Wnt Signaling in Human Cancer

  • Patrice J. Morin
  • Ashani T. Weeraratna
Part of the Cancer Treatment and Research book series (CTAR, volume 115)


Activation of the Wnt pathway can proceed through at least three downstream signaling cascades mediating various cellular effects. We have described several findings that suggest important roles for the Wnt pathway in the development of human cancer. This role is not completely surprising considering the critical importance of this pathway in directing cell proliferation, migration and differentiation during vertebrate embryonic development.


Adenomatous Polyposis Coli Xenopus Embryo Planar Cell Polarity Frizzle Receptor Adenomatous Polyposis Coli Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ault, K. T., Durmowicz, G., Galione, A., Harger, P. L., & Busa, W. B. (1996). Modulation of Xenopus embryo mesoderm-specific gene expression and dorsoanterior patterning by receptors that activate the phosphatidylinositol cycle signal transduction pathway. Development, 122, 2033–2041.PubMedGoogle Scholar
  2. Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T., & Perrimon, N. (1998). Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev, 12, 2610–2622.PubMedGoogle Scholar
  3. Barker, N., Morin, P. J., & Clevers, H. (2000). The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res, 77, 1–24.PubMedGoogle Scholar
  4. Behrens, J., Jerchow, B., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., Kuhl, M., Wedlich, D., & Birchmeier, W. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3 beta. Science, 280, 596–599.CrossRefPubMedGoogle Scholar
  5. Bhanot, P., Brink, M., Samos, C. H., Hsieh, J.-C., Wang, Y., Macke, J. P., Andrew, D., Nathans, J., & Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382, 225–230.CrossRefPubMedGoogle Scholar
  6. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., & Sondak, V. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406, 536–540.CrossRefPubMedGoogle Scholar
  7. Boutros, M., Paricio, N., Strutt, D. I., & Mlodzik, M. (1998). Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell, 94, 109–118.CrossRefPubMedGoogle Scholar
  8. Brabletz, T., Jung, A., Dag, S., Hlubek, F., & Kirchner, T. (1999). beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J. Path, 155, 1033–1038.PubMedGoogle Scholar
  9. Bui, T. D., Tortora, G., Ciardiello, F., & Harris, A. L. (1997). Expression of Wnt5a is downregulated by extracellular matrix and mutated c-Ha-ras in the human mammary epithelial cell line MCF-10A. Biochem Biophys Res Commun, 239, 911–917.PubMedGoogle Scholar
  10. Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes Dev, 11, 3286–3305.PubMedGoogle Scholar
  11. Cavallo, R. A., Cox, R. T., Moline, M. M., Roose, J., Polevoy, G. A., Clevers, H., Peifer, M., & Bejsovec, A. (1998). Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature, 395, 604–608.PubMedGoogle Scholar
  12. Clevers, H., & van de Wetering, M. (1997). TCF/LEF factors earn their wings. Trends Genet, 13, 485–489.CrossRefPubMedGoogle Scholar
  13. Cossu, G., & Borello, U. (1999). Wnt signaling and the activation of myogenesis in mammals. EMBO J, 18, 6867–6872.CrossRefPubMedGoogle Scholar
  14. Du, S. J., Purcell, S., Christian, J. L., McGrew, L. L., & Moon, R. T. (1995). Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol. Cell. Biol., 15, 2625–2634.PubMedGoogle Scholar
  15. Fagotto, F., Gluck, U., & Gumbiner, B. M. (1998). Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr Biol, 8, 181–190.CrossRefPubMedGoogle Scholar
  16. Giese, K., Amsterdam, A., & Grosschedl, R. (1991). DNA-binding properties of the HMG domain of the lymphoid-specific tianscriptional regulator LEF-1. Genes Dev, 5, 2567–2578.PubMedGoogle Scholar
  17. Giese, K., Cox, J., & Grosschedl, R. (1992). The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell, 69, 185–195.CrossRefPubMedGoogle Scholar
  18. Gieseler, K., Graba, Y., Mariol, M. C., Wilder, E. L., Martinez-Arias, A., Lemaire, P., & Pradel, J. (1999). Antagonist activity of DWnt-4 and wingless in the Drosophila embryonic ventral ectoderm and in heterologous Xenopus assays. Mech Dev, 85, 123–131.CrossRefPubMedGoogle Scholar
  19. Hart, M., Concordet, J. P., Lassot, I., Albert, I., del los Santos, R., Durand, H., Perret, C., Rubinfeld, B., Margottin, F., Benarous, R., & Polakis, P. (1999). The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cellz. Curr Biol, 9, 207–210.CrossRefPubMedGoogle Scholar
  20. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B., & Polakis, P. (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Current Biology, 8, 573–581.CrossRefPubMedGoogle Scholar
  21. He, T. C., Chan, T. A., Vogelstein, B., & Kinzler, K. W. (1999). PPAR delta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 99, 335–345.CrossRefPubMedGoogle Scholar
  22. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B., & Kinzler, K. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509–1512.CrossRefPubMedGoogle Scholar
  23. He, X., St-Jeannet, J.-P., Wang, Nathans, Dawid,, &, A. V. (1997). A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science, 275, 1652.CrossRefPubMedGoogle Scholar
  24. Hecht, A., Litterst, C. M., Huber, O., & Kemler, R. (1999). Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem, 274, 18017–18025.CrossRefPubMedGoogle Scholar
  25. Hecht, A., Vleminckx, K., Stemmler, M. P., van Roy, F., & Kemler, R. (2000). The p300/CBP acetyl transferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J, 19, 1839–1850.CrossRefPubMedGoogle Scholar
  26. Hsu, S. C., Galceran, J., & Grosschedl, R. (1998). Modulation of transcriptional regulation by LEF-1 in response to wnt-1 signaling and association with beta-catenin. Mol Cell Biol, 18, 4807–4818.PubMedGoogle Scholar
  27. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J, 17, 1371–1384.CrossRefPubMedGoogle Scholar
  28. Iozzo, R. V., Eichstetter, I., & Danielson, K. G. (1995). Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res, 55, 3495–3499.PubMedGoogle Scholar
  29. Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, N., Waterman, M., Bowerman, B., Clevers, H., Shibuya, H., & Matsumoto, K. (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature, 399, 798–802.PubMedGoogle Scholar
  30. Jiang, J., & Struhl, G. (1998). Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature, 391, 493–496.CrossRefPubMedGoogle Scholar
  31. Jonsson, M., Dejmek, J., Bendahl, P. O., & Andersson, T. (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res, 62, 409–416.PubMedGoogle Scholar
  32. Jonsson, M., Smith, K., & Harris, A. L. (1998). Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. Br J Cancer, 78, 430–438.PubMedGoogle Scholar
  33. Jue, S. F., Bradley, R. S., Rudnicki, J. A., Varmus, H. E., & Brown, A. M. C. (1992). The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol. Cell. Biol., 12, 321–328.PubMedGoogle Scholar
  34. Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K., & Perrimon, N. (1996). The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev., 10, 3116–3128.PubMedGoogle Scholar
  35. Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.CrossRefPubMedGoogle Scholar
  36. Kishida, S., Yamamoto, H., Hino, S., Ikeda, S., Kishida, M., & Kikuchi, A. (1999). DIX domains of Dvl and Axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Molec Cell Biol, 19, 4414–4422.PubMedGoogle Scholar
  37. Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J. Biol. Chem., 273, 10823–10826.CrossRefPubMedGoogle Scholar
  38. Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., & Clevers, H. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet, 19, 379–383.PubMedGoogle Scholar
  39. Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., Vogelstein, B., & Clevers, H. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/-colon carcinoma. Science, 275, 1784–1787.CrossRefPubMedGoogle Scholar
  40. Kuhl, M., Sheldahl, L. C., Malbon, C. C., & Moon, R. T. (2000). Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem, 275, 12701–12711.PubMedGoogle Scholar
  41. Kuhl, M., Sheldahl, L. C., Park, M., Miller, J, R., & Moon, R. T. (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet, 16, 279–283.PubMedGoogle Scholar
  42. Lejeune, S., Huguet, E. L., Hamby, A., Poulsom, R., & Harris, A. L. (1995). Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res, 1, 215–222.PubMedGoogle Scholar
  43. Levanon, D., Goldstein, R. E., Bernstein, Y., Tang, H., Goldenberg, D., Stifani, S., Paroush, Z., & Groner, Y. (1998). Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA, 95, 11590–11595.CrossRefPubMedGoogle Scholar
  44. Li, L., Yuan, H. D., Weaver, C. D., Mao, J. H., Farr, G. H., Sussman, D. J., Jonkers, J., Kimelman, D., & Wu, D. Q. (1999). Axin and Frat1 interact with DvI and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J, 18, 4233–4240.PubMedGoogle Scholar
  45. Lisovsky, M., Itoh, K., & Sokol, S. Y. (2002). Frizzled Receptors Activate a Novel JNK-Dependent Pathway that May Lead to Apoptosis. Curr Biol, 12, 53–58.CrossRefPubMedGoogle Scholar
  46. Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U,, Behringer, R. R., & Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet, 22(4), 361–365.PubMedGoogle Scholar
  47. Liu, T., DeCostanzo, A. J., Liu, X., Wang, H., Hallagan, S., Moon, R. T., & Malbon, C. C. (2001). G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science, 292(5522), 1718–1722.CrossRefPubMedGoogle Scholar
  48. Liu, T., Liu, X. X., Wang, H. Y., Moon, R. T., & Malbon, C. C. (1999). Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require G alpha(q) and G alpha(o) function. J. Biol Chem., 274, 33539–33544.PubMedGoogle Scholar
  49. Liu, X., Liu, T., Slusarski, D. C., Yang-Snyder, J., Malbon, C. C., Moon, R. T., & Wang, H. (1999). Activation of a frizzled-2/beta-adrenergic receptor chimera promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via Galphao and Galphat. Proc Natl Acad Sci USA 96, 14383–14388.PubMedGoogle Scholar
  50. Malbon, C, C., Wang, H., & Moon, R. T. (2001). Wnt signaling and heterotrimeric G-proteins: strange bedfellows or a classic romance? Biochem Biophys Res Commun, 287(3), 589–593.CrossRefPubMedGoogle Scholar
  51. Mann, B., Gelos, M., Siedow, A., Hanski, M. L., Gratchev, A., Ilyas, M., Bodmer, W. F., Moyer, M. P., Riecken, E. O., Buhr, H. J., & Hanski, C. (1999). Target genes of beta-catenin-T cell-factor lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl Acad. Sci. USA 96,1603–1608.PubMedGoogle Scholar
  52. McEwen, D. G., & Peifer, M. (2001). Wnt signaling: the naked truth? Curr Biol, 11(13), R524–526.CrossRefPubMedGoogle Scholar
  53. McMahon, B. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62, 1073CrossRefPubMedGoogle Scholar
  54. Miyagishi, M., Fujii, R., Hatta, M., Yoshida, E., Araya, N., Nagafuchi, A., Ishihara, S., Nakajima, T., & Fukamizu, A. (2000). Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. J Biol Chem, 275(45), 35170–35175.CrossRefPubMedGoogle Scholar
  55. Monkley, S. J., Delaney, S. J., Pennisi, D. J., Christiansen, J. H., & Wainwright, B. J. (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development, 122, 3343–3353.PubMedGoogle Scholar
  56. Moon, R. T., Campbell, R. M., Christian, J. L., McGrew, L. L., DeMarais, A. A., Shih, J., & Fraser, S. (1993). Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development, 119, 97–111.PubMedGoogle Scholar
  57. Moriguchi, T., Kawachi, K., Kamakura, S., Masuyama, N., Yamanaka, H., Matsumoto, K., Kikuchi, A., & Nishida, E. (1999). Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J Biol Chem, 274, 30957–30962CrossRefPubMedGoogle Scholar
  58. Morin, P. J. (1999). beta-catenin signaling and cancer. Bioessays, 21, 1021–1030.CrossRefPubMedGoogle Scholar
  59. Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., & Kinzler, K. W. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 275, 1787–1790.CrossRefPubMedGoogle Scholar
  60. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., & Polakis, P. (1995). Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A, 92, 3046–3050.PubMedGoogle Scholar
  61. Neufeld, K. L., Nix, D. A., Bogerd, H., Kang, Y., Beckerle, M. C., Cullen, B. R., & White, R. L. (2000). Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc Natl Acad Sci U S A, 97(22), 12085–12090.CrossRefPubMedGoogle Scholar
  62. Neufeld, K. L., & White, R. L. (1997). Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc. Natl. Acad. Sci. USA, 94, 3034–3039.CrossRefPubMedGoogle Scholar
  63. Neufeld, K. L., Zhang, F., Cullen, B. R., & White, R. L. (2000). APC-mediated downregulation of betacatenin activity involves nuclear sequestration and nuclear export. EMBO Rep, 1, 519–523.PubMedGoogle Scholar
  64. Nusse, R., & Varmus, H. E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31, 99–109.CrossRefPubMedGoogle Scholar
  65. Olson, D. J., & Gibo, D. M. (1998). Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp Cell Res, 241, 134–141.CrossRefPubMedGoogle Scholar
  66. Orford, K., Crockett, C., Jensen, J. P., Weissman, A. M., & Byers, S. W. (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem, 272, 24735–24738.CrossRefPubMedGoogle Scholar
  67. Orsulic, S., & Peifer, M. (1996). Cell-cell signalling: Wingless lands at last. Curr Biol 6, 1363–1667.CrossRefPubMedGoogle Scholar
  68. Pandur, P., & Kuhl, M. (2001). An arrow for wingless to take-off. Bioessays 23(3), 207–210.CrossRefPubMedGoogle Scholar
  69. Paricio, N., Feiguin, F., Boutros, M., Eaton, S., & Mlodzik, M. (1999). The Drosophila STE20-like kinase misshapen is required downstream of the Frizzled receptor in planar polarity signaling. EMBO J, 18, 4669–4678.CrossRefPubMedGoogle Scholar
  70. Parr, B. A., Cornish, V. A., Cybulsky, M. I., & McMahon, A. P. (2001). Wnt7b regulates placental development in mice. Dev Biol, 237, 324–332.CrossRefPubMedGoogle Scholar
  71. Parr, B. A., & McMahon, A. P. (1995). Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature, 374, 350–353.CrossRefPubMedGoogle Scholar
  72. Parr, B. A., & McMahon, A. P. (1998). Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature, 395, 707–710.PubMedGoogle Scholar
  73. Peters, J. M., McKay, R. M., McKay, J. P., & Graff, J. M. (1999). Casein kinase I transduces Wnt signals. Nature, 401, 345–350.CrossRefPubMedGoogle Scholar
  74. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., & Skarnes, W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 407, 535–538.PubMedGoogle Scholar
  75. Polakis, P. (1999). The oncogenic activation of beta-catenin. Curr Opin Genet & Dev, 9, 15–21.Google Scholar
  76. Robbins, P. F., El-Gamil, M., Li, Y. F., Kawakami, Y., Loftus, D., Appella, E., & Rosenberg, S. A. (1996). A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med., 183, 1185–1192.CrossRefPubMedGoogle Scholar
  77. Rocheleau, C. E., Yasuda, J., Shin, T. H., Lin, R., Sawa, H., Okano, H., Priess, J. R,, Davis, R. J., & Mello, C, C. (1999). WRM-1 activates the LIT-1 protein kinase to transduce anterior/posterior polarity signals in C. elegans. Cell, 97, 717–726.CrossRefPubMedGoogle Scholar
  78. Roose, J., & Clevers, H. (1999). TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta Rev Cancer, 1424, M23–M37.Google Scholar
  79. Roose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., van de Wetering, M., Destree, O., & Clevers, H. (1998). The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressers. Nature, 395, 608–612.PubMedGoogle Scholar
  80. Rosin-Arbesfeld, R., Townsley, F., & Bienz, M. (2000). The APC tumour suppressor has a nuclear export function. Nature, 406, 1009–1012.PubMedGoogle Scholar
  81. Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, E., & Polakis, P. (1997). Stabilization of b-catenin by genetic defects in melanoma cell lines. Science, 275, 1790–1792.CrossRefPubMedGoogle Scholar
  82. Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S. H., Masiarz, F. R., Munemitsu, S., & Polakis, P. (1993). Association of the APC gene product with beta-catenin. Science, 262, 1731–1734.PubMedGoogle Scholar
  83. Saitoh, T., Mine, T., & Katoh, M. (2002). Up-regulation of Frizzled-10 (FZD10) by beta-estradiol in MCF-7 cells and by retinoic acid in NT2 cells. Int J Oncol, 20, 117–120.PubMedGoogle Scholar
  84. Sakanaka, C., Leong, P., Xu, L., Harrison, S. D., & Williams, L. T. (1999). Casein kinase I epsilon in the wnt pathway: regulation of beta-catenin function. Proc Natl Acad Sci U S A, 96, 12548–12552.CrossRefPubMedGoogle Scholar
  85. Salomon, D., Sacco, P. A., Roy, S. G., Simcha, I., Johnson, K. R., Wheelock, M. J., & Ben-Ze’ev, A. (1997). Regulation of beta-catenin levels and localization by overexpression of plakoglobin and inhibition of the ubiquitin-proteasome system. J Cell Biol, 139, 1325–1335.CrossRefPubMedGoogle Scholar
  86. Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., & Virshup, D. M. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283, 2089–2091.CrossRefPubMedGoogle Scholar
  87. Sen, M., Chamorro, M., Reifert, J., Corr, M., & Carson, D. A. (2001). Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum, 44, 772–781.CrossRefPubMedGoogle Scholar
  88. Sheldahl, L. C., Park, M., Malbon, C. C., & Moon, R. T. (1999). Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol., 9, 695–698.CrossRefPubMedGoogle Scholar
  89. Shimizu, H., Julius, M. A., Giarre, M., Zheng, Z., Brown, A. M., & Kitajewski, J. (1997). Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ, 8, 1349–1358.PubMedGoogle Scholar
  90. Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R., & Ben-Ze’ev, A. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci. USA, 96, 5522–5527.CrossRefPubMedGoogle Scholar
  91. Slusarski, D. C., Corces, V. G., & Moon, R. T. (1997). Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390(6658), 410–413.PubMedGoogle Scholar
  92. Slusarski, D. C., Yang-Snyder, J., Busa, W. B., & Moon, R. T. (1997). Modulation of embryonic intracellular Ca2+ signaling by Wnt-5a. Develop. Biol., 182, 114–120.CrossRefPubMedGoogle Scholar
  93. Smalley, M. J., & Dale, T. C. (1999). Wnt signalling in mammalian development and cancer. Cancer Metastasis Rev, 18, 215–230.CrossRefPubMedGoogle Scholar
  94. Smith, K. J., Johnson, K. A., Bryan, T. M., Hill, D., Markowitz, S., Willson, J. K., Paraskeva, C., Petersen, G. M., Hamilton, S. R., Vogelstein, B., & Kinzler, K. W. (1993). The APC gene product in normal and tumor cells. Proc Natl Acad Sci USA, 90, 2846–2850.PubMedGoogle Scholar
  95. Smolich, B. D., McMahon, J. A., McMahon, A. P., & Papkoff, J. (1993). Wnt family proteins are secreted and associated with the cell surface. Mol. Cell. Biol., 4, 1267–1275.Google Scholar
  96. Sokol, S. Y. (1999). Wnt signaling and dorso-ventral axis specification in vertebrates. Curr Opin Genet. Devel., 9, 405–410.Google Scholar
  97. Sparks, A. B., Morin, P. J., Vogelstein, B., & Kinzler, K. W. (1998). Mutational Analysis of the APC/beta-Catenin/Tcf Pathway in Colorectal Cancer. Cancer Research, 58, 1130–1134.PubMedGoogle Scholar
  98. Stark, K., Vainio, S., Vassileva, G., & McMahon, A. P. (1994), Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature, 372, 679–684.CrossRefPubMedGoogle Scholar
  99. Su, L. K., Vogelstein, B., & Kinzler, K. W. (1993). Association of the APC tumor suppressor protein with catenins. Science, 262, 1734–1737.PubMedGoogle Scholar
  100. Sun, T. Q., Lu, B., Feng, J. J., Reinhard, C., Jan, Y. N., Fantl, W. J., & Williams, L. T. (2001). PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol, 3, 628–636.CrossRefPubMedGoogle Scholar
  101. Tajbakhsh, S., Borello, U., Vivarelli, E., Kelly, R., Papkoff, J., Duprez, D., Buckingham, M., & Cossu, G. (1998). Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development, 125, 4155–4162.PubMedGoogle Scholar
  102. Takada, S., Stark, K. L., Shea, M. J., Vassileva, G., McMahon, J. A., & McMahon, A. P. (1994). Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes & Dev., 8, 174.Google Scholar
  103. Takemaru, K. I., & Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol, 149, 249–254.CrossRefPubMedGoogle Scholar
  104. Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-Jeannet, J, P., & He, X. (2000), LDL-receptor-related proteins in Wnt signal transduction. Nature, 407, 530–535.PubMedGoogle Scholar
  105. Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398, 422–426.PubMedGoogle Scholar
  106. Thomas, K. R., & Capecchi, M. R. (1990). Targeted disruption of the murine int-1proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 346, 847–850.CrossRefPubMedGoogle Scholar
  107. Torres, Y.-S., Purcell, DeMarais, McGrew, Moon. (1996), Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol., 133, 1123.CrossRefPubMedGoogle Scholar
  108. Travis, A., Amsterdam, A., Belanger, C., & Grosschedl, R. (1991). LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes Dev, 5, 880–894.PubMedGoogle Scholar
  109. Truica, C. I., Byers, S., & Gelmann, B. P. (2000). Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res, 60, 4709–4713.PubMedGoogle Scholar
  110. Ueda, M., Gemmill, R. M., West, J., Winn, R., Sugita, M., Tanaka, N., Ueki, M., & Drabkin, H. A. (2001). Mutations of the beta-and gamma-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br J Cancer, 85, 64–68.CrossRefPubMedGoogle Scholar
  111. Vainio, S., Heikkila, M., Kispert, A., Chin, N., & McMahon, A. P. (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature, 397, 405–409.PubMedGoogle Scholar
  112. van de Wetering, M., Oosterwegel, M., Dooijes, D., & Clevers, H. (1991). Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J., 10, 123–132.PubMedGoogle Scholar
  113. Vinson, C. R., & Adler, P. N. (1987). Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature, 329, 549–551.CrossRefPubMedGoogle Scholar
  114. Voeller, H. J., Truica, C. I., & Gelmann, E. P. (1998). beta-catenin mutations in human prostate cancer. Cancer Res, 58, 2520–2523.PubMedGoogle Scholar
  115. von Kries, J. P., Winbeck, G., Asbrand, C., Schwarz-Romond, T., Sochnikova, N., DellľOro, A., Behrens, J., & Birchmeier, W. (2000). Hot spots in beta-catenin for interactions with LEF-1, conductin and APC. Nat Struct Biol, 7(9), 800–807.Google Scholar
  116. Waltzer, L., & Bienz, M. (1998). Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature, 395, 521–525.PubMedGoogle Scholar
  117. Weeraratna, A., Jiang,-Y., Lueders, J., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., & Trent, J. M. (2002). Wnt5a Signaling Directly Affects Cell Motility and Invasion of Metastatic Melanoma. Cancer Cell, in press.Google Scholar
  118. Willert, K., Brink, M., Wodarz, A., Varmus, H., & Nusse, R, (1997). Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J, 16, 3089–3096.CrossRefPubMedGoogle Scholar
  119. Willert, K., Shibamoto, S., & Nusse, R. (1999). Wnt-induced dephosphorylation of Axin releases beta-catenin from the Axin complex. Genes Dev., 13, 1768–1773.PubMedGoogle Scholar
  120. Winston, J. T., Strack, P., Beer-Romero, P., Chu, C. Y., Elledge, S. J., & Harper, J. W. (1999). The SCF beta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in I kappa B alpha and beta-catenin and stimulates I kappa B alpha ubiquitination in vitro. Genes & Dev., 13, 270–283.Google Scholar
  121. Wong, G. T., Gavin, B. J., & McMahon, A. P. (1994). Differential transformation of mammary epithelial cells by Wnt genes. Molec. cell. Biol., 14, 6278–6286.PubMedGoogle Scholar
  122. Wong, S. C., Lo, S. F., Lee, K. C., Yam, J. W., Chan, J. K,, & Wendy Hsiao, W. L. (2002). Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. J Pathol, 196, 145–153CrossRefPubMedGoogle Scholar
  123. Yamaguchi, T. P., Bradley, A., McMahon, A. P., & Jones, S. (1999). A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development, 126, 1211–1223.PubMedGoogle Scholar
  124. Yamamoto, H., Kishida, S., Uochi, T., Ikeda, S., Koyama, S., Asashima, M., & Kikuchi, A. (1998). Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol, 18, 2867–2875.PubMedGoogle Scholar
  125. Yamanaka, H., Moriguchi, T., Masuyama, N., Kusakabe, M., Hanafusa, H., Takada, R., Takada, S., & Nishida, E. (2002). JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates, EMBO Rep, 3, 69–75.CrossRefPubMedGoogle Scholar
  126. Yang, F., Li, X., Sharma, M., Sasaki, C. Y., Longo, D, L., Lim, B., & Sun, Z. (2002). Linking beta-catenin to androgen signaling pathway, J Biol Chem, in press.Google Scholar
  127. Yokoya, F., Imamoto, N., Tachibana, T., & Yoneda, Y. (1999). beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Molec Biol Cell, 10, 1119–1131.PubMedGoogle Scholar
  128. Zeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T. J., Perry, W. L, r., Lee, J. J., Tilghman, S. M., Gumbiner, B. M., & Costantini, F. (1997). The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell, 90, 181–192.CrossRefPubMedGoogle Scholar
  129. Zhang, F., White, R. L., & Neufeld, K. L. (2000). Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proc Natl Acad Sci USA, 97, 12577–12582.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Patrice J. Morin
    • 1
  • Ashani T. Weeraratna
    • 2
  1. 1.Laboratory of Cellular and Molecular BiologyNational Institute on Aging, NIHBaltimore
  2. 2.Ashani Genetics BranchNational Human Genome Research Institute, NIHBethesda

Personalised recommendations