Skip to main content

Growth, Survival and Migration: The Trk to Cancer

  • Chapter
Signal Transduction in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 115))

Conclusions

Trk signaling is of widespread importance during development as it regulates the differentiation, survival and migration of multiple cell types. Similar fanctions for Trks can be found in a wide variety of cancers. These activities not only determine the biology of these cancers but also offer a potentially unique target for the control of cancer cell growth and motility through the inhibition of the Trk kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azar, C. G., Scavarda, N. J., Nakagawara, A. and Brodeur, G. M. (1994). Expression and function of the nerve growth factor receptor (TRK-A) in human neuroblastoma cell lines. Prog Clin Biol Res 385, 169–75.

    CAS  PubMed  Google Scholar 

  • Behar, T. N., Schaffner, A. E., Colton, C.A., Somogyi, R., Olah, Z., Lehel, C. and Barker, J.L. (1994a). GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons. J Neurosci 14, 29–38.

    CAS  PubMed  Google Scholar 

  • Behar, T.N., Schaffner, A. E., Tran, H.T. and Barker, J. L. (1994b). Correlation of gp140trk expression and NGF-induced neuroblast chemotaxis in the embryonic rat spinal cord. Brain Res 664, 155–66.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, A. and Kazlauskas, A. (1999). Phosphospecific antibodies reveal temporal regulation of platelet-derived growth factor beta receptor signaling. Exp Cell Res 253, 704–12.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, M. (1993). Inositol triphosphate and calcium signaling. Nature 361, 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Bhargava, P., Marcshall, J., Dahut, W., Rizvi, N., Dordal, E., Samara, E., El-Shoubagy, T., Ness, E., Bischoff, J. and Hawkins, M. (1998). Phase I study of CEP-2563 dihydrochloride in patients with advanced cancer. Annal of Oncology 9, A424.

    Google Scholar 

  • Bongarzone, I., Pierotti, M. A., Monzini, N., Mondellini, P., Manenti, G., Donghi, R., Pilotti, S., Grieco, M., Santoro, M., Fusco, A. et al. (1989). High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 4, 1457–62.

    CAS  PubMed  Google Scholar 

  • Bonni, A., Brunet, A., West, A., Datta, S., Takasu, M. and Greenberg, M. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 286, 1358–62.

    Article  CAS  PubMed  Google Scholar 

  • Borghesani, P. R., Peyrin, J. M., Klein, R., Rubin, J., Carter, A. R., Schwartz, P. M., Luster, A., Corfas, G. and Segal, R. A. (2002). BDNF stimulates migration of cerebellar granule cells. Development 129, 1435–42.

    CAS  PubMed  Google Scholar 

  • Bown, N., Cotterill, S., Lastowska, M., O’Neill, S., Pearson, A.D., Plantaz, D., Meddeb, M., Danglot, G., Brinkschmidt, C., Christiansen, H. et al. (1999). Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340, 1954–61.

    Article  CAS  PubMed  Google Scholar 

  • Brodeur, G. M., Maris, J. M., Yamashiro, D. J., Hogarty, M. D. and White, P. S. (1997a). Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol 19, 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Brodeur, G. M., Nakagawara, A., Yamashiro, D. J., Ikegaki, N., Liu, X. G., Azar, C. G., Lee, C. P. and Evans, A.E. (1997b). Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 31, 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H.E. and Bishop, J. M. (1984). Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–4.

    CAS  PubMed  Google Scholar 

  • Brunet, A., Bonni, A., Zigmond, M. J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J. and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–68.

    Article  CAS  PubMed  Google Scholar 

  • Brunet, A., Datta, S.R. and Greenberg, M.E. (2001). Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11, 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Burgering, B. and Coffer, P. (1995). Protein kinase B (Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602.

    Article  CAS  PubMed  Google Scholar 

  • Butti, M. G., Bongarzone, I., Ferraresi, G., Mondellini, P., Borrello, M. G. and Pierotti, M.A. (1995). A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics 28, 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Camoratto, A. M., Jani, J. P., Angeles, T. S., Maroney, A. C., Sanders, C. Y., Murakata, C., Neff, N.T., Vaught, J. L., Isaacs, J. T. and Dionne, C. A. (1997). CEP-751 inhibits TRK receptor tyrosine kinase activity in vitro OFF exhibits anti-tumor activity. Int J Cancer 72, 673–9.

    Article  CAS  PubMed  Google Scholar 

  • Caron, H., van Sluis, P., de Kraker, J., Bokkerink, J., Egeler, M., Laureys, G., Slater, R., Westerveld, A., Voute, P.A. and Versteeg, R. (1996). Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N Engl J Med 334, 225–30.

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh, J. E., Ham, J., Hetman, M., Poser, S., Yan, C. and Xia, Z. (2001). Differential Regulation of Mitogen-Activated Protein Kinases ERK1/2 and ERK5 by Neurotrophins, Neuronal Activity, and cAMP in Neurons. J Neurosci 21, 434–443.

    CAS  PubMed  Google Scholar 

  • Choi, D. Y., Toledo-Aral, J. J., Segal, R. and Halegoua, S. (2001). Sustained signaling by phospholipase C-gamma mediates nerve growth factor-triggered gene expression. Mol Cell Biol 21, 2695–705.

    Article  CAS  PubMed  Google Scholar 

  • Chou, T. T., Trojanowski, J. Q. and Lee, V. M. (2000). A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem 275, 565–70.

    CAS  PubMed  Google Scholar 

  • Cordon-Cardo, C., Tapley, P., Jing, S., Nanduri, V., O’Rourke, E., Lamballe, F., Kovary, K., Klein, R., Jones, K. R., Reichardt, L. F. et al. (1991). The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and NT3, Cell 66, 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, M. E., Stephens, R. M., Kaplan, D. R. and Greene, L.A. (1997). Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem 272, 10957–67.

    CAS  PubMed  Google Scholar 

  • Dalal, R. and Djakiew, D. (1997). Molecular characterization of neurotrophin expression and the corresponding tropomyosin receptor kinases (trks) in epithelial and stromal cells of the human prostate. Mol Cell Endocrinol 134, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M. E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–41.

    Article  CAS  PubMed  Google Scholar 

  • Delsite, R. and Djakiew, D. (1996). Anti-proliferative effect of the kinase inhibitor K252a on human prostatic carcinoma cell lines. J Androl 17, 481–90.

    CAS  PubMed  Google Scholar 

  • Descamps, S., Lebourhis, X., Delehedde, M., Boilly, B. and Hondermarck, H. (1998). Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem 273, 16659–62.

    Article  CAS  PubMed  Google Scholar 

  • Di Cristofano, A. and Pandolfi, P. P. (2000). The multiple roles of PTEN in tumor suppression. Cell 100, 387–90.

    PubMed  Google Scholar 

  • Dionne, C. A., Camoratto, A. M., Jani, J.P., Emerson, E., Neff, N., Vaught, J.L., Murakata, C., Djakiew, D., Lamb, J., Bova, S. et al. (1998). Cellcycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin Cancer Res 4, 1887–98.

    CAS  PubMed  Google Scholar 

  • Donovan, M.J., Hempstead, B., Huber, L.J., Kaplan, D., Tsoulfas, P., Chao, M., Parada, L. and Schofield, D. (1994). Identification of the neurotrophin receptors p75 and trk in a series of Wilms’ tumors. Am J Pathol 145, 792–801.

    CAS  PubMed  Google Scholar 

  • Dudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D.R. and Greenberg, M. E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt [see comments]. Science 275, 661–5.

    Article  CAS  PubMed  Google Scholar 

  • Eberhart, C. G., Kaufman, W. E., Tihan, T. and Burger, P. C. (2001), Apoptosis, neuronal maturation, and neurotrophin expression within medulloblastoma nodules. J Neuropathol Exp Neurol 60, 462–9.

    CAS  PubMed  Google Scholar 

  • Eggert, A., Grotzer, M. A., Zhao, H., Brodeur, G. M. and Evans, A. E. (2001). [Expression of the neurotrophin-receptor TrkB predicts outcome innephroblastomas: results of apilot-study], Klin Padiatr 213, 191–6.

    CAS  PubMed  Google Scholar 

  • Eggert, A., Ikegaki, N., Liu, X., Chou, T. T., Lee, V. M., Trojanowski, J. Q. and Brodeur, G. M. (2000a). Molecular dissection of TrkA signal transduction pathways mediating differentiation in human neuroblastoma cells. Oncogene 19, 2043–51.

    Article  CAS  PubMed  Google Scholar 

  • Eggert, A., Ikegaki, N., Liu, X. G. and Brodeur, G. M. (2000b). Prognostic and biological role of neurotrophin-receptor TrkA and TrkB in neuroblastoma. Klin Padiatr 212, 200–5.

    Article  CAS  PubMed  Google Scholar 

  • Eguchi, M., Eguchi-Ishimae, M., Tojo, A., Morishita, K., Suzuki, K., Sato, Y., Kudoh, S., Tanaka, K., Setoyama, M., Nagamura, F. et al. (1999). Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25), Blood 93, 1355–63.

    CAS  PubMed  Google Scholar 

  • Evans, A. E., Kisselbach, K. D., Liu, X., Eggert, A., Ikegaki, N., Camoratto, A. M., Dionne, C. and Brodeur, G. M. (2001), Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB, Med Pediatr Oncol 36, 181–4.

    Article  CAS  PubMed  Google Scholar 

  • George, D. J., Dionne, C. A., Jani, J., Angeles, T., Murakata, C., Lamb, J. and Isaacs, J.T.(1999). Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res 59, 2395–401.

    CAS  PubMed  Google Scholar 

  • Gilad, G. M. and Gilad, V. H. (1995). Chemotaxis and accumulation of nerve growth factor by microglia and macrophages. J Neurosci Res 41, 594–602

    Article  CAS  PubMed  Google Scholar 

  • Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M. H. and Shaw, P. E. (1995). ERK phosphorylation potentiates EIk-1-mediated ternary complex formation and transactivation. Embo J 14, 951–62.

    CAS  PubMed  Google Scholar 

  • Greco, A., Mariani, C., Miranda, C., Lupas, A., Pagliardini, S., Pomati, M. and Pierotti, M. A. (1995). The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 15, 6118–27.

    CAS  PubMed  Google Scholar 

  • Greco, A., Miranda, C., Pagliardini, S., Fusetti, L., Bongarzone, I. and Pierotti, M. A. (1997). Chromosome 1 rrearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19, 112–23.

    Article  CAS  PubMed  Google Scholar 

  • Greco, A., Pierotti, M. A., Bongarzone, I., Pagliardini, S., Lanzi, C. and Della Porta, G. (1992), TRK-Tlis a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 7, 237–42.

    CAS  PubMed  Google Scholar 

  • Greene, L. A. and Kaplan, D. R. (1995). Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol 5, 579–87.

    Article  CAS  PubMed  Google Scholar 

  • Grotzer, M. A., Janss, A. J., Phillips, P. C. and Trojanowski, J. Q. (2000). Neurotrophin receptor TrkC predicts good clinical outcome in medulloblastoma and other primitive neuroectodermal brain tumors. Klin Padiatr 212, 196–9.

    Article  CAS  PubMed  Google Scholar 

  • Guate, J. L., Fernandez, N., Lanzas, J. M., Escaf, S. and Vega, J. A. (1999). Expression of p75(LNGFR) and Trk neurotrophin receptors innormal and neoplastic human prostate. BJU Int 84, 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W. and Weinberg, R. A. (1999). Creation of human tumour cells with defined genetic elements. Nature 400, 464–8.

    CAS  PubMed  Google Scholar 

  • Herrmann, J. L., Menter, D. G., Hamada, J., Marchetti, D., Nakajima, M. and Nicolson, G. L. (1993). Mediation of NGF-stimulated extracellular matrix invasion by the human melanoma low-affinity p75 neurotrophin receptor: melanoma p75 functions independently of trkA. Mol Biol Cell 4, 1205–16.

    CAS  PubMed  Google Scholar 

  • Howe, C. L., Valletta, J. S., Rusnak, A. S. and Mobley, W. C. (2001). NGF Signaling from Clathrin-Coated Vesicles. Evidence that Signaling Endosomes Serve as a Platform for the Ras-MAPK Pathway. Neuron 32, 801–814.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y. Q. and Koo, P. H. (1998). Inhibition of phosphorylation of TrkB and TrkC and their signal transduction by alpha2-macroglobulin. J Neuroehem 71, 213–20.

    CAS  Google Scholar 

  • Innominato, P. F., Libbrecht, L. and van den Oord, J. J. (2001). Expression of neurotrophins and their receptors in pigment cell lesions of the skin. J Pathol 194, 95–100.

    Article  CAS  PubMed  Google Scholar 

  • Jing, S., Tapley, P. and Barbacid, M. (1992). Nerve growth factor mediates signal transduction through trk homodimer receptors. Neuron 9, 1067–1079.

    Article  CAS  PubMed  Google Scholar 

  • Kamakura, S., Moriguchi, T. and Nishida, E. (1999). Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274, 26563–71.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, D. R., Hempstead, B. L., Martin-Zanca, D., Chao, M. V. and Parada, L. F. (1991). The trk proto-oncogene product: Asignal transducing receptor for nerve growth factor. Science 252, 558–561.

    PubMed  Google Scholar 

  • Kaplan, D. R. and Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system, Curr Opin Neurobiol 10, 381–91.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. Y., Sutton, M. E., Lu, D. J., Cho, T. A., Goumnerova, L. C., Goritchenko, L., Kaufman, J. R., Lam, K. K., Billet, A. L., Tarbell, N. J. et al. (1999). Activation of neurotrophin-3 receptor Trk C induces apoptosis in medulloblastomas. Cancer Res 59, 711–9.

    CAS  PubMed  Google Scholar 

  • Klein, R., Jing, S. Q., Nanduri, V., O’Rourke, E. and Barbacid, M. (1991). The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65, 189–97.

    Article  CAS  PubMed  Google Scholar 

  • Knezevich, S. R., McFadden, D. E., Tao, W., Lim, J. F. and Sorensen, P. H. (1998). Anovel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18, 184–7.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, H. and Mizisin, A. P. (2001). Nerve growth factor and neurotrophin-3 promote chemotaxis of mouse macrophages in vitro. Neurosci Lett 305, 157–60.

    Article  CAS  PubMed  Google Scholar 

  • Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P. and Guroff, G. (1988). K-252a: a specific inhibitor of the action of nerve growth factor on PC 12 cells. J Neurosci 8, 715–21.

    CAS  PubMed  Google Scholar 

  • Koo, P. H., Liebl, D. J., Qiu, W. S., Hu, Y. Q. and Dluzen, D. E. (1994). Monoamine-activated alpha 2-macroglobulin inhibits neurite out growth, survival, choline acetyl transferase, and dopamine concentration of neurons by blocking neurotrophin-receptor (trk) phosphorylation and signal transduction. Ann N Y Acad Sci 737, 460–4.

    CAS  PubMed  Google Scholar 

  • Kyprianou, N., English, H. F. and Isaacs, J. T. (1990). Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50, 3748–53.

    CAS  PubMed  Google Scholar 

  • Lamballe, F., Klein, R. and Barbacid, M. (1991a). The trk family of oncogenes and neurotrophin receptors. Princess Takamatsu Symp 22, 153–70.

    CAS  PubMed  Google Scholar 

  • Lamballe, F., Klein, R. and Barbacid, M. (1991b). TrkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin 3. Cell 66, 967–979.

    Article  CAS  PubMed  Google Scholar 

  • Lavenius, E., Gestblom, C., Johansson, I., Nanberg, E. and Pahlman, S. (1995). Transfection of TRK-A into human neuroblastoma cells restores their ability to differentiate in response to nerve growth factor. Cell Growth Differ 6, 727–36.

    CAS  PubMed  Google Scholar 

  • Loeb, D. M., Stephens, R. M., Copeland, T., Kaplan, D. R. and Greene, L. A. (1994). ATrk nerve growth factor (NGF) receptor point mutation affecting interaction with phospholipase C-gamma 1 abolishes NGF-promoted peripherin induction but not neurite out growth. J Biol Chem 269, 8901–10.

    CAS  PubMed  Google Scholar 

  • Look, A. T., Hayes, F. A., Shuster, J. J., Douglass, E. C., Castleberry, R. P., Bowman, L. C., Smith, E. I.. and Brodeur, G. M. (1991). Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 9, 581–91.

    CAS  PubMed  Google Scholar 

  • Lucarelli, E., Kaplan, D. and Thiele, C. J. (1997). Activation of trk-A but not trk-B signal transduction pathway inhibits growth of neuroblastoma cells. Eur J Cancer 33, 2068–70.

    Article  CAS  PubMed  Google Scholar 

  • Maehama, T. and Dixon, J. E. (1999). PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9, 125–8.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti, D., McQuillan, D. J., Spohn, W. C., Carson, D. D. and Nicolson, G. L. (1996). Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res 56, 2856–63.

    CAS  PubMed  Google Scholar 

  • Marchetti, D., Menter, D., Jin, L., Nakajima, M. and Nicolson, G. L. (1993). Nerve growth factor effects on human and mouse melanoma cell invasion and heparanase production, Int J Cancer 55, 692–9.

    CAS  PubMed  Google Scholar 

  • Marchetti, D. and Nicolson, G. L. (1997). Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Adv Enzyme Regul 37, 111–34.

    CAS  PubMed  Google Scholar 

  • Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–85.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Zanca, D., Hughes, S. H. and Barbacid, M. (1986). A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319, 743–748.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Zanca, D., Oskam, R., Mitra, G., Copeland, T. and Barbacid, M. (1989). Molecular and biochemical characterization of the human trk proto-oncogene. Mol. and Cell. Biol. 9, 24–33.

    CAS  Google Scholar 

  • Matsumoto, K., Wada, R. K., Yamashiro, J. M., Kaplan, D. R. and Thiele, C. J. (1995). Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55, 1798–806.

    CAS  PubMed  Google Scholar 

  • Matsunaga, T., Shirasawa, H., Enomoto, H., Yoshida, H., Iwai, J., Tanabe, M., Kawamura, K., Etoh, T. and Ohnuma, N. (1998). Neuronal src and trk a protooncogene expression in neuroblastomas and patient prognosis. Int J Cancer 79, 226–31.

    Article  CAS  PubMed  Google Scholar 

  • Matsushima, H. and Bogenmann, E. (1993). Expression of trkA cDNA in neuroblastomas mediates differentiation in vitro and in vivo. Mol Cell Biol 13, 7447–56.

    CAS  PubMed  Google Scholar 

  • McGregor, L. M., McCune, B. K., Graff, J. R., McDowell, P. R., Romans, K. E., Yancopoulos, G. D., Ball, D. W., Baylin, S. B. and Nelkin, B. D. (1999). Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96, 4540–5.

    Article  CAS  PubMed  Google Scholar 

  • McPherson, P. S., Kay, B. K. and Hussain, N. K. (2001). Signaling on the endocytic pathway. Traffic 2, 375–84.

    Article  CAS  PubMed  Google Scholar 

  • Meakin, S. O., MacDonald, J. I., Gryz, E. A., Kubu, C. J. and Verdi, J. M. (1999). The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. J Biol Chem 274, 9861–70.

    Article  CAS  PubMed  Google Scholar 

  • Melck, D., De Petrocellis, L., Orlando, P., Bisogno, T., Laezza, C., Bifulco, M. and Di Marzo, V. (2000). Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 141, 118–26.

    Article  CAS  PubMed  Google Scholar 

  • Menter, D. G., Herrmann, J. L., Marchetti, D. and Nicolson, G. L. (1994), Involvement of neurotrophins and growth factors in brain metastasis formation. Invasion Metastasis 14, 372–84.

    CAS  PubMed  Google Scholar 

  • Menter, D. G., Herrmann, J. L. and Nicolson, G. L. (1995). The role of trophic factors and autocrine/paracrine growth factors in brain metastasis. Clin Exp Metastasis 13, 67–88.

    Article  CAS  PubMed  Google Scholar 

  • Middlemas, D. S., Kihl, B. K. and Moody, N. M. (1999a). Brain derived neurotrophic factor protects human neuroblastoma cells from DNA damaging agents. J Neurooncol 45, 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Middlemas, D. S., Kihl, B. K., Zhou, J. and Zhu, X. (1999b). Brain-derived neurotrophic factor promotes survival and chemoprotection of human neuroblastoma cells. J Biol Chem 274, 16451–60.

    Article  CAS  PubMed  Google Scholar 

  • Middlemas, D. S., Meisenhelder, J. and Hunter, T. (1994). Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma-1 is a substrate of the TrkB receptor [Review]. Journal of Biological Chemistry 269, 5458–5466.

    CAS  PubMed  Google Scholar 

  • Miknyoczki, S. J., Chang, H., Klein-Szanto, A., Dionne, C. A. and Ruggeri, B. A. (1999a). The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res 5, 2205–12.

    CAS  PubMed  Google Scholar 

  • Miknyoczki, S. J., Dionne, C. A., Klein-Szanto, A. J. and Ruggeri, B. A. (1999b). The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panel) xenograft growth and in vivo invasiveness. Ann N Y Acad Sci 880, 252–62.

    Article  CAS  PubMed  Google Scholar 

  • Miknyoczki, S. J., Lang, D., Huang, L., Klein-Szanto, A. J., Dionne, C. A. and Ruggeri, B. A. (1999c). Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer 81, 417–27.

    Article  CAS  PubMed  Google Scholar 

  • Muragaki, Y., Chou, T. T., Kaplan, D. R., Trojanowski, J. Q. and Lee, V. M. (1997). Nerve growth factor induces apoptosis in human medulloblastoma cell lines that express TrkA receptors. J Neurosci 17, 530–42.

    CAS  PubMed  Google Scholar 

  • Nakagawara, A., Arima-Nakagawara, M., Scavarda, N. J., Azar, C. G., Cantor, A. B. and Brodeur, G. M. (1993). Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328, 847–54.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawara, A., Azar, C. G., Scavarda, N. J. and Brodeur, G. M. (1994). Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14, 759–67.

    CAS  PubMed  Google Scholar 

  • Nakagawara, A. and Brodeur, G. M. (1997). Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer 33, 2050–3

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T., Komiya, M., Gotoh, N., Koizumi, S., Shibuya, M. and Mori, N. (2002). Discrimination between phosphotyrosine-mediated signaling properties of conventional and neuronal Shc adapter molecules. Oncogens 21, 22–31.

    CAS  Google Scholar 

  • Nogueira, E., Navarro, S., Pellin, A. and Llombart-Bosch, A. (1997), Activation of TRK genes in Ewing’s sarcoma. Trk A receptor expression linked to neural differentiation. Diagn Mol Pathol 6, 10–6.

    Article  CAS  PubMed  Google Scholar 

  • Obermeier, A., Halfter, H., Wiesmuller, K. H., Jung, G., Schlessinger, J. and Ullrich, A. (1993a). Tyrosine 785 is a major determinant of Trk-substrate interaction. EMBO Journal 12, 933–41.

    CAS  PubMed  Google Scholar 

  • Obermeier, A., Lammers, R., Wiesmuller, K. H., Jung, G., Schlessinger, J. and Ullrich, A. (1993b). Identification of Trk binding sites for SHC and phosphatidylinositol 3′-kinase and formation of a multimeric signaling complex. Journal of Biological Chemistry 268, 22963–6

    CAS  PubMed  Google Scholar 

  • Pearson, G., Robinson, F., Beers Gibson, T., Xu, B., Karandikar, M., Berman, K. and Cobb, M. H. (2001). Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr Rev 22, 153–83.

    Article  CAS  PubMed  Google Scholar 

  • Pflug, B. R., Dionne, C., Kaplan, D. R., Lynch, J. and Djakiew, D. (1995). Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136, 262–8.

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin, M. E., Kim, J. Y., Goumnerova, L. C., Black, P. M., Lau, C. et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–42.

    Article  CAS  PubMed  Google Scholar 

  • Qian, X., Riccio, A., Zhang, Y. and Ginty, D. (1998). Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21, 1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Qiu, M. and Green, S. (1992). PC12 cell neuronal differentiation is associated with prolonged p21 ras activity and consequent prolonged ERK activity. Neuron 9, 705–717.

    Article  CAS  Google Scholar 

  • Ricci, A., Greco, S., Mariotta, S., Felici, L., Bronzetti, E., Cavazzana, A., Cardillo, G., Amenta, F., Bisetti, A. and Barbolini, G. (2001). Neurotrophins and neurotrophin receptors in human lung cancer. Am J Respir Cell Mol Biol 25, 439–46.

    CAS  PubMed  Google Scholar 

  • Riccio, A., Ahn, S., Davenport, C., Blendy, J. and Ginty, D. (1999). Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–61.

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri, B. A., Miknyoczki, S. J., Singh, J. and Hudkins, R. L. (1999). Role of neurotrophin-trk interactions in oncology: the anti-tumor efficacy of potent and selective trk tyrosine kinase inhibitors in pre-clinical tumor models. Curr Med Chem 6, 845–57

    CAS  PubMed  Google Scholar 

  • Russell, J. P., Powell, D. J., Cunnane, M., Greco, A., Portella, G., Santoro, M., Fusco, A. and Rothstein, J. L. (2000). The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene 19, 5729–35.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, Y., Kitajima, Y., Edakuni, G., Sasatomi, E., Mori, M., Kitahara, K. and Miyazaki, K. (2001). Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductat adenocarcinoma. Oncol Rep 8, 477–84.

    CAS  PubMed  Google Scholar 

  • Schneider, M. B., Standop, J., Ulrich, A., Wittel, U., Friess, H., Andren-Sandberg, A. and Pour, P. M. (2001). Expression of nerve growth factors in pancreatic neural tissue and pancreatic cancer. J Histochem Cytochem 49, 1205–10.

    CAS  PubMed  Google Scholar 

  • Segal, R. A., Bhattacharyya, A., Rua, L. A., Alberta, J. A., Stephens, R. M., Kaplan, D. R. and Stiles, C. D. (1996). Differential utilization of Trk autophosphorylation sites. J Biol Chem 271, 20175–81.

    CAS  PubMed  Google Scholar 

  • Segal, R. A., Goumnerova, L. C., Kwon, Y. K., Stiles, C. D. and Pomeroy, S. L. (1994). Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91, 12867–71

    CAS  PubMed  Google Scholar 

  • Sheng, W. Q., Hisaoka, M., Okamoto, S., Tanaka, A., Meis-Kindblom, J. M., Kindblom, L. G., Ishida, T., Nojima, T. and Hashimoto, H. (2001). Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffinembedded tissues. Am J Clin Pathol 115, 348–55.

    CAS  PubMed  Google Scholar 

  • Singer, H. S., Hansen, B., Martinie, D. and Karp, C. L. (1999). Mitogenesis in glioblastoma multiforme cell lines: a role for NGF and its TrkA receptors. J Neurooncol 45, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew, M. V., Howe, C. L. and Mobley, W. C. (2001). Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24, 1217–81.

    Article  CAS  PubMed  Google Scholar 

  • Squinto, S. P., Snitt, T. N., Aldrich, T. H., Davis, S., Bianco, S. M., Radjewski, C., Glass, D. F., Masiakowski, P., Furth, M. E., Valenzuela, D. M. et al. (1991). trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin 3 but not nerve growth factor, Cell 65, 1–20.

    Article  Google Scholar 

  • Stephens, R. M., Loeb, D. M., Copeland, T. D., Pawson, T., Greene, L. A. and Kaplan, D. R. (1994). Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron 12, 691–705.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto, T., Kuroda, H., Horii, Y., Moritake, H., Tanaka, T. and Hattori, S. (2001). Signal transduction pathways through TRK-A and TRK-B receptors in human neuroblastoma cells. Jpn J Cancer Res 92, 152–60

    CAS  PubMed  Google Scholar 

  • Svensson, T., Ryden, M., Schilling, F. H., Dominici, C., Sehgal, R., Ibanez, C. F. and Kogner, P. (1997). Coexpression of mRNA for the full-length neurotrophin receptor trk-C and trk-A in favourable neuroblastoma. Eur J Cancer 33, 2058–63.

    Article  CAS  PubMed  Google Scholar 

  • Tajima, Y., Molina, R. P., Jr., Rorke, L. B., Kaplan, D. R., Radeke, M., Feinstein, S. C., Lee, V. M. and Trojanowski, J. Q. (1998). Neurotrophins and neuronal versus glial differentiation in medulloblastomas and other pediatric brain tumors. Acta Neuropathol (Berl) 95, 325–32.

    CAS  Google Scholar 

  • Tanaka, T., Sugimoto, T. and Sawada, T. (1998). Prognostic discrimination among neuroblastomas according to Ha-ras/trk A gene expression: a comparison of the profiles of neuroblastomas detected clinically and those detected through mass screening. Cancer 83, 1626–33

    Article  CAS  PubMed  Google Scholar 

  • Traverse, S., Gomez, N., Paterson, H., Marshall, C. and Cohen, P. (1992). Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochemical Journal 288, 351–5.

    CAS  PubMed  Google Scholar 

  • Tsoulfas, P., Soppet, D., Escandon, E., Tessarollo, L., Mendoza-Ramirez, J.-L., Rosenthal, A., Nikolics, K. and Parada, L. F. (1993). The rat trkC encodes multiple neurogenic receptors that exhibit differential response to Neurotrophin-3 in PC12 cells. Neuron 10, 975–990.

    Article  CAS  PubMed  Google Scholar 

  • Vetter, M. L., Martin-Zanca, D., Parada, L. F., Bishop, J. M. and D. R. Kaplan. (1991). Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C by a kinase activity associated with the product of the trk protooncogene. Proc, Nat. Acad. Sci. USA 88, 5650–5654.

    CAS  Google Scholar 

  • Wang, J., Auger, K., Jarvis, L., Shi, Y. and Roberts, T. (1995). Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 270, 12774–12780.

    CAS  PubMed  Google Scholar 

  • Washiyama, K., Muragaki, Y., Rorke, L. B., Lee, V. M., Feinstein, S. C., Radeke, M. J., Blumberg, D., Kaplan, D. R. and Trojanowski, J. Q. (1996). Neurotrophin and neurotrophin receptor proteins in medulloblastomas and other primitive neuroectodermal tumors of the pediatric central nervous system, Am J Pathol 148, 929–40.

    CAS  PubMed  Google Scholar 

  • Watson, F. L., Heerssen, H. M., Bhattacharyya, A., Klesse, L., Lin, M. Z. and Segal, R. A. (2001). Neurotrophins use the Erk5 pathway to mediatea retrograde survival response. Nat Neurosci 4, 981–8.

    Article  CAS  PubMed  Google Scholar 

  • Weeraratna, A. T., Arnold, J. T., George, D. J., DeMarzo, A. and Isaacs, J. T. (2000). Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45, 140–8.

    Article  CAS  PubMed  Google Scholar 

  • Weeraratna, A. T., Dalrymple, S. L., Lamb, J. C., Denmeade, S. R., Miknyoczki, S., Dionne, C. A. and Isaacs, J. T. (2001). Pan-trk inhibition decreases metastasis and enhances host survival in experimental models as a result of its selective induction of apoptosis of prostate cancer cells. Clin Cancer Res 7, 2237–45.

    CAS  PubMed  Google Scholar 

  • Widmer, H. R., Kaplan, D. R., Rabin, S. J., Beck, K. D., Hefti, F. and Knusel, B. (1993). Rapid phosphorylation of phospholipase C gamma 1 by brain-derived neurotrophic factor and neurotrophin-3 in cultures of embryonic rat cortical neurons. J Neurochem 60, 2111–23.

    CAS  PubMed  Google Scholar 

  • Yamashiro, D. J., Liu, X. G., Lee, C. P., Nakagawara, A., Ikegaki, N., McGregor, L. M., Baylin, S. B. and Brodeur, G. M. (1997). Expression and function of Trk-C in favourable human neuroblastomas. Eur J Cancer 33, 2054–7.

    Article  CAS  PubMed  Google Scholar 

  • Yao, R. and Cooper, G. (1995).Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006.

    CAS  PubMed  Google Scholar 

  • York, R. D., Molliver, D. C., Grewal, S. S., Stenberg, P. E., McCleskey, E. W. and Stork, P. J. (2000). Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap 1. Mol Cell Biol 20, 8069–83.

    Article  CAS  PubMed  Google Scholar 

  • Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., Kim, Y. B., Elmquist, J. K., Tartaglia, L. A., Kahn, B. B. et al. (2002). PTP1B Regulates Leptin Signal Transduction In Vivo. Dev Cell 2, 489–95.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Moheban, D., Conway, B., Bhattacharyya, A. and Segal, R. (2000). Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J Neurosci 20, 5671–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rubin, J.B., Segal, R.A. (2004). Growth, Survival and Migration: The Trk to Cancer. In: Frank, D.A. (eds) Signal Transduction in Cancer. Cancer Treatment and Research, vol 115. Springer, Boston, MA. https://doi.org/10.1007/0-306-48158-8_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48158-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7340-3

  • Online ISBN: 978-0-306-48158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics