boston, MA. https://doi.org/10.1007/0-306-48169-3_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48169-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7283-7

  • Online ISBN: 978-0-306-48169-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics