Skip to main content

The Elip Family of Stress Proteins in the Thylakoid Membranes of Pro- and Eukaryota

  • Chapter
Regulation of Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 11))

Summary

Early light-induced protein (Elip) family consists of low-molecular-mass stress proteins localized in the thylakoid membranes of pro- and eukaryota. Various physiological conditions, such as light stress, dehydrative processes or morphogenesis, have been reported to trigger transient induction of these proteins in different plant species. According to the deduced amino acid sequences, all members of Elip family are related to the Cab (chlorophyll a/b-binding) proteins of Photosystem I and II. In terms of predicted protein structure, the 27 members of the Elip family are divided into three groups: (a) three-helix Elips and related proteins, (b) two-helix Seps (stress-enhanced proteins) called also Lils (light-harvesting-like), and (c) one-helix Hlips (high light-induced proteins), Scps (small Cab-like proteins) and Ohps (one-helix proteins). Transmembrane α-helices I and III of Elip family members are very conserved and share, in addition to the potential chlorophyll-ligands, Elip consensus motifs. Recently, a binding of chlorophyll was experimentally confirmed for the pea Elip, which might imply that also other proteins of this family bind pigments. Despite binding of chlorophyll non-light-harvesting functions have been proposed for Elip family members. It is believed that these proteins fulfill a protective role within the thylakoids under stress conditions either by transient binding of free chlorophyll molecules and preventing the formation of free radicals and/or by acting as sinks for excitation energy. This chapter provides an overview of Elip family members, shows their similarities and differences with Cab proteins and discusses their possible function(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamska I (1997) Elips-light-induced stress proteins. Physiol Plant 100: 794–805

    Article  CAS  Google Scholar 

  • Adamska I and Kloppstech K (1991) Evidence for an association of the early light-inducible protein (Elip) of pea with Photosystem II. Plant Mol Biol 16: 209–223

    Article  CAS  PubMed  Google Scholar 

  • Adamska I and Kloppstech K (1994a) Low temperature increases the abundance of early light-inducible transcript under light stress conditions. J Biol Chem 269: 30221–30226

    CAS  PubMed  Google Scholar 

  • Adamska I and Kloppstech K (1994b) The role of early light-induced proteins (Elips) during light stress. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 205–219. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Adamska I, Scheel B and Kloppstech K (1991) Circadian oscillations of nuclear-encoded chloroplast proteins in pea (Pisum sativum). Plant Mol Biol 14: 1055–1065

    Google Scholar 

  • Adamska I, Kloppstech K and Ohad I (1992a) UV light stress induces the synthesis of the early light-inducible protein and prevents its degradation. J Biol Chem 267: 24732–24737

    CAS  PubMed  Google Scholar 

  • Adamska I, Ohad I and Kloppstech K (1992b) Synthesis of the early light-inducible protein is controlled by blue light and related to light stress. Proc Natl Acad Sci USA 89: 2610–2613

    CAS  PubMed  Google Scholar 

  • Adamska I, Kloppstech K and Ohad I (1993) Early light-inducible protein in pea is stable during light stress but is degraded during recovery at low light intensity. J Biol Chem 268: 5438–5444

    CAS  PubMed  Google Scholar 

  • Adamska I, Roobol-Bóza M, Lindahl M and Andersson B (1999) Isolation of pigment-binding earlylight-inducible proteins from pea. Eur J Biochem 260: 453–460

    Article  CAS  PubMed  Google Scholar 

  • Aro EM, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    CAS  PubMed  Google Scholar 

  • Bartels D, Hanke C, Schneider K, Michel D and Salamini F (1992) A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J 11: 2771–2778

    CAS  PubMed  Google Scholar 

  • Bassi R, Sandona D and Croce R (1997) Novel aspects of chlorophyll a/b-binding proteins. Physiol Plant 100: 769–779

    Article  CAS  Google Scholar 

  • Beator J and Kloppstech K (1993) The circadian oscillator coordinates the synthesis of apoproteins and their pigments during chloroplast development. Plant Physiol 103: 191–196

    CAS  PubMed  Google Scholar 

  • Beator J, Pötter E and Kloppstech K (1992) The effect of heat shock on morphogenesis in barley. Plant Physiol 100: 1780–1786

    CAS  Google Scholar 

  • Brahamsha B and Haselkorn R (1991) Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 173: 2442–2450

    CAS  PubMed  Google Scholar 

  • Braun P, Banet G, Tal T, Malkin S and Zamir A (1996) Possible role of Cbr, an algal early light-induced protein, in nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol 110: 1405–1411

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1992) The number of symbioticorigins of organelles. Bio Systems 28: 91–106

    CAS  PubMed  Google Scholar 

  • Cline K, Fulsom DR and Viitanen PV (1989) An imported thylakoid protein accumulates in the stroma when insertion into thylakoids is inhibited. J Biol Chem 264: 14225–14232

    CAS  PubMed  Google Scholar 

  • Coleman WJ and Youvan DC (1990) Spectroscopic analysis of genetically modified photosynthetic reaction centers. Annu Rev Biophys Chem 19: 333–367

    Article  Google Scholar 

  • Croce R, Weiss S and Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274: 29613–29623

    CAS  PubMed  Google Scholar 

  • Cronshagen U and Herzfeld F (1990) Distribution of early light inducible proteins in the thylakoids of developing pea chloroplasts. Eur J Biochem 193: 361–366

    Article  CAS  Google Scholar 

  • Demmig-Adams B and Adams III WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM and Adams III WW (1996) In vivo function of carotenoids in higher plants. FASEB J 10: 403–412

    CAS  PubMed  Google Scholar 

  • Dolganov NA, Bhaya D and Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92: 636–640

    CAS  PubMed  Google Scholar 

  • Douglas SE and Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244

    Article  CAS  PubMed  Google Scholar 

  • Eskling M, Arvidsson PO and Åkerlund HE (1997) The xanthophyllcycle: Its regulation and components. Physiol Plantarum 100: 806–816

    CAS  Google Scholar 

  • Funk C and Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higherplants. Biochemistry 38: 9397–9404

    Article  CAS  PubMed  Google Scholar 

  • Funk C, Schröder W, Napiwotzki A, Tjus S, Renger G and Andersson B (1995) PSII-S protein of higher plants: A new type of pigment-binding protein. Biochemistry 34: 11133–11141

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264: 1–4

    CAS  PubMed  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319–360. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  CAS  PubMed  Google Scholar 

  • Green BR and Kühlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynth Res 44: 139–148

    Article  CAS  Google Scholar 

  • Green BR and Pichersky E (1994) Hypothesis for the evolution of three-helix chlorophyll a/b and chlorophyll a/c light-harvesting antenna proteinsfrom two-helix and four-helix ancestors. Photosynth Res 39: 149–162

    Article  CAS  Google Scholar 

  • Green BR, Pichersky E and Kloppstech K (1991) Chlorophyll a/b-binding proteins: An extended family. Trends Biochem Sci 16: 181–186

    Article  CAS  PubMed  Google Scholar 

  • Grimm B and Kloppstech K (1987) The early light-inducible proteins of barley: Characterization of two families of 2-h-specific nuclear-coded chloroplast proteins. Eur J Biochem 167: 493–499

    Article  CAS  PubMed  Google Scholar 

  • Grimm B, Kruse E and Kloppstech K (1989) Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll-binding proteins. Plant Mol Biol 13: 583–593

    Article  CAS  PubMed  Google Scholar 

  • Grossman AR, Schäfer MR, Chiang GG and Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725–749

    CAS  PubMed  Google Scholar 

  • Heddad M and Adamska I (1998) Non-structural putative chlorophyll-binding proteins of Ambidopsis thaliana. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 389–392. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Heddad M and Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci USA 97: 3741–3746

    Article  CAS  PubMed  Google Scholar 

  • Hoober JK, Marks DB, Keller BJ and Margulies MM (1984) Regulation of accumulation of the major thylakoid polypeptides in Chlamydomonas reinhardtii. J Cell Biol 95: 552–558

    Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  CAS  PubMed  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19

    CAS  PubMed  Google Scholar 

  • Jansson S (1999) A guide to the identification of the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • Kessler U, Maid U and Zetsche K (1992) An equivalent to bacterial omp’ R genes is encoded on the plastid genome of red algae. Plant Mol Biol 18: 777–780

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Sandusky P, Bowlby NR, Aebersold R, Green BR, Vlahakis S, Yokum CF and Pichersky E (1992) Characterization of a spinach psbS cDNA encoding the 22 kDa protein of Photosystem II. FEBS Lett 314: 67–71

    CAS  PubMed  Google Scholar 

  • Kim SJ, Jansson S, Hoffman NE, Robinson C and Mant A (1999) Distinct ‘assisted’ and’ spontaneous’ mechanisms for the insertion of polytopic chlorophyll-binding proteins into the thylakoid membranes. J Biol Chem. 274: 4715–4721

    CAS  PubMed  Google Scholar 

  • Kloppstech K (1985) Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs. Planta 165: 502–506

    Article  CAS  Google Scholar 

  • Kloppstech K, Otto B and Sierralta W (1991) Cyclic temperature treatments of dark-grown pea seedlings induce a rise in specific transcript levels of light-regulated genesrelated to photomorphogenesis. Mol Gen Gent 225: 468–473

    CAS  Google Scholar 

  • Kolanus W, Scharnhorst C, Kühne U and Herzfeld F (1987) The structure and light-dependent transient expression of a nuclear-encoded chloroplast protein gene from pea (Pisum sativum L.). Mol Gen Genet 209: 234–239

    Article  CAS  Google Scholar 

  • Klösgen RB (1997) Protein transport into and across the thylakoid membrane. J Photochem Photobiol 38: 1–9

    Google Scholar 

  • Król M, Spangfort MD, Huner NPA, Öquist G, Gustafsson P and Jansson S (1995) Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-lessbarley mutant. Plant Physiol 107: 873–883

    PubMed  Google Scholar 

  • Król M, Maxwell DP and Huner NPA (1997) Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid-binding protein (Cbr). Plant Cell Physiol 38: 213–216

    Google Scholar 

  • Król M, Ivanov AG, Jansson, S, Kloppstech K and Huner NP (1999) Greening under high light and cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the chlorina f2 mutant. Plant Physiol 120: 193–204

    PubMed  Google Scholar 

  • Kruse E and Kloppstech K (1992) Integration of early light-inducible proteins into isolated thylakoid membranes. Eur J Biochem 208: 195–202

    Article  CAS  PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD and Green BR (1996) Independent evolution of the prochlorophyte and greenplant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93: 15244–15248

    PubMed  Google Scholar 

  • Lers A, Levy H and Zamir A (1991) Co-regulation of a gene homologous to early light-induced genes in higher plants and β-carotene biosynthesis in the alga Dunaliella bardawil. J Biol Chem 266: 13698–13705

    CAS  PubMed  Google Scholar 

  • Levy H, Gokhman, I and Zamir A (1992) Regulation and light-harvesting complex II association of a Dunaliella protein homologous to early light-induced proteins in higher plants. J Biol Chem 267: 18831–18836

    CAS  PubMed  Google Scholar 

  • Levy H, Tal T, Shaish A and Zamir A (1993) Cbr, an algal homolog of plant early light-induced proteins is a putative zeaxanthin binding protein. J Biol Chem 268: 20892–20896

    CAS  PubMed  Google Scholar 

  • Li X, Henry R, Yuan J, Cline K and Hoffman NE (1995) A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci USA 92: 3789–3793

    CAS  PubMed  Google Scholar 

  • Lindahl M, Funk C, Webster J, Bingsmark S, Adamska I and Andersson B (1997) Expression of Elips and PSII-S protein in spinach during acclimative reduction of the Photosystem II antenna in response to increased light intensities. Photosynth Res 54: 227–236

    Article  CAS  Google Scholar 

  • Löffelhardt W and Bohnert H (1994) Molecular biology of cyanelle. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 65–89. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Matthijs HCP, van der Staay GWM and Mur LR (1994) Prochlorophytes: the ‘other’ cyanobacteria? In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 49–64. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Meyer G and Kloppstech K (1984) A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur J Biochem 138: 201–207

    CAS  PubMed  Google Scholar 

  • Montané MH, Dreyer S and Kloppstech K (1996) Posttranslational stabilization of Elips and regulation of other light stress genes under prolonged light-and cold-stress in barley. In: Grilo S and Leone A (eds) Physical Stresses in Plants: Genes and their Products for Tolerance, pp 210–222. Springer, Berlin

    Google Scholar 

  • Montané MH, Dreyer S, Triantaphylides C and Kloppstech K (1997) Early light-inducible protein during long-term acclimation of barley to photooxidative stress caused by light and cold: High level of accumulation by posttranscriptional regulation. Planta 202: 293–302

    Google Scholar 

  • Montané MH, Petzold B and Kloppstech K (1999) Formation of early light-inducible protein complexes and status of xanthophyll levels under high light and cold stress in barley (Hordeum vulgare L.). Planta 208: 519–527

    Google Scholar 

  • Moscovici-Kadouri S and Chamovitz DA (1997) Characterization of a cDNA encoding the early light-inducible protein (Elip) from Arabidopsis. Plant Physiol 115: 1287–1290

    Google Scholar 

  • Nagy F, Kay SA and Chua NH (1988) A circadian clock regulates transcription of the wheat cab-1 gene. Genes Devel 2: 376–382

    CAS  Google Scholar 

  • Otto B, Ohad I and Kloppstech K (1992) Temperature treatments of dark-grown pea seedlings cause an accelerated greening in the light at different levels of gene expression. Plant Mol Biol 18: 887–896

    Article  CAS  Google Scholar 

  • Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupuis JM and Casse-Delbart F (1996) Identification and expression of water stress-and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol Biol 31: 819–829

    Article  CAS  PubMed  Google Scholar 

  • Palenik B and Haselkorn R (1992) Multiple evolutionary origins of Prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355: 265–267

    Article  CAS  PubMed  Google Scholar 

  • Paulsen H (1995) Chlorophyll a/b-binding proteins. Photochem Photobiol 62: 367–382

    CAS  Google Scholar 

  • Paulsen H (1997) Pigment ligation to proteins of the photosynthetic apparatus in higher plants. Physiol Plant 100: 760–768

    Article  CAS  Google Scholar 

  • Pfündel E and Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42: 89–109

    Article  Google Scholar 

  • Post AF and Bullerjahn GS (1994) The photosynthetic machinery in Prochlorophytes: structural properties and ecological significance. FEMS Microbiol Rev 13: 393–413

    CAS  Google Scholar 

  • Pötter E and Kloppstech K (1993) Effects of light stress on the expression of early light-inducible proteins in barley. Eur J Biochem 214: 779–786

    PubMed  Google Scholar 

  • Prasil O, Adir N and Chad I (1992) Dynamics of Photosystem II: Mechanism of photoinhibition and recovery process. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology Topics Photosynthesis, Vol 11, pp 295–348. Elsevier, Amsterdam

    Google Scholar 

  • Raghavan V and Kamalay JC (1993) Expression of two cloned mRNA sequences during development and germination of spores of the sensitive fern, Onoclea sensibilis L. Planta 189: 1–9

    Article  CAS  PubMed  Google Scholar 

  • Reith ME and Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333–335

    CAS  Google Scholar 

  • Robinson C and Klösgen RB (1994) Targeting of proteins into and across the thylakoid membrane-a multitude of mechanisms. Plant Mol Biol 26: 15–24

    Article  CAS  PubMed  Google Scholar 

  • Robinson C, Hynds PJ, Robinson D and Mant A (1998) Multiple pathways for the targeting of thylakoid proteins in chloroplasts. Plant Mol Biol 38: 209–221

    CAS  PubMed  Google Scholar 

  • Sandonà D, Croce R, Pagano A, Crimi M and Bassi R (1998) Higher plants light harvesting proteins. Structure abd function by mutation analysis of either proteins or chromophore moieties. Biochim Biophys Acta 1365: 207–214

    PubMed  Google Scholar 

  • Scharnhorst C, Heinze H, Meyer G, Kolanus W, Bartsch K, Heinrichs S, Gudschun T, Möller M and Herzfeld F (1985) Molecular cloning of a pea mRNA encoding an early light induced, nuclear coded chloroplast protein. Plant Mol Biol 4: 241–245

    CAS  Google Scholar 

  • Shimosaka E, Sasanuma T and Handa H (1999) A wheat cold-regulated cDNA encoding an early light-inducible protein (Elip): Its structure, expression and chromosomal localization. Plant Cell Physiol 40: 319–325

    CAS  PubMed  Google Scholar 

  • Straus NA (1994) Iron deprivation: physiology and gene regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 731–750. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sugiura M (1995) The chloroplast genome. Essays Biochem 30: 49–57

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acid Res 22: 4673–4680

    CAS  PubMed  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162

    Article  CAS  PubMed  Google Scholar 

  • Von Wettstein D, Gough S and Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039–1057

    Google Scholar 

  • Wedel N, Klein R, Ljungberg U, Andersson B and Herrmann RG (1992) The single copy gene psbS codes for a phylogenetically intriguing 22 kDa polypeptide of Photosystem II. FEBS Lett 314: 61–66

    CAS  PubMed  Google Scholar 

  • Wolfe RG, Cunningham FX, Durnford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568

    Article  CAS  Google Scholar 

  • Yamagata H and Bowler C (1996) Molecular cloning and characterization of a cDNA encoding early light-inducible protein from soybean (Glycine max L.). Biosci Biotechnol Biochem 61, 2143–2144

    Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51: 639–648

    CAS  Google Scholar 

  • Yamamoto HY and Bassi R (1996) Carotenoids: Localization and Functions. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 539–563. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zeevaart JAD and Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol 39: 439–473

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Adamska, I. (2001). The Elip Family of Stress Proteins in the Thylakoid Membranes of Pro- and Eukaryota. In: Aro, EM., Andersson, B. (eds) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, vol 11. Springer, Dordrecht. https://doi.org/10.1007/0-306-48148-0_28

Download citation

  • DOI: https://doi.org/10.1007/0-306-48148-0_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6332-3

  • Online ISBN: 978-0-306-48148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics