Advertisement

Steroid Hormone Receptor Signaling in Cancer

  • Shinta Cheng
  • Steven P. Balk
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 115)

Summary and Conclusions

SHRs function as hormone activated, sequence specific DNA binding transcription factors that recruit multiple coactivator and other proteins to specific genes and generally stimulate transcription of these genes. SHR may have further genomic actions, that do not involve direct DNA binding, through protein-protein interactions with other sequence specific transcription factors, although these may still involve weak binding to nonconsensus steroid responsive elements in vivo. SHRs also appear to have nongenomic effects mediated through interactions with cytoplasmic signaling proteins. The major functions of SHRs in normal adult tissues appear to involve stimulation of differentiation, rather than proliferation. In contrast, the ERα and AR directly stimulate the growth of breast and prostate cancers, respectively, indicating a critical change in their functions. The ERα and AR appear to undergo further adaptation in tumor cells in response to hormonal therapies, that render these therapies ineffective. Understanding the molecular basis for these changes in SHR function during cancer development and progression may provide new targets for the generation of drugs to prevent and treat steroid stimulated cancers.

Keywords

Prostate Cancer Estrogen Receptor Androgen Receptor Androgen Deprivation Therapy Estrogen Receptor Alpha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rererences

  1. Abreu-Martin, M.T., Chari, A., Palladino, A.A., Craft, N.A., &a Sawyers, C.L. (1999). Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol. Cell Biol., 19(7), 5143–5154.PubMedGoogle Scholar
  2. Adler, A.J., Danielsen, M., & Robins, D.M. (1992). Androgen-specific gene activation via a consensus glucocorticoid response element is determined by interaction with nonreceptor factors. Proc.Natl.Acad.Sci.U.S.A, 89(24), 11660–11663.PubMedGoogle Scholar
  3. Alen, P., Claessens, F., Schoenmakers, E., Swinnen, J.V., Verhoeven, G., Rombauts, W., & Peeters, B. (1999). Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform. Mol.Endocrinol., 13(1), 117–128.CrossRefPubMedGoogle Scholar
  4. Alen, P., Claessens, F., Verhoeven, G., Rombauts, W., & Peeters, B. (1999). The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol.Cell Biol., 19(9), 6085–6097.PubMedGoogle Scholar
  5. Alland, L., Muhle, R., Hou, H., Jr., Potes, J., Chin, L., Schreiber-Agus, N., & DePinho, R.A. (1997). Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature, 387(6628), 49–55.CrossRefPubMedGoogle Scholar
  6. Anzick, S.L., Kononen, J., Walker, R.L., Azorsa, D.O., Tanner, M.M., Guan, X.Y., Sauter, G., Kallioniemi, O.P., Trent, J.M., & Meltzer, P.S. (1997). AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science, 277(5328), 965–968.CrossRefPubMedGoogle Scholar
  7. Archer, T.K., Lefebvre, P., Wolford, R.G., & Hager, G.L. (1992). Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science, 255(5051), 1573–1576PubMedGoogle Scholar
  8. Arnold, S.F., Obourn, J.D., Jaffe, H., & Notides, A.C. (1995). Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol.Endocrinol., 9(1), 24–33.CrossRefPubMedGoogle Scholar
  9. Aronica, S.M., & Katzenellenbogen, B.S. (1993). Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol.Endocrinol., 7(6), 743–752.CrossRefPubMedGoogle Scholar
  10. Berrevoets, C.A., Doesburg, P., Steketee, K., Trapman, J., & Brinkmann, A.O. (1998). Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol.Endocrinol., 12(8), 1172–1183.CrossRefPubMedGoogle Scholar
  11. Berthon, P., Waller, A.S., Villette, J.M., Loridon, L., Cussenot, O., & Maitland, N.J. (1997). Androgens are not a direct requirement for the proliferation of human prostatic epithelium in vitro. Int. J.Cancer, 73(6), 910–916.CrossRefPubMedGoogle Scholar
  12. Bevan, C.L., Hoare, S., Claessens, F., Heery, D.M., & Parker, M.G. (1999). The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol.Cell Biol., 19(12), 8383–8392.PubMedGoogle Scholar
  13. Bjornstrom, L., Kilic, E., Norman, M., Parker, M.G., & Sjoberg, M. (2001). Cross-talk between Stat5b and estrogen receptor-alpha and-beta in mammary epithelial cells. J.Mol.Endocrinol., 27(1), 93–106.CrossRefPubMedGoogle Scholar
  14. Blanco, J.C., Minucci, S., Lu, J., Yang, X.J., Walker, K.K., Chen, H., Evans, R.M, Nakatani, Y., & Ozato, K. (1998). The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev., 12(11), 1638–1651.PubMedGoogle Scholar
  15. Boonyaratanakornkit, V., Melvin, V., Prendergast, P., Altmann, M., Ronfani, L., Bianchi, M.E., Taraseviciene, L., Nordeen, S.K., Allegretto, E.A., & Edwards, D.P. (1998). High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol,Cell Biol., 18(8), 4471–4487.Google Scholar
  16. Borg, A., Baldetorp, B., Ferno, M., Killander, D., Olsson, H., Ryden, S., & Sigurdsson, H. (1994). ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett., 81(2), 137–144.CrossRefPubMedGoogle Scholar
  17. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., & Moras, D. (1995). Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha [see comments]. Nature, 375(6530), 377–382.CrossRefPubMedGoogle Scholar
  18. Brady, M.E., Ozanne, D.M., Gaughan, L., Waite, I., Cook, S., Neal, D.E., & Robson, C.N. (1999). Tip60 is a nuclear hormone receptor coactivator. J.Biol,Chem., 274(25), 17599–17604.CrossRefGoogle Scholar
  19. Brinkmann, A.O., Blok, L.J., de Ruiter, P.E., Doesburg, P., Steketee, K., Berrevoets, C.A., & Trapman, J. (1999). Mechanisms of androgen receptor activation and function. J,Steroid Biochem,Mol.Biol., 69(1–6), 307–313.Google Scholar
  20. Brzozowski, A.M., Pike, A.C., Dauter, Z., Hubbard, R.E., Bonn, T., Engstrom, O., Ohman, L., Greene, G.L., Gustafsson, J.A., & Carlquist, M. (1997). Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 389(6652), 753–758.CrossRefPubMedGoogle Scholar
  21. Bubulya, A., Chen, S.Y., Fisher, C.J., Zheng, Z., Shen, X.Q., & Shemshedini, L. (2001). c-Jun potentiates the functional interaction between the amino and carboxyl termini of the androgen receptor. J.Biol.Chem., 276(48), 44704–44711.CrossRefPubMedGoogle Scholar
  22. Buchanan, G., Yang, M., Harris, J.M., Nahm, H.S., Han, G., Moore, N., Bentel, J.M., Matusik, RJ., Horsfall, DJ., Marshall, V.R., Greenberg, N.M., & Tilley, W.D. (2001). Mutations at the Boundary of the Hinge and Ligand Binding Domain of the Androgen Receptor Confer Increased Transactivation Function. Mol.Endocrinol., 15(1), 46–56.CrossRefPubMedGoogle Scholar
  23. Bunone, G., Briand, P.A., Miksicek, R.J., & Picard, D. (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J., 15(9), 2174–2183.PubMedGoogle Scholar
  24. Burakov, D., Wong, C.W., Rachez, C., Cheskis, BJ., & Freedman, L.P. (2000). Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex. J.Biol.Chem., 275(27), 20928–20934.CrossRefPubMedGoogle Scholar
  25. Byrne, R.L., Leung, H., & Neal, D.E. (1996). Peptide growth factors in the prostate as mediators of stromal epithelial interaction. Br.J.Urol., 77(5), 627–633.PubMedGoogle Scholar
  26. Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J.G., Jen, J., Isaacs, W.B., Bova, G.S., & Sidransky, D. (1997). Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res., 57(22), 4997–5000.PubMedGoogle Scholar
  27. Campbell, R,A., Bhat-Nakshatri, P., Patel, N.M., Constantinidou, D., Ali, S., & Nakshatri, H. (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J.Biol.Chem., 276(13), 9817–9824.CrossRefPubMedGoogle Scholar
  28. Castoria, G., Barone, M.V., Di Domenico, M., Bilancio, A., Ametrano, D., Migliaccio, A., & Auricchio, F. (1999). Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. EMBO J., 18(9), 2500–2510.CrossRefPubMedGoogle Scholar
  29. Chamberlain, N.L., Driver, E.D., & Miesfeld, R.L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res., 22(15), 3181–3186.PubMedGoogle Scholar
  30. Chambliss, K.L., Yuhanna, I.S., Mineo, C., Liu, P., German, Z., Sherman, T.S., Mendelsohn, M.E., Anderson, R.G., & Shaul, P.W. (2000). Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ.Res., 87(11), E44–E52PubMedGoogle Scholar
  31. Chen, D., Pace, P.E., Coombes, R.C., & Ali, S. (1999). Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization. Mol.Cell Biol., 19(2), 1002–1015.PubMedGoogle Scholar
  32. Chen, D., Riedl, T., Washbrook, E., Pace, P.E., Coombes, R.C., Egly, J.M., & Ali, S. (2000). Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol.Cell, 6(1), 127–137.CrossRefPubMedGoogle Scholar
  33. Chen, H., Lin, R.J., Schiltz, R.L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M.L., Nakatani, Y., & Evans, R.M. (1997). Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell, 90(3), 569–580.CrossRefPubMedGoogle Scholar
  34. Chen, H., Lin, R.J., Xie, W., Wilpitz, D., & Evans, R.M. (1999). Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell, 98(5), 675–686.CrossRefPubMedGoogle Scholar
  35. Chen, J.D., & Evans, R.M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature, 377(6548), 454–457.PubMedGoogle Scholar
  36. Chen, T., Wang, L.H., & Farrar, W.L. (2000). Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res., 60(8), 2132–2135.PubMedGoogle Scholar
  37. Chen, Z., Yuhanna, I.S., Galcheva-Gargova, Z., Karas, R.H., Mendelsohn, M.E., & Shaul, P.W. (1999). Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen [published erratum appears in J Clin Invest 1999 May;103(9):1363]. J.Clin.Invest, 103(3), 401–406.PubMedGoogle Scholar
  38. Choong, C.S., Kemppainen, J.A., Zhou, Z.X., & Wilson, E.M. (1996). Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol.Endocrinol., 10(12), 1527–1535.CrossRefPubMedGoogle Scholar
  39. Clarke, R.B., Howell, A., Potten, C.S., & Anderson, E. (1997). Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res., 57(22), 4987–4991.PubMedGoogle Scholar
  40. Coleman, K.M., & Smith, C.L. (2001). Intracellular signaling pathways: nongenomic actions of estrogens and ligand-independent activation of estrogen receptors. Front Biosci., 6, D1379–D1391PubMedGoogle Scholar
  41. Couse, J.F., Lindzey, J., Grandien, K., Gustafsson, J.A., & Korach, K.S. (1997). Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology, 138(11), 4613–4621.CrossRefPubMedGoogle Scholar
  42. Craft, N., Shostak, Y., Carey, M., & Sawyers, C.L. (1999). A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase[see comments], Nat.Med., 5(3), 280–285.PubMedGoogle Scholar
  43. Culig, Z., Hobisch, A., Cronauer, M.V., Radmayr, C., Trapman, J., Hittmair, A., Bartsch, G., & Klocker, H. (1995). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor and epidermal growth factor. Eur.Urol., 27 Suppl2, 45–47.PubMedGoogle Scholar
  44. Cunha, G.R. (1984). Androgenic effects upon prostatic epithelium are mediated via trophic influences from stroma. Prog.Clin.Biol.Res., 145, 81–102.PubMedGoogle Scholar
  45. Cunha, G.R., Young, P., Hom, Y.K., Cooke, P.S., Taylor, J.A., & Lubahn, D.B. (1997). Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J.Mammary.Gland.Biol.Neoplasia., 2(4), 393–402.CrossRefPubMedGoogle Scholar
  46. Curtis, S.W., Washburn, T., Sewall, C., DiAugustine, R., Lindzey, J., Couse, J.F., & Korach, K.S. (1996). Physiological coupling of growth factor and steroid receptor signaling pathways: estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc,Natl,Acad,Sci,U.S.A. 93(22), 12626–12630.CrossRefGoogle Scholar
  47. Danielian, P.S., White, R., Lees, J.A., & Parker, M.G. (1992). Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J., 11(3), 1025–1033.PubMedGoogle Scholar
  48. de Ruiter, P.E., Teuwen, R., Trapman, J., Dijkema, R., & Brinkmann, A.O.(1995). Synergism between androgens and protein kinase-C on androgen-regulated gene expression. Mol.Cell Endocrinol., 110(1–2), R1–R6PubMedGoogle Scholar
  49. Denner, L.A., Weigel, N.L., Maxwell, B.L., Schrader, W.T., & O’Malley, B.W. (1990). Regulation of progesterone receptor-mediated transcription by phosphorylation. Science, 250(4988), 1740–1743.PubMedGoogle Scholar
  50. Ding, X.F., Anderson, C.M., Ma, H., Hong, H., Uht, R.M., Kushner, P.J,, & Stallcup, M.R. (1998). Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol.Endoerinol., 12(2), 302–313.Google Scholar
  51. DiRenzo, J., Shang, Y., Phelan, M., Sif, S., Myers, M., Kingston, R., & Brown, M. (2000). BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in historie acetylation. Mol.Cell Biol., 20(20), 7541–7549.Google Scholar
  52. Drab, M., Verkade, P., Elger, M,, Kasper, M,, Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F.C., Schedl, A., Haller, H., & Kurzchalia, T.V. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disruptedmice. Science, 293(5539), 2449–2452.CrossRefPubMedGoogle Scholar
  53. Dubik, D., & Shiu, R.P. (1992). Mechanism of estrogen activation of c-myc oncogene expression. Oncogens, 7(8), 1587–1594.Google Scholar
  54. Endoh, H., Maruyama, K., Masuhiro, Y., Kobayashi, Y., Goto, M., Tai, H., Yanagisawa, J., Metzger, D., Hashimoto, S., & Kato, S. (1999). Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Cell Biol., 19(8), 5363–5372.Google Scholar
  55. English, H.F., Santen, R.J., & Isaacs, J.T. (1987). Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate, 11(3), 229–242.PubMedGoogle Scholar
  56. Evans, G.S., & Chandler, J.A. (1987). Cell proliferation studies in rat prostate, I. The proliferative role of basal and secretory epithelial cells during normal growth. Prostate, 10(2). 163–178PubMedGoogle Scholar
  57. Feng, W., Ribeiro, R.C., Wagner, R.L., Nguyen, H., Apriletti, J.W., Fletterick, R.J., Baxter, J.D., Kushner, P.J., & West, B.L. (1998), Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science, 280(5370), 1747–1749.CrossRefPubMedGoogle Scholar
  58. Filardo, E.J., Quinn, J.A,, Bland, K.I., & Frackeltan, A.R., Jr. (2000). Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via transactivation of the epidermal growth factor receptor through release of HB-EGF. Mol.Endocrinol., 14(10), 1649–1660.CrossRefPubMedGoogle Scholar
  59. Fondell, J.D., Ge, H., & Roeder, R.G. (1996). Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc.Natl.Acad.Sci.U.S.A, 93(16), 8329–8333.CrossRefPubMedGoogle Scholar
  60. Font, d.M., & Brown, M. (2000), AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol.Cell Biol., 20(14), 5041–5047.Google Scholar
  61. Fryer, C.J., & Archer, T.K. (1998). Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature, 393(6680), 88–91.PubMedGoogle Scholar
  62. Fu, M., Wang, C., Reutens, A.T., Wang, J., Angeletti, R.H,, Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M.L., & Pestell, R,G. (2000). p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J.Biol.Chem., 275(27), 20853–20860.CrossRefPubMedGoogle Scholar
  63. Fujimoto, N., Yeh, S., Kang, H.Y., Inui, S., Chang, H.C,, Mizokami, A., & Chang, C. (1999). Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J.Biol.Chem., 274(12), 8316–8321.CrossRefPubMedGoogle Scholar
  64. Fuqua, S.A., Wiltschke, C., Zhang, Q.X., Borg, A., Castles, C.G., Friedrichs, W.E., Hopp, T., Hilsenbeck, S., Mohsin, S., O’Connell, P., & Allred, D.C. (2000). A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res., 60(15), 4026–4029.PubMedGoogle Scholar
  65. Galien, R., & Garcia, T. (1997). Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res., 25(12), 2424–2429.CrossRefPubMedGoogle Scholar
  66. Giovannucci, E,, Stampfer, M.J., Krithivas, K., Brown, M., Dahl, D., Brufsky, A., Talcott, J., Hennekens, C.H., & Kantoff, P.W, (1997). The CAG repeat within the androgen receptor gene and its relationship to prostate cancer [published erratum appears in Proc Natl Acad Sci U S A 1997 Jul 22;94(15):8272]. Proc.Natl.Acad.Sci.U.S.A, 94(7), 3320–3323.CrossRefPubMedGoogle Scholar
  67. Glass, C.K., Rose, D.W., & Rosenfeld, M.G. (1997). Nuclear receptor coactivators. Curr,Opin,Cell Biol., 9(2), 222–232.CrossRefGoogle Scholar
  68. Gonzalez, M.I, & Robins, D.M. (2001). Oct-1 preferentially interacts with androgen receptor in a DNA-dependent manner that facilitates recruitment of SRC-1. J.Biol.Chem., 276(9), 6420–6428.CrossRefPubMedGoogle Scholar
  69. Grant, E,S., Batchelor, K.W., & Habib, F.K. (1996). Androgen independence of primary epithelial cultures of the prostate is associated with a down-regulation of androgen receptor gene expression. Prostate, 29(6), 339–349.CrossRefPubMedGoogle Scholar
  70. Gregory, C.W., He, B., Johnson, R.T., Ford, O.H., Mohler, J.L., French, F.S., & Wilson, E.M. (2001). A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res., 61(11), 4315–4319.PubMedGoogle Scholar
  71. Gu, W., Malik, S., Ito, M., Yuan, C.X., Fondell, J.D., Zhang, X., Martinez, E., Qin, J., & Roeder, R.G. (1999). A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mal. Cell,_3(l), 97–108.Google Scholar
  72. Hakimi, J.M., Schoenberg, M.P., Rondinelli, R.H., Piantadosi, S., & Barrack, E.R. (1997). Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin. Cancer Res., 3(9), 1599–1608.PubMedGoogle Scholar
  73. Hardy, D.O., Scher, H.I., Bogenreider, T., Sabbatini, P., Zhang, Z.F., Nanus, D.M., & Catterall, J.F. (1996. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J. Clin. Endocrinol. Metab, 81(12), 4400–4405.CrossRefPubMedGoogle Scholar
  74. Haynes, M.P., Sinha, D., Russell, K.S., Collinge, M., Fulton, D., Morales-Ruiz, M., Sessa, W.C., & Bender, J.R. (2000). Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ. Reg., 87(8), 677–682Google Scholar
  75. He, B., Kemppainen, J.A., & Wilson, E.M. (2000). FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem., 275(30), 22986–22994.CrossRefPubMedGoogle Scholar
  76. Heery, D.M., Kalkhoven, E., Hoare, S., & Parker, M.G. (1997). A signature motif in transcriptional coactivators mediates binding to nuclear receptors [see comments]. Nature, 387(6634), 733–736.PubMedGoogle Scholar
  77. Heinzel, T., Lavinsky, R.M., Mullen, T.M., Soderstrom, M., Laherty, C.D., Torchia, J., Yang, W.M., Brard, G., Ngo, S.D., Davie, J.R., Seto, E., Eisenman, R.N., Rose, D.W., Glass, C.K., & Rosenfeld, M.G. (1997). A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature, 387(6628), 43–48.CrossRefPubMedGoogle Scholar
  78. Heisler, L.E., Evangelou, A., Lew, A.M., Trachtenberg, J., Elsholtz, H.P., & Brown, T.J. (1997). Androgen-dependent cell cycle arrest and apoptotic death in PC-3 prostatic cell cultures expressing a full-length human androgen receptor. Mol. Cell Endocrinol., 126(1), 59–73.CrossRefPubMedGoogle Scholar
  79. Hisamoto, K., Ohmichi, M., Kurachi, H., Hayakawa, J., Kanda, Y., Nishio, Y., Adachi, K., Tasaka, K., Miyoshi, E., Fujiwara, N., Taniguchi, N., & Murata, Y. (2001). Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J. Biol. Chem., 276(5), 3459–3467.CrossRefPubMedGoogle Scholar
  80. Hong, H., Kohli, K., Garabedian, M.J., & Stallcup, M.R. (1997). GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell Biol., 17(5), 2735–2744.PubMedGoogle Scholar
  81. Horlein, A.J., Naar, A.M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., & Glass, C.K. (1995). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor [see comments]. Nature, 377(6548), 397–404.PubMedGoogle Scholar
  82. Hsing, A.W., Gao, Y.T., Wu, G., Wang, X., Deng, J., Chen, Y.L., Sesterhenn, I.A., Mostofi, F.K., Benichou, J., & Chang, C. (2000). Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-basedcase-control study in China. Cancer Res., 60(18), 5111–5116.PubMedGoogle Scholar
  83. Hu, X., & Lazar, M.A. (1999). The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature, 402(6757), 93–96.PubMedGoogle Scholar
  84. Huang, S.M., & Stallcup, M.R. (2000). Mouse Zacl, a transcriptional coactivator and repressor for nuclear receptors. Mol. Cell Biol., 20(5), 1855–1867.CrossRefPubMedGoogle Scholar
  85. Ichinose, H., Garnier, J.M., Chambon, P., & Losson, R. (1997). Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene, 188(1), 95–100.CrossRefPubMedGoogle Scholar
  86. Ignar-Trowbridge, D.M., Nelson, K.G., Bidwell, M.C., Curtis, S.W., Washburn, T.F., McLachlan, J.A., & Korach, K.S. (1992). Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc. Natl. Acad. Sci. U.S.A, 89(10), 4658–4662.PubMedGoogle Scholar
  87. Ignar-Trowbridge, D.M., Pimentel, M., Parker, M.G., McLachlan, J.A., & Korach, K.S.(1996). Peptide growth factor cross-talk with the estrogen receptor requires the A/B domain and occurs independently of protein kinase C or estradiol. Endocrinology, 137(5), 1735–1744.CrossRefPubMedGoogle Scholar
  88. Ikonen, T., Palvimo, J.J., Kallio, P.J., Reinikainen, P., & Janne, O.A. (1994). Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology, 135(4), 1359–1366.CrossRefPubMedGoogle Scholar
  89. Irvine, R.A., Ma, H., Yu, M.C., Ross, R.K., Stallcup, M.R., & Coetzee, G.A. (2000). Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum. Mol. Genet., 9(2), 267–274.CrossRefPubMedGoogle Scholar
  90. Ito, M., Yuan, C.X., Malik, S., Gu, W., Fondell, J.D., Yamamura, S., Fu, Z.Y., Zhang, X., Qin, J., & Roeder, R.G. (1999). Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell. 3(3), 361–370.CrossRefPubMedGoogle Scholar
  91. Jackson, T.A., Richer, J.K., Bain, D.L., Takimoto, G.S., Tung, L., & Horwitz, K.B. (1997). The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol. Endocrinol., 11 (6), 693–705.CrossRefPubMedGoogle Scholar
  92. Jenster, G., Spencer, T.E., Burdn, M.M., Tsai, S.Y., Tsai, MJ., & O’Malley, B.W. (1997), Steroid receptor induction of gene transcription: a two-step model. Proe. Natl. Acad. Sci. U.S.A, 94(15), 7879–7884.Google Scholar
  93. Joel, P.B., Smith, J., Sturgill, T.W., Fisher, T.L., Blenis, J., & Lannigan, D.A. (1998). pp90rskl regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol. Cell Biol., 18(4), 1978–1984.PubMedGoogle Scholar
  94. Joel, P.B., Traish, A.M., & Lannigan, D.A. (1998). Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J. Biol. Chem., 273(21), 13317–13323.CrossRefPubMedGoogle Scholar
  95. Johansson, L., Bavner, A., Thomsen, J.S., Farnegardh, M., Gustafsson, J.A., & Treuter, E. (2000). The orphan nuclear receptor SHP utilizes conserved LXXLL-related motifs for interactions with ligand-activated estrogen receptors. Mol. Cell Biol., 20(4), 1124–1133.CrossRefPubMedGoogle Scholar
  96. Kallio, P.J., Poukka, H., Moilanen, A., Janne, O.A., & Palvimo, J.J. (1995). Androgen receptor-mediated transcriptional regulation in the absence of direct interaction with a specific DNA element. Mol. Endocrinol., 9(8), 1017–1028.CrossRefPubMedGoogle Scholar
  97. Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S.C., Heyman, R.A., Rose, D.W., Glass, C.K., & Rosenfeld, M.G. (1996). A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell,_85(3), 403–414.CrossRefPubMedGoogle Scholar
  98. Kang, H.Y., Yeh, S., Fujimoto, N., & Chang, C. (1999). Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J. Biol. Chem., 274(13), 8570–8576.CrossRefPubMedGoogle Scholar
  99. Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., & Kawashima, H. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science, 270(5241), 1491–1494.PubMedGoogle Scholar
  100. Kim, H.P., Lee, J.Y., Jeong, J.K., Bae, S.W., Lee, H.K., & Jo, I. (1999). Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in caveolae. Biochem. Biophys. Res. Commun., 263(1), 257–262.CrossRefPubMedGoogle Scholar
  101. Knudsen, K.E., Cavenee, W.K., & Arden, K.C. (1999). D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res., 59(10), 2297–2301.PubMedGoogle Scholar
  102. Koh, S.S., Chen, D., Lee, Y.H., & Stallcup, M.R. (2001). Synergistic Enhancement of Nuclear Receptor Function by p160 Coactivators and Two Coactivators with Protein Methyltransferase Activities. J. Biol. Chem., 276(2), 1089–1098.CrossRefPubMedGoogle Scholar
  103. Kousteni, S., Bellido, T., Plotkin, L.I., O’Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenellenbogen, B.S., Roberson, P.K., Weinstein, R.S., Jilka, R.L., & Manolagas, S.C. (2001). Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors; dissociation from transcriptional activity. Cell, 104(5), 719–730.PubMedGoogle Scholar
  104. Kraus, W.L., McInerney, E.M., & Katzenellenbogen, B.S. (1995). Ligand-dependent, transcriptionally productive association of the amino-and carboxyl-terminal regions of a steroid hormone nuclear receptor. Proc. Natl. Acad. Sci. U.S.A, 92(26), 12314–12318.PubMedGoogle Scholar
  105. Lanz, R.B., McKenna, N.J., Onate, S.A., Albrecht, U., Wong, J., Tsai, S.Y., Tsai, MJ., & O’Malley, B.W. (1999). A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell, 97(1), 17–27.CrossRefPubMedGoogle Scholar
  106. Leav, I., McNeal, J.E., Kwan, P.W., Komminoth, P., & Merk, F.B. (1996). Androgen receptor expression in prostatic dysplasia (prostatic intraepithelial neoplasia) in the human prostate: an immunohistochemical and in situ hybridization study. Prostate, 29(3), 137–145.PubMedGoogle Scholar
  107. Lee, S.R., Ramos, S.M, Ko, A., Masiello, D., Swanson, K.D., Lu, M.L., & Balk, S.P. (2002). AR and ER Interaction with a p21-Activated Kinase (PAK6). Mol. Endocrinol., 16(1), 85–99.CrossRefPubMedGoogle Scholar
  108. Leitzel, K., Teramoto, Y., Konrad, K., Chinchilli, V.M., Volas, G., Grossberg, H., Harvey, H., Demers, L., & Lipton, A. (1995). Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J. Clin. Oncol., 13(5), 1129–1135.PubMedGoogle Scholar
  109. Lin, H.K., Yeh, S., Kang, H.Y., & Chang, C. (2001). Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc.Natl.Acad.Sci.U.S.A, 98(13), 7200–7205.CrossRefPubMedGoogle Scholar
  110. Lu, M.L., Schneider, M.C., Zheng, Y., Zhang, X., & Richie, J.P. (2001). Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J.Biol.Chem., 276(16), 13442–13451.CrossRefPubMedGoogle Scholar
  111. Lu, S., Jenster, G., & Epner, D.E. (2000). Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol.Endocrinol., 14(5), 753–760.CrossRefPubMedGoogle Scholar
  112. Lubahn, D.B., Moyer, J.S., Golding, T.S., Couse, J.F., Korach, K.S., & Smithies, O. (1993). Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc.Natl.Acad.Sci.U.S.A, 90(23), 11162–11166.PubMedGoogle Scholar
  113. Mangelsdorf, D.J., & Evans, R.M, (1995). The RXR heterodimers and orphan receptors. Cell, 83(6), 841–850.PubMedGoogle Scholar
  114. Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., & Chambon, P. (1995). The nuclear receptor superfamily: the second decade. Cell, 83(6), 835–839.PubMedGoogle Scholar
  115. Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., Zhao, Y., DiConcini, D., Puxeddu, E., Esen, A., Eastham, J., Weigel, N.L., & Lamb, D.J. (2000). Androgen receptor mutations in prostate cancer. Cancer Res., 60(4), 944–949.PubMedGoogle Scholar
  116. McInerney, E.M., & Katzenellenbogen, B.S. (1996). Different regions in activation function-1 of the human estrogen receptor required for antiestr. J.Biol.Chem., 271(39), 24172–24178.PubMedGoogle Scholar
  117. McKay, L.I., & Cidlowski, J.A. (1998). Cross-talk between nuclearfactor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol.Endocrinol., 12(1), 45–56.PubMedGoogle Scholar
  118. McMenamin, M.E., Soung, P., Perera, S., Kaplan, I., Loda, M., & Sellers, W.R. (1999). Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res., 59(17), 4291–4296.PubMedGoogle Scholar
  119. Migliaccio, A., Pagano, M., & Auricchio, F. (1993). Immediate and transient stimulation of protein tyrosine phosphorylation by estradiol in MCF-7 cells. Oncogene, 8(8), 2183–2191.PubMedGoogle Scholar
  120. Migliaccio, A., Piccolo, D., Castoria, G., Di Domenico, M, Bilancio, A., Lombardi, M., Gong, W., Beato, M., & Auricchio, F. (1998). Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBOJ., 17(7), 2008–2018.Google Scholar
  121. Moilanen, A.M., Karvonen, U., Poukka, H., Janne, O.A., & Palvimo, J.J. (1998b). Activation of androgen receptor function by a novel nuclear protein kinase. Mol.Biol.Cell, 9(9), 2527–2543.PubMedGoogle Scholar
  122. Moilanen, A.M., Karvonen, U., Poukka, H., Yan, W., Toppari, J., Janne, O.A., & Palvimo, J.J. (1999). A testis-specific androgen receptor coregulator that belongs to a novelfamily of nuclear proteins. J.Biol.Chem., 274(6), 3700–3704.CrossRefPubMedGoogle Scholar
  123. Moilanen, A.M., Poukka, H., Karvonen, U., Hakli, M., Janne, O.A., & Palvimo, J.J. (1998a). Identification of a novel RING finger protein as a coregulator in steroid receptor-mediatedgene transcription. Mol.Cell Biol., 18(9), 5128–5139.PubMedGoogle Scholar
  124. Muller, J.M., Isele, U., Metzger, E., Rempel, A., Moser, M., Pscherer, A., Breyer, T., Holubarsch, C., Buettner, R., & Schule, R. (2000). FHL2, a novel tissue-specific coactivator of the androgen receptor. EMBOJ., 19(3), 359–369.Google Scholar
  125. Nagy, L., Kao, H.Y., Chakravarti, D., Lin, R.J., Hassig, C.A., Ayer, D.E., Schreiber, S.L., & Evans, R.M. (1997). Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 89(3), 373–380.CrossRefPubMedGoogle Scholar
  126. Nagy, L., Kao, H.Y., Love, J.D., Li, C., Banayo, E., Gooch, J.T., Krishna, V., Chatterjee, K., Evans, R.M.. & Schwabe, J.W. (1999). Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dey., 13(24), 3209–3216.Google Scholar
  127. Nam, R.K., Elhaji, Y., Krahn, M.D., Hakimi, J., Ho, M., Chu, W., Sweet, J., Trachtenberg, J., Jewett, M.A., & Narod, S.A. (2000). Significance of the CAG repeat polymorphism of the androgen receptor gene in prostate cancer progression. J.Urol., 164(2), 567–572.CrossRefPubMedGoogle Scholar
  128. Nawaz, Z., Lonard, D.M., Smith, C.L., Lev-Lehman, E., Tsai, S.Y., Tsai, M.J., & O’Malley, B.W. (1999). The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol.Cell Biol., 19(2), 1182–1189.PubMedGoogle Scholar
  129. Nazareth, L.V., & Weigel, N.L. (1996). Activation of the human androgen receptor through a protein kinase A signaling pathway. J.Biol.Chem., 271(33), 19900–19907.PubMedGoogle Scholar
  130. Neuman, E., Ladha, M.H., Lin, N., Upton, T.M., Miller, S.J., DiRenzo, J., Pestell, R.G., Hinds, P.W., Dowdy, S.F., Brown, M., & Ewen, M.E. (1997). Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol.Cell Biol., 17(9), 5338–5347.PubMedGoogle Scholar
  131. Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M., & Gustafsson, J.A.(2001). Mechanisms of estrogen action. Physiol Rev., 81(4), 1535–1565.PubMedGoogle Scholar
  132. Ning, Y.M., & Robins, D.M. (1999). AML3/CBFalphal is required for androgen-specific activation of the enhancer of the mouse sex-limited protein (Slp) gene. J.Biol.Chem., 274(43), 30624–30630.CrossRefPubMedGoogle Scholar
  133. Oettgen, P., Finger, E., Sun, Z., Akbarali, Y., Thamrongsak, U., Boltax, J., Grall, F., Dube, A., Weiss, A., Brown, L., Quinn, G., Kas, K., Endress, G., Kunsch, C., & Libermann, T.A. (2000). PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J.Biol.Chem., 275(2), 1216–1225.CrossRefPubMedGoogle Scholar
  134. Ogryzko, V.V., Kotani, T., Zhang, X., Schiltz, R.L., Howard, T., Yang, X.J., Howard, B.H., Qin, J., & Nakatani, Y. (1998). Histone-like TAFs within the PCAF histone acetylase complex. Cell, 94(1), 35–44.CrossRefPubMedGoogle Scholar
  135. Ohlsson, H., Lykkesfeldt, A.E., Madsen, M.W., & Briand, P. (1998). The estrogen receptor variant lacking exon 5 has dominant negative activity in the human breast epithelial cell line HMT-3522S1. Cancer Res., 58(19), 4264–4268.PubMedGoogle Scholar
  136. Onate, S.A., Tsai, S.Y., Tsai, M.J., & O’Malley, B.W. (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science, 270(5240), 1354–1357.PubMedGoogle Scholar
  137. Ostlund Farrants, A.K., Blomquist, P., Kwon, H., & Wrange, O. (1997). Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. MolCell Biol., 17(2), 895–905.Google Scholar
  138. Paech, K., Webb, P., Kuiper, G.G., Nilsson, S., Gustafsson, J., Kushner, P.J., & Scanlan, T.S. (1997). Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science. 277(5331), 1508–1510.CrossRefPubMedGoogle Scholar
  139. Patrone, C., Gianazza, E., Santagati, S., Agrati, P., & Maggi, A, (1998). Divergent pathways regulate ligand-independent activation of ER alpha in SK-N-BE neuroblastoma and COS-1 renal carcinoma cells. Mol.Endocrinol., 12(6), 835–841.CrossRefPubMedGoogle Scholar
  140. Peehl, D.M., & Stamey, T.A. (1986). Serum-free growth of adult humanprostatic epithelial cells. In Vitro Cell Dev.Biol., 22(2), 82–90.Google Scholar
  141. Perissi, V., Staszewski, L.M., McInerney, E.M., Kurokawa, R., Krones, A., Rose, D.W., Lambert, M.H., Milburn, M.V., Glass, C.K., & Rosenfeld, M.G. (1999). Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev., 13(24), 3198–3208.CrossRefPubMedGoogle Scholar
  142. Peterziel, H., Mink, S., Schonert, A., Becker, M., Klocker, H., & Cato, A.C. (1999). Rapid signalling by androgen receptor in prostate cancer cells. Oncogene, 18(46), 6322–6329.CrossRefPubMedGoogle Scholar
  143. Pietras, R.J., Arboleda, J., Reese, D.M., Wongvipat, N., Pegram, M.D., Ramos, L., Gorman, C.M., Parker, M.G., Sliwkowski, M.X., & Slamon, DJ. (1995). HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene, 10(12), 2435–2446.PubMedGoogle Scholar
  144. Porter, W., Saville, B., Hoivik, D., & Safe, S. (1997). Functional synergy between the transcription factor Spl and the estrogen receptor. Mol.Endocrinol., 11(11), 1569–1580.CrossRefPubMedGoogle Scholar
  145. Poukka, H., Aarnisalo, P., Karvonen, U., Palvimo, J.J., & Janne, O.A. (1999). Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J.Biol.Chem., 274(27), 19441–19446.CrossRefPubMedGoogle Scholar
  146. Poukka, H., Aarnisalo, P., Santti, H., Janne, O.A., & Palvimo, J.J. (2000). Coregulator small nuclear RING finger protein (SNURF) enhances Spl-and steroid receptor-mediated transcription by different mechanisms. J.Biol.Chem., 275(1), 571–579.CrossRefPubMedGoogle Scholar
  147. Pratt, W.B., & Toft, D.O. (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr.Rev., 18(3), 306–360.CrossRefPubMedGoogle Scholar
  148. Putz, T., Culig, Z., Eder, I.E., Nessler-Menardi, C., Bartsch, G., Grunicke, H., Uberall, F., & Klocker, H. (1999). Epidermal growth factor (EOF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines. Cancer Res., 59(1), 227–233.PubMedGoogle Scholar
  149. Qin, C., Singh, P., & Safe, S. (1999). Transcriptional activation of insulin-like growth factor-binding protein-4 by 17beta-estradiol in MCF-7 cells: role of estrogen receptor-Sp1 complexes. Endocrinology, 140(6), 2501–2508.CrossRefPubMedGoogle Scholar
  150. Quigley, CA., De Bellis, A., Marschke, K.B., el Awady, M.K., Wilson, E.M., & French, F.S. (1995). Androgen receptor defects: historical, clinical, and molecular perspectives [published erratum appears in Endocr Rev 1995 Aug;16(4):546]. Endocr.Rev., 16(3), 271–321.CrossRefPubMedGoogle Scholar
  151. Rachez, C., Suldan, Z., Ward, J., Chang, C.P., Burakov, D., Erdjument-Bromage, H., Tempst, P., & Freedman, L.P. (1998). A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev., 12(12), 1787–1800.PubMedGoogle Scholar
  152. Razandi, M., Pedram, A., & Levin, E.R. (2000). Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol.Endocrinol., 14(9), 1434–1447.CrossRefPubMedGoogle Scholar
  153. Razani, B., Engelman, J.A., Wang, X.B., Schubert, W., Zhang, X.L., Marks, C.B., Macaluso, F., Russell, R.G., Li, M., Pestell, R.G., Di Vizio, D., Hou, H., Jr., Kneitz, B,, Lagaud, G., Christ, G.J., Edelmann, W., & Lisanti, M.P. (2001). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J.Biol.Chem., 276(41), 38121–38138.PubMedGoogle Scholar
  154. Reichardt, H.M., Kaestner, K.H., Tuckermann, J., Kretz, O., Wessely, O., Bock, R., Gass, P., Schmid, W., Herrlich, P., Angel, P., & Schutz, G. (1998). DNA binding of the glucocorticoid receptor is not essential for survival. Cell, 93(4), 531–541.CrossRefPubMedGoogle Scholar
  155. Renaud, J.P., Rochel, N., Ruff, M, Vivat, V., Chambon, P., Gronemeyer, H., & Moras, D. (1995). Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature, 378(6558), 681–689.CrossRefPubMedGoogle Scholar
  156. Reutens, A.T., Fu, M., Wang, C., Albanese, C., McPhaul, M.J., Sun, Z., Balk, S.P., Janne, O.A., Palvimo, J.J., & Pestell, R.G. (2001). Cyclin Dl Binds the Androgen Receptor and Regulates Hormone-Dependent Signaling in a p300/CBP-Associated Factor (P/CAF)-Dependent Manner. Mol.Endocrinol., 15(5), 797–811.CrossRefPubMedGoogle Scholar
  157. Revelli, A., Massobrio, M,, & Tesarik, J. (1998), Nongenomic actions of steroid hormones in reproductive tissues. Endocr.Rev., 19(1), 3–17.CrossRefPubMedGoogle Scholar
  158. Rogatsky, I., Trowbridge, J.M,, & Garabedian, M.J. (1999). Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J.Biol.Chem., 274(32), 22296–22302.CrossRefPubMedGoogle Scholar
  159. Roodi, N., Bailey, L.R., Kao, W.Y., Verrier, C.S., Yee, C.J., Dupont, W.D., & Parl, F.F. (1995). Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J.Natl.Cancer Inst., 87(6), 446–451.PubMedGoogle Scholar
  160. Rosenfeld, M.G., & Glass, C.K. (2001). Coregulator codes of transcriptional regulation by nuclear receptors. J.Biol.Chem., 276(40), 36865–36868.CrossRefPubMedGoogle Scholar
  161. Rowan, B.G., Garrison, N., Weigel, N.L., & O’Malley, B.W. (2000). 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein [In Process Citation], Mol.Cell Biol., 20(23), 8720–8730.CrossRefPubMedGoogle Scholar
  162. Rowan, B.G., Weigel, N.L., & O’Malley, B.W. (2000). Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J.Biol.Chem., 275(6), 4475–4483.CrossRefPubMedGoogle Scholar
  163. Ruizeveld de Winter, J.A., Janssen, PJ., Sleddens, H.M., Verleun-Mooijman, M.C., Trapman, J., Brinkmann, A.O., Santerse, A.B., Schroder, F.H., & van der Kwast, T.H. (1994). Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am.J.Pathol., 144(4), 735–746.PubMedGoogle Scholar
  164. Sadar, M.D. (1999). Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J.Biol.Chem., 274(12), 7777–7783.CrossRefPubMedGoogle Scholar
  165. Sande, S., & Privalsky, M.L. (1996). Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol.Endocrinol., 10(7), 813–825.CrossRefPubMedGoogle Scholar
  166. Sartorius, C.A., Tung, L., Takimoto, G.S., & Horwitz, K.B. (1993). Antagonist-occupied human progesterone receptors bound to DNA are functionally switched to transcriptional agonists by cAMP. J.Biol.Chem., 268(13), 9262–9266.PubMedGoogle Scholar
  167. Schlegel, A., Wang, C., Katzenellenbogen, B.S., Pestell, R.G., & Lisanti, M.P. (1999). Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling, caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J.Biol.Chem., 274(47), 33551–33556.CrossRefPubMedGoogle Scholar
  168. Schoenberg, M.P., Hakimi, J.M., Wang, S., Bova, Q.S., Epstein, J.I., Fischbeck, K.H., Isaacs, W.B., Walsh, P.C., & Barrack, E.R. (1994). Microsatellite mutation (CAG24→18) in the androgen receptor gene in human prostate cancer. Biochem.Biophys.Res.Commun., 198(1). 74–80.CrossRefPubMedGoogle Scholar
  169. Schule, R., Rangarajan, P., Kliewer, S., Ransone, L.J., Bolado, J., Yang, N., Verma, I.M., & Evans, R.M. (1990). Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62(6), 1217–1226.CrossRefPubMedGoogle Scholar
  170. Seol, W., Mahon, M.J., Lee, Y.K., & Moore, D.D. (1996). Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol.Endoerinol., 10(12), 1646–1655.Google Scholar
  171. Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A., & Brown, M. (2000). Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell. 103(6). 843–852.CrossRefPubMedGoogle Scholar
  172. Shen, T., Horwitz, K.B., & Lange, C.A. (2001). Transcriptional hyperactivity of human progesterone receptors is coupled to their ligand-dependent down-regulation by mitogen-activated protein kinase-dependent phosphorylation of serine 294. Mol.Cell Biol., 21(18), 6122–6131.CrossRefPubMedGoogle Scholar
  173. Shi, Y., Downes, M., Xie, W., Kao, H.Y., Ordentlich, P., Tsai, C.C., Hon, M., & Evans, R.M. (2001). Sharp, an inducible cofactor that integrates nuclear receptor repression and activation, Genes Dev., 15 (9), 1140–1151.CrossRefPubMedGoogle Scholar
  174. Shiau, A.K., Barstad, D., Loria, P.M., Cheng, L., Kushner, P.J., Agard, D.A., & Greene, G.L. (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. cell, 95(7), 927–937.CrossRefPubMedGoogle Scholar
  175. Signoretti, S., Montironi, R., Manola, J., Altimari, A., Tam, C., Bubley, G., Balk, S., Thomas, G., Kaplan, I., Hlatky, L., Hahnfeldt, P., Kantoff, P., & Loda, M. (2000). Her-2-neu expression and progression toward androgen independence in human prostate cancer. J.Natl.Cancer Inst., 92(23), 1918–1925.CrossRefPubMedGoogle Scholar
  176. Simoncini, T., Hafezi-Moghadam, A., Brazil, D.P., Ley, K., Chin, W.W., & Liao, J.K. (2000). Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase [In Process Citation]. Nature, 407(6803), 538–541.PubMedGoogle Scholar
  177. Singh, M., Setalo, G., Jr., Guan, X., Frail, D.E., & Toran-Allerand, C.D. (2000). Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice. J.Neurosci., 20(5), 1694–1700.PubMedGoogle Scholar
  178. Smith, E.P., Boyd, J., Frank, G.R., Takahashi, H., Cohen, R.M., Specker, B., Williams, T.C., Lubahn, D.B., & Korach, K.S. (1994). Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N.Engl.J.Med., 331(16), 1056–1061.CrossRefPubMedGoogle Scholar
  179. Sommer, S., & Fuqua, S.A. (2001). Estrogen receptor and breast cancer. Semin.Cancer Biol., 11(5), 339–352.CrossRefPubMedGoogle Scholar
  180. Song, R.X., McPherson, R.A., Adam, L., Bao, Y., Shupnik, M., Kumar, R., & Santen, R.J. (2002). Linkage of Rapid Estrogen Action to MAPK Activation by ERalpha-Shc Association and Shc Pathway Activation. Mol.Endocrinol., 16(1), 116–127.CrossRefPubMedGoogle Scholar
  181. Stanbrough, M., Leav, I., Kwan, P.W., Bubley, G.J., & Balk, S.P. (2001). Prostatic intraepithelial neoplasia in mice expressing an androgen receptor transgene in prostate epithelium. Proc.Natl.Acad.Sci.U.S.A, 98(19), 10823–10828.CrossRefPubMedGoogle Scholar
  182. Stanford, J.L., Just, J.J., Gibbs, M., Wicklund, K.G., Neal, C.L., Blumenstein, B.A., & Ostrander, E.A. (1997). Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk [see comments]. Cancer Res., 57(6), 1194–1198.PubMedGoogle Scholar
  183. Sweat, S.D., Pacelli, A., Bergstralh, E.J., Slezak, J.M., & Bostwick, D.G. (1999). Androgen receptor expression in prostatic intraepithelial neoplasia and cancer. J.Urol., 161(4), 1229–1232.PubMedGoogle Scholar
  184. Taplin, M.E., Bubley, G.J., Ko, Y.J., Small, E.J., Upton, M., Rajeshkumar, B., & Balk, S.P. (1999), Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res., 59(11), 2511–2515.PubMedGoogle Scholar
  185. Taplin, M.E., Bubley, G.J., Shuster, T.D., Frantz, M.E., Spooner, A.E., Ogata, G.K., Keer, H.N., & Balk, S.P. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N.Engl.J.Med., 332(21), 1393–1398.CrossRefPubMedGoogle Scholar
  186. Tilley, W.D., Buchanan, G., Hickey, T.E., & Bentel, J.M. (1996). Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin.Cancer Res., 2(2), 277–285.PubMedGoogle Scholar
  187. Tora, L., White, J., Brou, C., Tasset, D., Webster, N., Scheer, E., & Chambon, P. (1989). The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell.Google Scholar
  188. Torchia, J., Rose, D.W., Inostroza, J., Kamei, Y., Westin, S., Glass, C.K., & Rosenfeld, M.G. (1997). The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function [see comments]. Nature, 387(6634), 677–684.PubMedGoogle Scholar
  189. Tremblay, A., Tremblay, G.B., Labrie, F., & Giguere, V. (1999). Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol.Cell. 3(4), 513–519.CrossRefPubMedGoogle Scholar
  190. Truica, C.I., Byers, S., & Gelmann, E.P. (2000). Beta-cateninaffects androgen receptor transcriptional activity and ligand specificity. Cancer Res., 60(17), 4709–4713.PubMedGoogle Scholar
  191. Tsai, M.J., & O’Malley, B.W. (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members, Annu.Rev.Biochem., 63. 451–486.CrossRefPubMedGoogle Scholar
  192. van der Kwast, T.H., Schalken, J., Ruizeveld de Winter, J.A., van Vroonhoven, C.C., Mulder, E., Boersma, W., & Trapman, J. (1991). Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int.J.Cancer, 48(2), 189–193.PubMedGoogle Scholar
  193. Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinanen, R., Palmberg, C., Palotie, A., Tammela, T., Isola, J., & Kallioniemi, O.P. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat.Genet., 9(4), 401–406.CrossRefPubMedGoogle Scholar
  194. Voegel, J.J., Heine, M.J., Zechel, C., Chambon, P., & Gronemeyer, H. (1996). TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J., 15(14), 3667–3675.PubMedGoogle Scholar
  195. Voeller, H.J., Truica, C.I., & Gelmann, E.P. (1998), Beta-catenin mutations in human prostate cancer. Cancer Res., 58(12), 2520–2523.PubMedGoogle Scholar
  196. Wagner, R.L., Apriletti, J.W., McGrath, M.E., West, B.L., Baxter, J.D., & Fletterick, R.J. (1995). A structural role for hormone in the thyroid hormone receptor. Nature, 378(6558), 690–697.CrossRefPubMedGoogle Scholar
  197. Wang, C., Fu, M., Angeletti, R.H., Siconolfi-Baez, L., Reutens, A.T., Albanese, C., Lisanti, M.P., Katzenellenbogen, B.S., Kato, S., Hopp, T., Fuqua, S.A., Lopez, G.N., Kushner, P.J., & Pestell, R.G. (2001). Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J.Biol.Chem., 276(21), 18375–18383.PubMedGoogle Scholar
  198. Watanabe, M., Yanagisawa, J., Kitagawa, H., Takeyama, K., Ogawa, S., Arao, Y., Suzawa, M., Kobayashi, Y., Yano, T., Yoshikawa, H., Masuhiro, Y., & Kato, S. (2001a). A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J., 20(6),1341–1352.CrossRefPubMedGoogle Scholar
  199. Watanabe, M., Yanagisawa, J., Kitagawa, H., Takeyama, K., Ogawa, S., Arao, Y., Suzawa, M., Kobayashi, Y., Yano, T., Yoshikawa, H., Masuhiro, Y., & Kato, S. (2001b). A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J., 20(6), 1341–1352.CrossRefPubMedGoogle Scholar
  200. Webb, P., Lopez, G.N., Uht, R,M., & Kushner, P.J. (1995). Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol.Endocrinol., 9(4), 443–456.CrossRefPubMedGoogle Scholar
  201. Webb, P., Nguyen, P., Shinsako, J., Anderson, C., Feng, W., Nguyen, M.P., Chen, D., Huang, S.M., Subramanian, S., McKinerney, E., Katzenellenbogen, B.S., Stallcup, M.R., & Kushner, P.J. (1998). Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol.Endocrinol., 12(10), 1605–1618.CrossRefPubMedGoogle Scholar
  202. Webb, P., Nguyen, P., Valentine, C., Lopez, G.N., Kwok, G.R., McInerney, E., Katzenellenbogen, B.S., Enmark, E., Gustafsson, J.A., Nilsson, S., & Kushner, P.J. (1999). The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol.Endocrinol., 13(10), 1672–1685.CrossRefPubMedGoogle Scholar
  203. Wei, L.N., Hu, X., Chandra, D., Seto, E., & Farooqui, M, (2000). Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J.Biol.Chem., 275(52), 40782–40787.PubMedGoogle Scholar
  204. Weis, K.E., Ekena, K., Thomas, J.A., Lazennec, G., & Katzenellenbogen, B.S. (1996). Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol.Endocrinol., 10(11), 1388–1398.CrossRefPubMedGoogle Scholar
  205. Whang, Y.E., Wu, X., Suzuki, H., Reiter, R.E., Tran, C., Vessella, R.L., Said, J.W., Isaacs, W.B., & Sawyers, C.L. (1998). Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc.Natl.Acad.Sci. U.S.A. 95(9), 5246–5250.CrossRefPubMedGoogle Scholar
  206. Wiesen, J.F., Young, P., Werb, Z., & Cunha, G.R. (1999). Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development, 126(2), 335–344.PubMedGoogle Scholar
  207. Wong, C.I., Zhou, Z.X., Sar, M., & Wilson, E.M. (1993). Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. J.Biol.Chem., 268(25), 19004–19012.PubMedGoogle Scholar
  208. Wurtz, J.M., Bourguet, W., Renaud, J.P., Vivat, V., Chambon, P., Moras, D., & Gronemeyer, H. (1996). A canonical structure for the ligand-binding domain of nuclear receptors. Nat.Struct.Biol., 3(1), 87–94.CrossRefPubMedGoogle Scholar
  209. Xu, J., Liao, L., Ning, G., Yoshida-Komiya, H., Deng, C., & O’Malley, B.W. (2000). The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIBl/ACTR/TRAM-l) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc.Natl.Acad.Sci. U.S.AGoogle Scholar
  210. Xu, J., Qiu, Y., DeMayo, F.J., Tsai, S.Y., Tsai, M.J., & O’Malley, B.W. (1998). Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science, 279(5358), 1922–1925.CrossRefPubMedGoogle Scholar
  211. Yan, G., Fukabori, Y., Nikolaropoulos, S., Wang, F., & McKeehan, W.L. (1992). Heparin-binding keratinocyte growth factor is a candidate stromal-to-epithelial-cell andromedin. Mol.Endocrinol, 6(12), 2123–2128.CrossRefPubMedGoogle Scholar
  212. Yang-Yen, H.F., Chambard, J.C., Sun, Y.L., Smeal, T., Schmidt, T.J., Drouin, J., & Karin, M. (1990). Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction, Cell, 62(6), 1205–1215.PubMedGoogle Scholar
  213. Yeh, S., Lin, H,K., Kang, H.Y., Thin, T.H., Lin, M.F., & Chang, C. (1999). From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc.Natl.Acad.Sci.U.S.A, 96(10), 5458–5463.CrossRefPubMedGoogle Scholar
  214. Yoshinaga, S.K., Peterson, C.L., Herskowitz, I., & Yamamoto, K.R. (1992). Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science, 258(5088), 1598–1604.PubMedGoogle Scholar
  215. Yu, X., Li, P., Roeder, R,G., & Wang, Z. (2001). Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split. Mol.Cell Biol, 21(14), 4614–4625.CrossRefPubMedGoogle Scholar
  216. Yuan, C.X., Ito, M., Fondell, J.D., Fu, Z.Y., & Roeder, R.G. (1998). The TRAP220 component of a thyroid hormone rece. Proc.Natl.Acad.Sci.U.S.A, 95(14), 7939–7944.CrossRefPubMedGoogle Scholar
  217. Yuan, X., Lu, M.L., Li, T., & Balk, S.P. (2001). SRY interacts with and negatively regulates androgen receptor transcriptional activity. J.Biol.Chem.Google Scholar
  218. Zhang, H., Thomsen, J.S., Johansson, L., Gustafsson, J.A., & Treuter, E. (2000). DAX-1 functions as an LXXLL-containing corepressor for activated estrogen receptors. J.Biol.Chem., 275(51), 39855–39859.PubMedGoogle Scholar
  219. Zhang, Q.X., Borg, A., Wolf, D.M., Oesterreich, S., & Fuqua, S.A. (1997). An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res., 57(7), 1244–1249.PubMedGoogle Scholar
  220. Zhou, Z.X., Kemppainen, J.A., & Wilson, E.M. (1995). Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol.Endocrinol., 9(5), 605–615.CrossRefPubMedGoogle Scholar
  221. Zhou, Z.X., Lane, M.V., Kemppainen, J.A., French, F.S., & Wilson, E.M. (1995). Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol.Endocrinol., 9(2), 208–218.CrossRefPubMedGoogle Scholar
  222. Zhu, Y., Qi, C., Jain, S., Le Beau, M.M., Espinosa, R., III, Atkins, G.B., Lazar, M.A., Yeldandi, A.V., Rao, M.S., & Reddy, J.K. (1999). Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc.Natl.Acad.Sci.U.S.A, 96(19), 10848–10853.CrossRefPubMedGoogle Scholar
  223. Zhu, Y., Qi, C., Jain, S., Rao, M.S., & Reddy, J.K. (1997). Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J.Biol.Chem., 272(41), 25500–25506.CrossRefPubMedGoogle Scholar
  224. Zilliacus, J., Wright, A.P., Carlstedt-Duke, J., & Gustafsson, J.A. (1995). Structural determinants of DNA-binding specificity by steroid receptors. Mol.Endocrinol., 9(4), 389–400.CrossRefPubMedGoogle Scholar
  225. Zwijsen, R.M., Wientjens, E., Klompmaker, R., van der so, S.J., Bernards, R., & Michalides, R.J. (1997). CDK-independent activation of estrogen receptor by cyclin D1. Cell, 88(3), 405–415.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Shinta Cheng
    • 1
  • Steven P. Balk
    • 1
  1. 1.Cancer Biology Program Hematology-Oncology Division Beth Israel Deaconess Medical CenterHarvard Medical SchoolBoston

Personalised recommendations