Skip to main content

Systematic Truncation of a Distributed Universal Even-Tempered Basis Set of Gaussian Functions: an Application to the Ground State of the BF Molecule

  • Chapter
Quantum Systems in Chemistry and Physics Volume 2

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 2/3))

  • 287 Accesses

Abstract

Systematic sequences of distributed universal even-tempered basis sets of Gaussian functions have been shown to support an accuracy approaching the sub-μHartree level for the total Hartree-Fock energies for diatomic molecules containing first row atoms. They have also been shown to support high precision correlation treatments. Furthermore, the use of a similar approach for systems containing heavy atoms and for polyatomic molecules has been demonstrated. In this paper, systematic truncation of basis sets developed in this fashion is explored. An application to the Hartree-Fock ground state of the BF molecule at its equilibrium geometry is described. The parent distributed universal basis set, which contains a total of 623 primitive Gaussian functions, is truncated by systematically removing those basis functions for which the magnitude of the elements of the orbital expansion coefficient vector are less than some small τ for all occupied orbitals. The effects of truncation on the description of electron correlation effects using second order many-body perturbation theory is also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Wilson, in Methods in Computational Molecular Physics, edited by G.H.F. Diercksen and S. Wilson, NATO ASI Series C, Vol. 113, Reidel, Dordrecht (1983).

    Google Scholar 

  2. S. Huzinaga, Comput. Phys. Rept. 2, 279 (1985).

    CAS  Google Scholar 

  3. E.R. Davidson and D. Feller, Chem. Rev. 86, 681 (1986); Rev. Comput. Chem. 1, 1 (1989).

    Article  CAS  Google Scholar 

  4. S. Wilson, Adv. Chem. Phys. 67, 439 (1987).

    CAS  Google Scholar 

  5. S. Wilson, in Problem Solving in Computational Molecular Science: Molecules in Different Environments, edited by S. Wilson and G.H.F. Diercksen, NATO ASI, Bad Windsheim, August 1996, Kluwer, Dordrecht (1997).

    Google Scholar 

  6. L. Laaksonen, P. Pyykkö and D. Sundholm, Intern. J. Quantum Chem. 23, 309 (1993); ibid. 23, 319 (1993); Comput. Phys. Rept. 4 313 (1986).

    Google Scholar 

  7. P. Pyykkö, in Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules, edited by M. Defranceschi and J. Delhalle, NATO ASI Series C271, p. 161 (1989).

    Google Scholar 

  8. J. Kobus, Chem. Phys. Lett. 202, 7 (1993); Comput. Phys. Commun. 78, 247 (1994).

    Article  CAS  Google Scholar 

  9. J. Kobus, D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 27, 2867 (1994); ibid. 27, 5139 (1994); Molec. Phys. 86 1315 (1995).

    CAS  Google Scholar 

  10. J. Kobus, L. Laaksonen and D. Sundholm, Comput. Phys. Commun. 98, 346 (1996).

    CAS  Google Scholar 

  11. D. Heinemann, B. Fricke and D. Kolb, Phys. Rev. A 38, 4994 (1988).

    Article  CAS  Google Scholar 

  12. D. Heinemann, A. Rosen and B. Fricke, Physica Scripta 42, 692 (1990).

    CAS  Google Scholar 

  13. S. Hackel, D. Heinemann, D. Kolb and B. Fricke, Chem. Phys. Lett. 206, 91 (1993).

    Article  CAS  Google Scholar 

  14. L. Yang, D. Heinemann and D. Kolb, Phys. Rev. A 48, 2700 (1993).

    CAS  Google Scholar 

  15. D. Moncrieff and S. Wilson, Chem. Phys. Lett. 209, 423 (1993).

    Article  CAS  Google Scholar 

  16. D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 26 1605 (1993).

    Article  CAS  Google Scholar 

  17. D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 27 1 (1994).

    Article  CAS  Google Scholar 

  18. D. Moncrieff, J. Kobus and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 28 4555 (1995).

    CAS  Google Scholar 

  19. D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 28, 4007 (1995).

    CAS  Google Scholar 

  20. D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 29, 6009 (1996).

    CAS  Google Scholar 

  21. D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 29, 2425 (1996).

    CAS  Google Scholar 

  22. D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 31, 3819 (1998).

    Article  CAS  Google Scholar 

  23. S. Wilson and D. Moncrieff, Adv. Quantum Chem. 28, 48 (1997).

    Google Scholar 

  24. J. Kobus, D. Moncrieff and S. Wilson, Molec. Phys. 86, 1315 (1995).

    CAS  Google Scholar 

  25. M.W. Schmidt and K. Ruedenberg, J. Chem. Phys. 71, 3951 (1979).

    CAS  Google Scholar 

  26. D. Moncrieff and S. Wilson Molec. Phys. 85, 103 (1995).

    CAS  Google Scholar 

  27. T.H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  28. R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96, 6796 (1992).

    Article  CAS  Google Scholar 

  29. R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 98, 1358 (1993).

    Google Scholar 

  30. R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 100, 2975 (1994).

    Google Scholar 

  31. R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 103, 4572 (1995).

    Google Scholar 

  32. S. Wilson and D. Moncrieff, J. Chem. Phys. 105, 3336 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moncrieff, D., Wilson, S. (2000). Systematic Truncation of a Distributed Universal Even-Tempered Basis Set of Gaussian Functions: an Application to the Ground State of the BF Molecule. In: Hernández-Laguna, A., Maruani, J., McWeeny, R., Wilson, S. (eds) Quantum Systems in Chemistry and Physics Volume 2. Progress in Theoretical Chemistry and Physics, vol 2/3. Springer, Dordrecht. https://doi.org/10.1007/0-306-48145-6_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-48145-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5970-8

  • Online ISBN: 978-0-306-48145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics