Advertisement

Growth, Survival and Migration: The Trk to Cancer

  • Joshua B. Rubin
  • Rosalind A. Segal
Part of the Cancer Treatment and Research book series (CTAR, volume 115)

Conclusions

Trk signaling is of widespread importance during development as it regulates the differentiation, survival and migration of multiple cell types. Similar fanctions for Trks can be found in a wide variety of cancers. These activities not only determine the biology of these cancers but also offer a potentially unique target for the control of cancer cell growth and motility through the inhibition of the Trk kinase.

Keywords

Nerve Growth Factor Papillary Thyroid Cancer Human Neuroblastoma Cell Neurotrophin Receptor Nerve Growth Factor Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azar, C. G., Scavarda, N. J., Nakagawara, A. and Brodeur, G. M. (1994). Expression and function of the nerve growth factor receptor (TRK-A) in human neuroblastoma cell lines. Prog Clin Biol Res 385, 169–75.PubMedGoogle Scholar
  2. Behar, T. N., Schaffner, A. E., Colton, C.A., Somogyi, R., Olah, Z., Lehel, C. and Barker, J.L. (1994a). GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons. J Neurosci 14, 29–38.PubMedGoogle Scholar
  3. Behar, T.N., Schaffner, A. E., Tran, H.T. and Barker, J. L. (1994b). Correlation of gp140trk expression and NGF-induced neuroblast chemotaxis in the embryonic rat spinal cord. Brain Res 664, 155–66.CrossRefPubMedGoogle Scholar
  4. Bernard, A. and Kazlauskas, A. (1999). Phosphospecific antibodies reveal temporal regulation of platelet-derived growth factor beta receptor signaling. Exp Cell Res 253, 704–12.CrossRefPubMedGoogle Scholar
  5. Berridge, M. (1993). Inositol triphosphate and calcium signaling. Nature 361, 315–325.CrossRefPubMedGoogle Scholar
  6. Bhargava, P., Marcshall, J., Dahut, W., Rizvi, N., Dordal, E., Samara, E., El-Shoubagy, T., Ness, E., Bischoff, J. and Hawkins, M. (1998). Phase I study of CEP-2563 dihydrochloride in patients with advanced cancer. Annal of Oncology 9, A424.Google Scholar
  7. Bongarzone, I., Pierotti, M. A., Monzini, N., Mondellini, P., Manenti, G., Donghi, R., Pilotti, S., Grieco, M., Santoro, M., Fusco, A. et al. (1989). High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 4, 1457–62.PubMedGoogle Scholar
  8. Bonni, A., Brunet, A., West, A., Datta, S., Takasu, M. and Greenberg, M. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 286, 1358–62.CrossRefPubMedGoogle Scholar
  9. Borghesani, P. R., Peyrin, J. M., Klein, R., Rubin, J., Carter, A. R., Schwartz, P. M., Luster, A., Corfas, G. and Segal, R. A. (2002). BDNF stimulates migration of cerebellar granule cells. Development 129, 1435–42.PubMedGoogle Scholar
  10. Bown, N., Cotterill, S., Lastowska, M., O’Neill, S., Pearson, A.D., Plantaz, D., Meddeb, M., Danglot, G., Brinkschmidt, C., Christiansen, H. et al. (1999). Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340, 1954–61.CrossRefPubMedGoogle Scholar
  11. Brodeur, G. M., Maris, J. M., Yamashiro, D. J., Hogarty, M. D. and White, P. S. (1997a). Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol 19, 93–101.CrossRefPubMedGoogle Scholar
  12. Brodeur, G. M., Nakagawara, A., Yamashiro, D. J., Ikegaki, N., Liu, X. G., Azar, C. G., Lee, C. P. and Evans, A.E. (1997b). Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 31, 49–55.CrossRefPubMedGoogle Scholar
  13. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H.E. and Bishop, J. M. (1984). Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–4.PubMedGoogle Scholar
  14. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J. and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–68.CrossRefPubMedGoogle Scholar
  15. Brunet, A., Datta, S.R. and Greenberg, M.E. (2001). Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11, 297–305.CrossRefPubMedGoogle Scholar
  16. Burgering, B. and Coffer, P. (1995). Protein kinase B (Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602.CrossRefPubMedGoogle Scholar
  17. Butti, M. G., Bongarzone, I., Ferraresi, G., Mondellini, P., Borrello, M. G. and Pierotti, M.A. (1995). A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics 28, 15–24.CrossRefPubMedGoogle Scholar
  18. Camoratto, A. M., Jani, J. P., Angeles, T. S., Maroney, A. C., Sanders, C. Y., Murakata, C., Neff, N.T., Vaught, J. L., Isaacs, J. T. and Dionne, C. A. (1997). CEP-751 inhibits TRK receptor tyrosine kinase activity in vitro OFF exhibits anti-tumor activity. Int J Cancer 72, 673–9.CrossRefPubMedGoogle Scholar
  19. Caron, H., van Sluis, P., de Kraker, J., Bokkerink, J., Egeler, M., Laureys, G., Slater, R., Westerveld, A., Voute, P.A. and Versteeg, R. (1996). Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N Engl J Med 334, 225–30.CrossRefPubMedGoogle Scholar
  20. Cavanaugh, J. E., Ham, J., Hetman, M., Poser, S., Yan, C. and Xia, Z. (2001). Differential Regulation of Mitogen-Activated Protein Kinases ERK1/2 and ERK5 by Neurotrophins, Neuronal Activity, and cAMP in Neurons. J Neurosci 21, 434–443.PubMedGoogle Scholar
  21. Choi, D. Y., Toledo-Aral, J. J., Segal, R. and Halegoua, S. (2001). Sustained signaling by phospholipase C-gamma mediates nerve growth factor-triggered gene expression. Mol Cell Biol 21, 2695–705.CrossRefPubMedGoogle Scholar
  22. Chou, T. T., Trojanowski, J. Q. and Lee, V. M. (2000). A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem 275, 565–70.PubMedGoogle Scholar
  23. Cordon-Cardo, C., Tapley, P., Jing, S., Nanduri, V., O’Rourke, E., Lamballe, F., Kovary, K., Klein, R., Jones, K. R., Reichardt, L. F. et al. (1991). The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and NT3, Cell 66, 173–183.CrossRefPubMedGoogle Scholar
  24. Cunningham, M. E., Stephens, R. M., Kaplan, D. R. and Greene, L.A. (1997). Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem 272, 10957–67.PubMedGoogle Scholar
  25. Dalal, R. and Djakiew, D. (1997). Molecular characterization of neurotrophin expression and the corresponding tropomyosin receptor kinases (trks) in epithelial and stromal cells of the human prostate. Mol Cell Endocrinol 134, 15–22.CrossRefPubMedGoogle Scholar
  26. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M. E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–41.CrossRefPubMedGoogle Scholar
  27. Delsite, R. and Djakiew, D. (1996). Anti-proliferative effect of the kinase inhibitor K252a on human prostatic carcinoma cell lines. J Androl 17, 481–90.PubMedGoogle Scholar
  28. Descamps, S., Lebourhis, X., Delehedde, M., Boilly, B. and Hondermarck, H. (1998). Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem 273, 16659–62.CrossRefPubMedGoogle Scholar
  29. Di Cristofano, A. and Pandolfi, P. P. (2000). The multiple roles of PTEN in tumor suppression. Cell 100, 387–90.PubMedGoogle Scholar
  30. Dionne, C. A., Camoratto, A. M., Jani, J.P., Emerson, E., Neff, N., Vaught, J.L., Murakata, C., Djakiew, D., Lamb, J., Bova, S. et al. (1998). Cellcycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin Cancer Res 4, 1887–98.PubMedGoogle Scholar
  31. Donovan, M.J., Hempstead, B., Huber, L.J., Kaplan, D., Tsoulfas, P., Chao, M., Parada, L. and Schofield, D. (1994). Identification of the neurotrophin receptors p75 and trk in a series of Wilms’ tumors. Am J Pathol 145, 792–801.PubMedGoogle Scholar
  32. Dudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D.R. and Greenberg, M. E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt [see comments]. Science 275, 661–5.CrossRefPubMedGoogle Scholar
  33. Eberhart, C. G., Kaufman, W. E., Tihan, T. and Burger, P. C. (2001), Apoptosis, neuronal maturation, and neurotrophin expression within medulloblastoma nodules. J Neuropathol Exp Neurol 60, 462–9.PubMedGoogle Scholar
  34. Eggert, A., Grotzer, M. A., Zhao, H., Brodeur, G. M. and Evans, A. E. (2001). [Expression of the neurotrophin-receptor TrkB predicts outcome innephroblastomas: results of apilot-study], Klin Padiatr 213, 191–6.PubMedGoogle Scholar
  35. Eggert, A., Ikegaki, N., Liu, X., Chou, T. T., Lee, V. M., Trojanowski, J. Q. and Brodeur, G. M. (2000a). Molecular dissection of TrkA signal transduction pathways mediating differentiation in human neuroblastoma cells. Oncogene 19, 2043–51.CrossRefPubMedGoogle Scholar
  36. Eggert, A., Ikegaki, N., Liu, X. G. and Brodeur, G. M. (2000b). Prognostic and biological role of neurotrophin-receptor TrkA and TrkB in neuroblastoma. Klin Padiatr 212, 200–5.CrossRefPubMedGoogle Scholar
  37. Eguchi, M., Eguchi-Ishimae, M., Tojo, A., Morishita, K., Suzuki, K., Sato, Y., Kudoh, S., Tanaka, K., Setoyama, M., Nagamura, F. et al. (1999). Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25), Blood 93, 1355–63.PubMedGoogle Scholar
  38. Evans, A. E., Kisselbach, K. D., Liu, X., Eggert, A., Ikegaki, N., Camoratto, A. M., Dionne, C. and Brodeur, G. M. (2001), Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB, Med Pediatr Oncol 36, 181–4.CrossRefPubMedGoogle Scholar
  39. George, D. J., Dionne, C. A., Jani, J., Angeles, T., Murakata, C., Lamb, J. and Isaacs, J.T.(1999). Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res 59, 2395–401.PubMedGoogle Scholar
  40. Gilad, G. M. and Gilad, V. H. (1995). Chemotaxis and accumulation of nerve growth factor by microglia and macrophages. J Neurosci Res 41, 594–602CrossRefPubMedGoogle Scholar
  41. Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M. H. and Shaw, P. E. (1995). ERK phosphorylation potentiates EIk-1-mediated ternary complex formation and transactivation. Embo J 14, 951–62.PubMedGoogle Scholar
  42. Greco, A., Mariani, C., Miranda, C., Lupas, A., Pagliardini, S., Pomati, M. and Pierotti, M. A. (1995). The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 15, 6118–27.PubMedGoogle Scholar
  43. Greco, A., Miranda, C., Pagliardini, S., Fusetti, L., Bongarzone, I. and Pierotti, M. A. (1997). Chromosome 1 rrearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19, 112–23.CrossRefPubMedGoogle Scholar
  44. Greco, A., Pierotti, M. A., Bongarzone, I., Pagliardini, S., Lanzi, C. and Della Porta, G. (1992), TRK-Tlis a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 7, 237–42.PubMedGoogle Scholar
  45. Greene, L. A. and Kaplan, D. R. (1995). Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol 5, 579–87.CrossRefPubMedGoogle Scholar
  46. Grotzer, M. A., Janss, A. J., Phillips, P. C. and Trojanowski, J. Q. (2000). Neurotrophin receptor TrkC predicts good clinical outcome in medulloblastoma and other primitive neuroectodermal brain tumors. Klin Padiatr 212, 196–9.CrossRefPubMedGoogle Scholar
  47. Guate, J. L., Fernandez, N., Lanzas, J. M., Escaf, S. and Vega, J. A. (1999). Expression of p75(LNGFR) and Trk neurotrophin receptors innormal and neoplastic human prostate. BJU Int 84, 495–502.CrossRefPubMedGoogle Scholar
  48. Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W. and Weinberg, R. A. (1999). Creation of human tumour cells with defined genetic elements. Nature 400, 464–8.PubMedGoogle Scholar
  49. Herrmann, J. L., Menter, D. G., Hamada, J., Marchetti, D., Nakajima, M. and Nicolson, G. L. (1993). Mediation of NGF-stimulated extracellular matrix invasion by the human melanoma low-affinity p75 neurotrophin receptor: melanoma p75 functions independently of trkA. Mol Biol Cell 4, 1205–16.PubMedGoogle Scholar
  50. Howe, C. L., Valletta, J. S., Rusnak, A. S. and Mobley, W. C. (2001). NGF Signaling from Clathrin-Coated Vesicles. Evidence that Signaling Endosomes Serve as a Platform for the Ras-MAPK Pathway. Neuron 32, 801–814.CrossRefPubMedGoogle Scholar
  51. Hu, Y. Q. and Koo, P. H. (1998). Inhibition of phosphorylation of TrkB and TrkC and their signal transduction by alpha2-macroglobulin. J Neuroehem 71, 213–20.Google Scholar
  52. Innominato, P. F., Libbrecht, L. and van den Oord, J. J. (2001). Expression of neurotrophins and their receptors in pigment cell lesions of the skin. J Pathol 194, 95–100.CrossRefPubMedGoogle Scholar
  53. Jing, S., Tapley, P. and Barbacid, M. (1992). Nerve growth factor mediates signal transduction through trk homodimer receptors. Neuron 9, 1067–1079.CrossRefPubMedGoogle Scholar
  54. Kamakura, S., Moriguchi, T. and Nishida, E. (1999). Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274, 26563–71.CrossRefPubMedGoogle Scholar
  55. Kaplan, D. R., Hempstead, B. L., Martin-Zanca, D., Chao, M. V. and Parada, L. F. (1991). The trk proto-oncogene product: Asignal transducing receptor for nerve growth factor. Science 252, 558–561.PubMedGoogle Scholar
  56. Kaplan, D. R. and Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system, Curr Opin Neurobiol 10, 381–91.CrossRefPubMedGoogle Scholar
  57. Kim, J. Y., Sutton, M. E., Lu, D. J., Cho, T. A., Goumnerova, L. C., Goritchenko, L., Kaufman, J. R., Lam, K. K., Billet, A. L., Tarbell, N. J. et al. (1999). Activation of neurotrophin-3 receptor Trk C induces apoptosis in medulloblastomas. Cancer Res 59, 711–9.PubMedGoogle Scholar
  58. Klein, R., Jing, S. Q., Nanduri, V., O’Rourke, E. and Barbacid, M. (1991). The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65, 189–97.CrossRefPubMedGoogle Scholar
  59. Knezevich, S. R., McFadden, D. E., Tao, W., Lim, J. F. and Sorensen, P. H. (1998). Anovel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18, 184–7.CrossRefPubMedGoogle Scholar
  60. Kobayashi, H. and Mizisin, A. P. (2001). Nerve growth factor and neurotrophin-3 promote chemotaxis of mouse macrophages in vitro. Neurosci Lett 305, 157–60.CrossRefPubMedGoogle Scholar
  61. Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P. and Guroff, G. (1988). K-252a: a specific inhibitor of the action of nerve growth factor on PC 12 cells. J Neurosci 8, 715–21.PubMedGoogle Scholar
  62. Koo, P. H., Liebl, D. J., Qiu, W. S., Hu, Y. Q. and Dluzen, D. E. (1994). Monoamine-activated alpha 2-macroglobulin inhibits neurite out growth, survival, choline acetyl transferase, and dopamine concentration of neurons by blocking neurotrophin-receptor (trk) phosphorylation and signal transduction. Ann N Y Acad Sci 737, 460–4.PubMedGoogle Scholar
  63. Kyprianou, N., English, H. F. and Isaacs, J. T. (1990). Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50, 3748–53.PubMedGoogle Scholar
  64. Lamballe, F., Klein, R. and Barbacid, M. (1991a). The trk family of oncogenes and neurotrophin receptors. Princess Takamatsu Symp 22, 153–70.PubMedGoogle Scholar
  65. Lamballe, F., Klein, R. and Barbacid, M. (1991b). TrkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin 3. Cell 66, 967–979.CrossRefPubMedGoogle Scholar
  66. Lavenius, E., Gestblom, C., Johansson, I., Nanberg, E. and Pahlman, S. (1995). Transfection of TRK-A into human neuroblastoma cells restores their ability to differentiate in response to nerve growth factor. Cell Growth Differ 6, 727–36.PubMedGoogle Scholar
  67. Loeb, D. M., Stephens, R. M., Copeland, T., Kaplan, D. R. and Greene, L. A. (1994). ATrk nerve growth factor (NGF) receptor point mutation affecting interaction with phospholipase C-gamma 1 abolishes NGF-promoted peripherin induction but not neurite out growth. J Biol Chem 269, 8901–10.PubMedGoogle Scholar
  68. Look, A. T., Hayes, F. A., Shuster, J. J., Douglass, E. C., Castleberry, R. P., Bowman, L. C., Smith, E. I.. and Brodeur, G. M. (1991). Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 9, 581–91.PubMedGoogle Scholar
  69. Lucarelli, E., Kaplan, D. and Thiele, C. J. (1997). Activation of trk-A but not trk-B signal transduction pathway inhibits growth of neuroblastoma cells. Eur J Cancer 33, 2068–70.CrossRefPubMedGoogle Scholar
  70. Maehama, T. and Dixon, J. E. (1999). PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9, 125–8.CrossRefPubMedGoogle Scholar
  71. Marchetti, D., McQuillan, D. J., Spohn, W. C., Carson, D. D. and Nicolson, G. L. (1996). Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res 56, 2856–63.PubMedGoogle Scholar
  72. Marchetti, D., Menter, D., Jin, L., Nakajima, M. and Nicolson, G. L. (1993). Nerve growth factor effects on human and mouse melanoma cell invasion and heparanase production, Int J Cancer 55, 692–9.PubMedGoogle Scholar
  73. Marchetti, D. and Nicolson, G. L. (1997). Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Adv Enzyme Regul 37, 111–34.PubMedGoogle Scholar
  74. Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–85.CrossRefPubMedGoogle Scholar
  75. Martin-Zanca, D., Hughes, S. H. and Barbacid, M. (1986). A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319, 743–748.CrossRefPubMedGoogle Scholar
  76. Martin-Zanca, D., Oskam, R., Mitra, G., Copeland, T. and Barbacid, M. (1989). Molecular and biochemical characterization of the human trk proto-oncogene. Mol. and Cell. Biol. 9, 24–33.Google Scholar
  77. Matsumoto, K., Wada, R. K., Yamashiro, J. M., Kaplan, D. R. and Thiele, C. J. (1995). Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55, 1798–806.PubMedGoogle Scholar
  78. Matsunaga, T., Shirasawa, H., Enomoto, H., Yoshida, H., Iwai, J., Tanabe, M., Kawamura, K., Etoh, T. and Ohnuma, N. (1998). Neuronal src and trk a protooncogene expression in neuroblastomas and patient prognosis. Int J Cancer 79, 226–31.CrossRefPubMedGoogle Scholar
  79. Matsushima, H. and Bogenmann, E. (1993). Expression of trkA cDNA in neuroblastomas mediates differentiation in vitro and in vivo. Mol Cell Biol 13, 7447–56.PubMedGoogle Scholar
  80. McGregor, L. M., McCune, B. K., Graff, J. R., McDowell, P. R., Romans, K. E., Yancopoulos, G. D., Ball, D. W., Baylin, S. B. and Nelkin, B. D. (1999). Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96, 4540–5.CrossRefPubMedGoogle Scholar
  81. McPherson, P. S., Kay, B. K. and Hussain, N. K. (2001). Signaling on the endocytic pathway. Traffic 2, 375–84.CrossRefPubMedGoogle Scholar
  82. Meakin, S. O., MacDonald, J. I., Gryz, E. A., Kubu, C. J. and Verdi, J. M. (1999). The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. J Biol Chem 274, 9861–70.CrossRefPubMedGoogle Scholar
  83. Melck, D., De Petrocellis, L., Orlando, P., Bisogno, T., Laezza, C., Bifulco, M. and Di Marzo, V. (2000). Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 141, 118–26.CrossRefPubMedGoogle Scholar
  84. Menter, D. G., Herrmann, J. L., Marchetti, D. and Nicolson, G. L. (1994), Involvement of neurotrophins and growth factors in brain metastasis formation. Invasion Metastasis 14, 372–84.PubMedGoogle Scholar
  85. Menter, D. G., Herrmann, J. L. and Nicolson, G. L. (1995). The role of trophic factors and autocrine/paracrine growth factors in brain metastasis. Clin Exp Metastasis 13, 67–88.CrossRefPubMedGoogle Scholar
  86. Middlemas, D. S., Kihl, B. K. and Moody, N. M. (1999a). Brain derived neurotrophic factor protects human neuroblastoma cells from DNA damaging agents. J Neurooncol 45, 27–36.CrossRefPubMedGoogle Scholar
  87. Middlemas, D. S., Kihl, B. K., Zhou, J. and Zhu, X. (1999b). Brain-derived neurotrophic factor promotes survival and chemoprotection of human neuroblastoma cells. J Biol Chem 274, 16451–60.CrossRefPubMedGoogle Scholar
  88. Middlemas, D. S., Meisenhelder, J. and Hunter, T. (1994). Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma-1 is a substrate of the TrkB receptor [Review]. Journal of Biological Chemistry 269, 5458–5466.PubMedGoogle Scholar
  89. Miknyoczki, S. J., Chang, H., Klein-Szanto, A., Dionne, C. A. and Ruggeri, B. A. (1999a). The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res 5, 2205–12.PubMedGoogle Scholar
  90. Miknyoczki, S. J., Dionne, C. A., Klein-Szanto, A. J. and Ruggeri, B. A. (1999b). The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panel) xenograft growth and in vivo invasiveness. Ann N Y Acad Sci 880, 252–62.CrossRefPubMedGoogle Scholar
  91. Miknyoczki, S. J., Lang, D., Huang, L., Klein-Szanto, A. J., Dionne, C. A. and Ruggeri, B. A. (1999c). Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer 81, 417–27.CrossRefPubMedGoogle Scholar
  92. Muragaki, Y., Chou, T. T., Kaplan, D. R., Trojanowski, J. Q. and Lee, V. M. (1997). Nerve growth factor induces apoptosis in human medulloblastoma cell lines that express TrkA receptors. J Neurosci 17, 530–42.PubMedGoogle Scholar
  93. Nakagawara, A., Arima-Nakagawara, M., Scavarda, N. J., Azar, C. G., Cantor, A. B. and Brodeur, G. M. (1993). Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328, 847–54.CrossRefPubMedGoogle Scholar
  94. Nakagawara, A., Azar, C. G., Scavarda, N. J. and Brodeur, G. M. (1994). Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14, 759–67.PubMedGoogle Scholar
  95. Nakagawara, A. and Brodeur, G. M. (1997). Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer 33, 2050–3CrossRefPubMedGoogle Scholar
  96. Nakamura, T., Komiya, M., Gotoh, N., Koizumi, S., Shibuya, M. and Mori, N. (2002). Discrimination between phosphotyrosine-mediated signaling properties of conventional and neuronal Shc adapter molecules. Oncogens 21, 22–31.Google Scholar
  97. Nogueira, E., Navarro, S., Pellin, A. and Llombart-Bosch, A. (1997), Activation of TRK genes in Ewing’s sarcoma. Trk A receptor expression linked to neural differentiation. Diagn Mol Pathol 6, 10–6.CrossRefPubMedGoogle Scholar
  98. Obermeier, A., Halfter, H., Wiesmuller, K. H., Jung, G., Schlessinger, J. and Ullrich, A. (1993a). Tyrosine 785 is a major determinant of Trk-substrate interaction. EMBO Journal 12, 933–41.PubMedGoogle Scholar
  99. Obermeier, A., Lammers, R., Wiesmuller, K. H., Jung, G., Schlessinger, J. and Ullrich, A. (1993b). Identification of Trk binding sites for SHC and phosphatidylinositol 3′-kinase and formation of a multimeric signaling complex. Journal of Biological Chemistry 268, 22963–6PubMedGoogle Scholar
  100. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B., Karandikar, M., Berman, K. and Cobb, M. H. (2001). Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr Rev 22, 153–83.CrossRefPubMedGoogle Scholar
  101. Pflug, B. R., Dionne, C., Kaplan, D. R., Lynch, J. and Djakiew, D. (1995). Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136, 262–8.CrossRefPubMedGoogle Scholar
  102. Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin, M. E., Kim, J. Y., Goumnerova, L. C., Black, P. M., Lau, C. et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–42.CrossRefPubMedGoogle Scholar
  103. Qian, X., Riccio, A., Zhang, Y. and Ginty, D. (1998). Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21, 1017–1029CrossRefPubMedGoogle Scholar
  104. Qiu, M. and Green, S. (1992). PC12 cell neuronal differentiation is associated with prolonged p21 ras activity and consequent prolonged ERK activity. Neuron 9, 705–717.CrossRefGoogle Scholar
  105. Ricci, A., Greco, S., Mariotta, S., Felici, L., Bronzetti, E., Cavazzana, A., Cardillo, G., Amenta, F., Bisetti, A. and Barbolini, G. (2001). Neurotrophins and neurotrophin receptors in human lung cancer. Am J Respir Cell Mol Biol 25, 439–46.PubMedGoogle Scholar
  106. Riccio, A., Ahn, S., Davenport, C., Blendy, J. and Ginty, D. (1999). Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–61.CrossRefPubMedGoogle Scholar
  107. Ruggeri, B. A., Miknyoczki, S. J., Singh, J. and Hudkins, R. L. (1999). Role of neurotrophin-trk interactions in oncology: the anti-tumor efficacy of potent and selective trk tyrosine kinase inhibitors in pre-clinical tumor models. Curr Med Chem 6, 845–57PubMedGoogle Scholar
  108. Russell, J. P., Powell, D. J., Cunnane, M., Greco, A., Portella, G., Santoro, M., Fusco, A. and Rothstein, J. L. (2000). The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene 19, 5729–35.CrossRefPubMedGoogle Scholar
  109. Sakamoto, Y., Kitajima, Y., Edakuni, G., Sasatomi, E., Mori, M., Kitahara, K. and Miyazaki, K. (2001). Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductat adenocarcinoma. Oncol Rep 8, 477–84.PubMedGoogle Scholar
  110. Schneider, M. B., Standop, J., Ulrich, A., Wittel, U., Friess, H., Andren-Sandberg, A. and Pour, P. M. (2001). Expression of nerve growth factors in pancreatic neural tissue and pancreatic cancer. J Histochem Cytochem 49, 1205–10.PubMedGoogle Scholar
  111. Segal, R. A., Bhattacharyya, A., Rua, L. A., Alberta, J. A., Stephens, R. M., Kaplan, D. R. and Stiles, C. D. (1996). Differential utilization of Trk autophosphorylation sites. J Biol Chem 271, 20175–81.PubMedGoogle Scholar
  112. Segal, R. A., Goumnerova, L. C., Kwon, Y. K., Stiles, C. D. and Pomeroy, S. L. (1994). Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91, 12867–71PubMedGoogle Scholar
  113. Sheng, W. Q., Hisaoka, M., Okamoto, S., Tanaka, A., Meis-Kindblom, J. M., Kindblom, L. G., Ishida, T., Nojima, T. and Hashimoto, H. (2001). Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffinembedded tissues. Am J Clin Pathol 115, 348–55.PubMedGoogle Scholar
  114. Singer, H. S., Hansen, B., Martinie, D. and Karp, C. L. (1999). Mitogenesis in glioblastoma multiforme cell lines: a role for NGF and its TrkA receptors. J Neurooncol 45, 1–8.CrossRefPubMedGoogle Scholar
  115. Sofroniew, M. V., Howe, C. L. and Mobley, W. C. (2001). Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24, 1217–81.CrossRefPubMedGoogle Scholar
  116. Squinto, S. P., Snitt, T. N., Aldrich, T. H., Davis, S., Bianco, S. M., Radjewski, C., Glass, D. F., Masiakowski, P., Furth, M. E., Valenzuela, D. M. et al. (1991). trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin 3 but not nerve growth factor, Cell 65, 1–20.CrossRefGoogle Scholar
  117. Stephens, R. M., Loeb, D. M., Copeland, T. D., Pawson, T., Greene, L. A. and Kaplan, D. R. (1994). Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron 12, 691–705.CrossRefPubMedGoogle Scholar
  118. Sugimoto, T., Kuroda, H., Horii, Y., Moritake, H., Tanaka, T. and Hattori, S. (2001). Signal transduction pathways through TRK-A and TRK-B receptors in human neuroblastoma cells. Jpn J Cancer Res 92, 152–60PubMedGoogle Scholar
  119. Svensson, T., Ryden, M., Schilling, F. H., Dominici, C., Sehgal, R., Ibanez, C. F. and Kogner, P. (1997). Coexpression of mRNA for the full-length neurotrophin receptor trk-C and trk-A in favourable neuroblastoma. Eur J Cancer 33, 2058–63.CrossRefPubMedGoogle Scholar
  120. Tajima, Y., Molina, R. P., Jr., Rorke, L. B., Kaplan, D. R., Radeke, M., Feinstein, S. C., Lee, V. M. and Trojanowski, J. Q. (1998). Neurotrophins and neuronal versus glial differentiation in medulloblastomas and other pediatric brain tumors. Acta Neuropathol (Berl) 95, 325–32.Google Scholar
  121. Tanaka, T., Sugimoto, T. and Sawada, T. (1998). Prognostic discrimination among neuroblastomas according to Ha-ras/trk A gene expression: a comparison of the profiles of neuroblastomas detected clinically and those detected through mass screening. Cancer 83, 1626–33CrossRefPubMedGoogle Scholar
  122. Traverse, S., Gomez, N., Paterson, H., Marshall, C. and Cohen, P. (1992). Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochemical Journal 288, 351–5.PubMedGoogle Scholar
  123. Tsoulfas, P., Soppet, D., Escandon, E., Tessarollo, L., Mendoza-Ramirez, J.-L., Rosenthal, A., Nikolics, K. and Parada, L. F. (1993). The rat trkC encodes multiple neurogenic receptors that exhibit differential response to Neurotrophin-3 in PC12 cells. Neuron 10, 975–990.CrossRefPubMedGoogle Scholar
  124. Vetter, M. L., Martin-Zanca, D., Parada, L. F., Bishop, J. M. and D. R. Kaplan. (1991). Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C by a kinase activity associated with the product of the trk protooncogene. Proc, Nat. Acad. Sci. USA 88, 5650–5654.Google Scholar
  125. Wang, J., Auger, K., Jarvis, L., Shi, Y. and Roberts, T. (1995). Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 270, 12774–12780.PubMedGoogle Scholar
  126. Washiyama, K., Muragaki, Y., Rorke, L. B., Lee, V. M., Feinstein, S. C., Radeke, M. J., Blumberg, D., Kaplan, D. R. and Trojanowski, J. Q. (1996). Neurotrophin and neurotrophin receptor proteins in medulloblastomas and other primitive neuroectodermal tumors of the pediatric central nervous system, Am J Pathol 148, 929–40.PubMedGoogle Scholar
  127. Watson, F. L., Heerssen, H. M., Bhattacharyya, A., Klesse, L., Lin, M. Z. and Segal, R. A. (2001). Neurotrophins use the Erk5 pathway to mediatea retrograde survival response. Nat Neurosci 4, 981–8.CrossRefPubMedGoogle Scholar
  128. Weeraratna, A. T., Arnold, J. T., George, D. J., DeMarzo, A. and Isaacs, J. T. (2000). Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45, 140–8.CrossRefPubMedGoogle Scholar
  129. Weeraratna, A. T., Dalrymple, S. L., Lamb, J. C., Denmeade, S. R., Miknyoczki, S., Dionne, C. A. and Isaacs, J. T. (2001). Pan-trk inhibition decreases metastasis and enhances host survival in experimental models as a result of its selective induction of apoptosis of prostate cancer cells. Clin Cancer Res 7, 2237–45.PubMedGoogle Scholar
  130. Widmer, H. R., Kaplan, D. R., Rabin, S. J., Beck, K. D., Hefti, F. and Knusel, B. (1993). Rapid phosphorylation of phospholipase C gamma 1 by brain-derived neurotrophic factor and neurotrophin-3 in cultures of embryonic rat cortical neurons. J Neurochem 60, 2111–23.PubMedGoogle Scholar
  131. Yamashiro, D. J., Liu, X. G., Lee, C. P., Nakagawara, A., Ikegaki, N., McGregor, L. M., Baylin, S. B. and Brodeur, G. M. (1997). Expression and function of Trk-C in favourable human neuroblastomas. Eur J Cancer 33, 2054–7.CrossRefPubMedGoogle Scholar
  132. Yao, R. and Cooper, G. (1995).Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006.PubMedGoogle Scholar
  133. York, R. D., Molliver, D. C., Grewal, S. S., Stenberg, P. E., McCleskey, E. W. and Stork, P. J. (2000). Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap 1. Mol Cell Biol 20, 8069–83.CrossRefPubMedGoogle Scholar
  134. Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., Kim, Y. B., Elmquist, J. K., Tartaglia, L. A., Kahn, B. B. et al. (2002). PTP1B Regulates Leptin Signal Transduction In Vivo. Dev Cell 2, 489–95.CrossRefPubMedGoogle Scholar
  135. Zhang, Y., Moheban, D., Conway, B., Bhattacharyya, A. and Segal, R. (2000). Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J Neurosci 20, 5671–8.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Joshua B. Rubin
    • 1
    • 2
  • Rosalind A. Segal
    • 1
    • 2
  1. 1.Department of Pediatric Oncology Dana Farber Cancer InstituteHarvard Medical SchoolBoston
  2. 2.Department of NeurobiologyHarvard Medical SchoolBoston

Personalised recommendations