Skip to main content

CMOS Device Technology Trends for Power-Constrained Applications

  • Chapter
Power Aware Design Methodologies

Abstract

CMOS device technology has scaled rapidly for nearly three decades and has come to dominate the electronics world. Because of this scaling, CMOS circuits have become extremely dense, and power dissipation has become a major design consideration. Although industry projections call for at least another 10 years of progress, this progress will be difficult and is likely to be strongly constrained by power dissipation.

This chapter describes the present state of CMOS technology and the scaling principles that drive its progress. The physical effects that hinder this scaling are also examined in order to show how these effects interact with the practical constraints imposed by power dissipation. It is shown that scaling does not have a single end. Rather, each application has a different optimal end point that depends on its power dissipation requirements. A brief overview of some of the novel device options for extending the limits of scaling is also provided.

IBM T. J. Watson Research Center

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Lilienfeld. Method and apparatus for controlling electric currents. U.S. Patent 1745175, 1930.

    Google Scholar 

  2. D. Kahng and M. M. Atalla, “Silicon-silicon dioxide field induced surface devices,” Presented at IRE Solid-State Device Res. Conf., Pittsburgh, PA, June 1960.

    Google Scholar 

  3. P. K. Bondy, “Moore’s law governs the silicon Revolution,” Proc. IEEE, 86, pp. 78–81, Jan. 1998.

    Google Scholar 

  4. Semiconductor Industry Association (SIA). International Technology Roadmap for Semiconductors, 2001 Edition. Austin, Texas: SEMATECH, USA., 2706 Montopolis Drive, Austin, Texas 78741, USA (http://public.itrs.net), 2001.

    Google Scholar 

  5. Y. Naveh and K. K. Likharev, “Modeling of 10-nm-scale ballistic MOSFETs,” IEEE Elec. Dev. Lett., 21, pp. 242–244, 2000.

    Google Scholar 

  6. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur and H.-S. P. Wong, “Device scaling Limits of Si MOSFETs and their application dependencies,” in Proc. IEEE, 89, pp. 259–288, 2001.

    Article  Google Scholar 

  7. Y. Taur, D. Buchanan, W. Chen, D. Frank, K. Ismail, S.-H. Lo, G. Sai-Halasz, R. Viswanathan, H.-J. C. Wann, S. Wind and H.-S. Wong, “CMOS scaling into the nanometer regime,” in Proc. IEEE, 85, pp. 486–504, April 1997.

    Google Scholar 

  8. H.-S. P. Wong, D. J. Frank, P. M. Solomon, H.-J. Wann and J. Welser, “Nanoscale CMOS,” in Proc. IEEE, 87, pp. 537–570, 1999.

    Article  Google Scholar 

  9. Sai-Halasz, “Performance trends in high-end processors,” in Proc. IEEE, 83, pp. 20, Jan. 1995.

    Article  Google Scholar 

  10. J. W. Sleight, P. R. Varekamp, N. Lustig, J. Adkisson, A. Allen, O. Bula, X, Chen, T. Chou, W. Chu, J. Fitzsimmons, A. Gabor, S. Gates, P. Jamison, M. Khare, L. Lai, J. Lee, S. Narasimha, J. Ellis-Monaghan, K. Peterson, S. Rauch, S. Shukla, P. Smeys, T.-C. Su, J. Quinlan, A. Vayshenker, B. Ward, S. Womack, E. Barth, G. Blery, C. Davis, R. Ferguson, R. Goldblatt, E. Leobandung, J. Welser, I. Yang and P. Agnello, “A high performance 0,13 μm SOI CMOS technology with a 70 nm silicon film and with a second generation low-k Cu BEOL,” In IEDM Tech. Dig., pp. 245–248, 2001.

    Google Scholar 

  11. Auberton-Hervé, “SOI: materials to systems,” In 1996 IEDM Tech. Dig., pp. 3, 1996.

    Google Scholar 

  12. R. Puri and C. T. Chuang, “SOI digital circuits: design issues,” In Thirteenth Int. Conf. VLSI Design, 2000., pp. 474–479, 2000.

    Google Scholar 

  13. Stathis, J.H, “Physical and predictive models of ultrathin oxide reliability in CMOS devices and circuits,” IEEE Trans. Device and Materials Reliability, 1(1), Pp.(s): 43–59, March 2001.

    Google Scholar 

  14. R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous and A.R. LeBlanc, “Design of Ion-implanted MOSFETs with very small physical dimensions,” Jour. Solid St. Circuits, SC-9, pp. 256–268, 1974.

    Google Scholar 

  15. Davari, R. H. Dennard and G. G. Shahidi, “CMOS scaling, the next ten years,” In Proc. IEEE, 89, pp. 595–606, 1995.

    Google Scholar 

  16. D. J. Frank, Y. Taur and H.-S. P. Wong, “Generalized scale length for two-dimensional effects in MOSFET’s,” IEEE Elec. Dev. Lett., 19, pp. 385–387, 1998.

    Google Scholar 

  17. J. Frank, “Power-constrained CMOS scaling limits,” IBM J. Res. Devel., 46(2/3), March/May 2002.

    Google Scholar 

  18. P. M. Solomon and I. J. Djomehri, “Overscaling, design for the future,” IBM Research Report, RC22379, Jan. 2002.

    Google Scholar 

  19. Asenov, S. Kaya and J. H. Davies, “Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variations,” IEEE Trans. Electron Devices, 49(1), pp. 112–119, Jan. 2002.

    Article  Google Scholar 

  20. W. Athas, N. Tzartzanis, W. Mao, L. Peterson, R. Lal, K. Chong, Joong-Seok Moon, L. Svensson and M. Bolotski, “The design and implementation of a low-power clock-powered microprocessor,” IEEE J. Solid-State Circuits, 35(11), pp. 1561–1570, Nov. 2000.

    Google Scholar 

  21. D. J. Frank, “Comparison of high speed voltage-scaled conventional and adiabatic circuits,” In 1996 Int. Symp. Low Power Electronics and Design (ISLPED), Digest of Tech. Papers, pp. 377, 1996.

    Google Scholar 

  22. S. M. Sze. Physics of Semiconductor Devices, 2nd Edition. John Wiley & Sons, 1981.

    Google Scholar 

  23. S.-H. Lo, D.A. Buchanan, Y. Taur and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Electron Dev. Lett., 18, pp. 209, 1997.

    Article  Google Scholar 

  24. J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vacuum Science and Technology B, 18(3), pp. 1785–1791, 2000.

    Google Scholar 

  25. M. Fischetti, D. Neumayer and E. Cartier, “Effective electron mobility in Si inversion layers in MOS systems with a high-k insulator: the role of remote phonon scattering,” J. Appl. Phys., 90(9), pp. 4587, 2001.

    Article  Google Scholar 

  26. D. Barlage, R. Arghavani, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, A. Murthy, B. Roberds, P. Stokley and R. Chau, “High-frequency response of 100nm integrated CMOS transistors with high-k gate dielectrics,” In IEDM Tech. Dig., pp. 231–234, 2001.

    Google Scholar 

  27. H.-S. P. Wong, “Beyond the Conventional Transistor,” IBM J. Res. Devel., 46(2/3), March/May 2002.

    Google Scholar 

  28. Y. Taur, C. H. Wann and D. J. Frank, “25 nm CMOS Design Considerations,” In IEDM Tech. Dig., pp. 789–792, 1998.

    Google Scholar 

  29. H. Kawaura, T. Sakamoto and T. Baba, “Direct source-drain tunneling current in subthreshold region of sub-10-gate EJ-MOSFETs,” In 1999 Si Nanoelectronics Workshop Abstracts, pp. 26–27, 1999.

    Google Scholar 

  30. Asenov and S. Saini, “Random dopant fluctuation resistant decanano MOSFET architectures,” In 1999 Si Nanoelectronics Workshop Abstracts, pp. 84–85, June 1999.

    Google Scholar 

  31. D. J. Frank, Y. Taur, M. leong and H.-S. P. Wong, “Monte Carlo modeling of threshold variation due to dopant fluctuations,”In Symp. VLSI Technol., pp. 169–170, 1999.

    Google Scholar 

  32. H.-S. P. Wong, Y. Taur and D. Frank, “discrete random dopant distribution effects in nanometer-scale MOSFETs,” Microelectronic Reliability, 38, pp. 1447–1456, 1998.

    Google Scholar 

  33. H.-S. P. Wong and Y. Taur, “Three-Dimensional ‘atomistic’ simulation of discrete microscopic random dopant distributions effects in sub-0,1 μm MOSFETs,” In IEDM Tech. Dig., pp. 705–708, 1993.

    Google Scholar 

  34. E. Buturla, J. Johnson, S. Furkay and P. Cottrell, “A new 3-D device simulation formulation. In NASCODE VI: Sixth International Conf. on the Numerical Analysis of Semiconductor Devices and Integrated Circuits,” Boole Press, Dublin, pp. 291, 1989.

    Google Scholar 

  35. D. J. Frank and H.-S. P. Wong, “Simulation of stochastic doping effects in Si MOSFETs,” In Proc. Int. Workshop on Computational Electronics, pp. 2–3, May 2000.

    Google Scholar 

  36. D. J. Frank, S. E. Laux and M. V. Fischetti, “Monte Carlo simulation of a 30 nm dualgate MOSFET: How far can Si go?,” In IEDM Tech. Dig., pp. 553, 1992.

    Google Scholar 

  37. R. M. Swanson and J. D. Meindl, “Ion-implanted complementary MOS transistors in low-voltage circuits,” IEEE J. Solid-State Circuits, SC-7, pp. 146–153, April 1972.

    Google Scholar 

  38. J. R. Brews, “Physics of the MOS transistor,” In Applied Solid State Science. New York: Academic, pp. 1–120, 1981.

    Google Scholar 

  39. Z. Chen, J. Burr, J. Shott and J. D. Plummer, “Optimization of quarter micron MOSFETs for low voltage/low power applications,” In IEDM Tech. Dig., pp. 63–65, 1995.

    Google Scholar 

  40. D. J. Frank, P. Solomon, S. Reynolds and J. Shin, “Supply and threshold voltage optimization for low power design,” In Proc. 1997 Int. Symp. Low Power Electronics and Design, pp. 317–322, 1997.

    Google Scholar 

  41. D. Liu and C. Svensson, “Trading speed for low power by choice of supply and treshold voltages,” IEEE J. Solid-State Circ., 28, pp. 10, 1993.

    Google Scholar 

  42. V. R. von Kaenel, M. D. Pardoen, E. Dijkstra and E. A. Vittoz, “Automatic adjustment of threshold and supply voltages for minimum power consumption in CMOS digital circuits,” In IEEE Symp. Low Power Electronics, Digest of Technical Papers, pp. 78–79, 1994.

    Google Scholar 

  43. S. Narendra, M. Haycock, R. Mooney, V. Govindarajulu, V. Erraguntala, H. Wilson, S. Vangal, A. Pangal, E. Seligman, R. Nair, N. Borkar, J. Hofsheier, S. Menon, B. Bloechel, G. Dermer, S. Borkar and V. De, “1.1 V 1 GHz communications router with on-chip body bias in 150nm CMOS,” In Proc. 2002 ISSCC, paper 16.4, 2002.

    Google Scholar 

  44. S. Narendra, D. Antoniadis and V. De, “Impact of using adaptive body bias to compensate die-to-die Vt variation on within-die Vt variation,” In Int. Symp. Low Power Electronics and Design, pp. 229–232, 1999.

    Google Scholar 

  45. S. V. Kosonocky, M. Immediato, P. Cottrell, T. Hook, R. Mann, J. Brown, “Enhanced multi-threshold (MTCMOS) circuits using variable well bias,” In Int. Symp. Low Power Electronics and Design. pp. 165–169, 2001.

    Google Scholar 

  46. M. Norishima, H. Yoshinari, H. Hayashida, T. Eguchi, K. Kasai, H. Shinagawa, T. Matsunaga, T. Matsuno, H. Shibata, Y. Toyoshima, K. Hashimoto, “High-performance 0.5 μ m CMOS technology for logic LSIs with embedded large capacity SRAMs,” In IEDM Tech. Dig., pp. 489–492, 1991.

    Google Scholar 

  47. K. Rim, private communication.

    Google Scholar 

  48. K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill and H.-S. P. Wong, “Strained Si NMOSFETs for high performance CMOS technology,” In Symp. VLSI Tech., pp. 59, 2001.

    Google Scholar 

  49. J.-P. Colinge, “Thin-film SOI technology: the solution to many submicron CMOS problems,” In IEDM Tech Dig., pp. 817–820, 1989.

    Google Scholar 

  50. L. T. Su, H. Hu, J. B. Jacobs, M. Sherony, A. Wei and D. A. Antoniadis, “Tradeoffs of current drive vs. short-channel effect in deep-submicrometer bulk and SOI MOSFETs,” In IEDM Tech. Dig., pp. 649, Dec. 1994.

    Google Scholar 

  51. Warm, F. Assaderaghi, L. Shi, K. Chan, S. Cohen, H. Hovel, K. Jenkins, Y. Lee, D. Sadana, R. Viswanathan, S. Wind and Y. Taur, “High-performance 0.07-μm CMOS with 9.5-ps gate delay and 150GHz f t,” IEEE Electron Dev. Lett., 18, pp. 625, 1997.

    Google Scholar 

  52. H.-S. P. Wong, D. J. Frank and P. M. Solomon, “Device Design Considerations for Double-gate, Ground-plane, and Single-gated Ultra-thin SOI MOSFETs at the 25 nm Channel Length Generation,” In IEDM Tech. Dig., pp. 407–410, 1998.

    Google Scholar 

  53. R. Chau, J. Kavalieros, B. Doyle, A. Murthy, N. Paulsen, D. Lionberger, D. Barlage, R. Arghavani, B. Roberds and M. Doczy, “A 50nm depleted-substrate CMOS transistor (DST),” In IEDM Tech, Dig., pp. 621–624, 2001.

    Google Scholar 

  54. Yang, C. Vieri, A. Chandrakasan and D. Antoniadis, “Back-gated CMOS on SOIAS for dynamic threshold voltage control,” IEEE Trans. Elec. Dev., 44, pp. 822, 1997.

    Google Scholar 

  55. Fiegna, H. Iwai, T. Wada, T. Saito, E. Sangiorgi and B. Ricco, “A new scaling methodology for the 0.1–0.025 μm MOSFET,” In Symp. VLSI Technology, pp. 33, 1992.

    Google Scholar 

  56. T. Sekigawa and Y. Hayashi, “Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate,” Solid State Electronics, 27, pp. 827, 1984.

    Article  Google Scholar 

  57. G. Pikus and K. K. Likharev, “Nanoscale field-effect transistors: An ultimate size analysis,” Appl. Phys. Lett., 71(25), pp. 3661–3663, Dec. 1997.

    Article  Google Scholar 

  58. T. Tanaka, K. Suzuki, H. Horie and T. Sugii, “Ultrafast low-power operation of p+-n+ double-gate SOI MOSFETs,” In Symp. VLSI Technology, pp. 11, June 1994.

    Google Scholar 

  59. H.-S. Wong, K. Chan and Y. Taur, “Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel,” In IEDM Tech. Dig., pp. 427–430, 1997.

    Google Scholar 

  60. J. M. Hergenrother, G. D. Wilk, T. Nigam, F. P. Klemens, D. Monroe, P. J. Silverman, T. W. Sorsch, B. Busch, M. L. Green, M. R. Baker, T. Boone, M. K. Bude, N. A. Ciampa, E. J. Ferry, A. T. Fiory, S. J. Hillenius, D. C. Jacobson, R. W. Johnson, P. Kalavade, R. C. Keller, C. A. King, A. Komblit, H. W. Krautter, J. T.-C. Lee, W. M. Mansfield, J. F. Miner, M. D. Morris, S.-H. Oh, J. M. Rosamilia, B. J. Sapjeta, K. Short, K. Steiner, D. A. Muller, P. M. Voyles, J. L. Grazul, E. J. Shero, M. E. Givens, C. Pomarede, M. Mazanec and C. Werkhoven, “50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and A1203 gate dielectrics,” In IEDM Tech. Dig., pp. 51–54, Dec. 2001.

    Google Scholar 

  61. J. M. Hergenrother, D. Monroe, F. P. Klemens, A. Komblit, G. R. Weber, W. M. Mansfield, M. R. Baker, F. H. Baumann, K. J. Bolan, J. E. Bower, N. A. Ciampa, R. A. Cirelli, J. I. Colonell, D. J. Eaglesham, J. Frackoviak, H. J. Gossmann, M. L. Green, S. Hillenius, C. King, R. Kleiman, W. Y. C. Lai, J. T.-C. Lee, R.-C. Liu, H. Maynard, M. Moris, S.-H. Oh, C.-S. Pai, C. Rafferty, J. Rosamilia, T. Sorsch and H.-H. Vuong, “The Vertical Replacement-Gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length,” In IEDM Tech. Dig., pp. 75–78, Dec. 1999.

    Google Scholar 

  62. Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Boker and C. Hu, “Sub-20nm CMOS FinFET technologies,” In IEDM Tech. Dig., pp. 421, 2001.

    Google Scholar 

  63. 99 X. Huang, W.-C. Lee, C. Ku, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor and C. Hu, “Sub 50-nm FinFET: PMOS,” In IEDM Tech. Dig., pp. 67–70, Dec. 2001.

    Google Scholar 

  64. J. Kedzierski, D. M. Fried, E. J. Nowak, T. Kanarsky, J. H. Rankin, H. Hanafi, W. Natzle, D. Boyd, Y. Zhang, R. A. Roy, J. Newbury, C. Yu, Q. Yang, P. Saunders, C. P. Willets, A. Johnson, S. P. Cole, H. E. Young, N. Carpenter, D. Rakowski, B. A. Rainey, P. E. Cottrell, M. Ieong and H.-S. P. Wong, “High-performance symmetric-gate and CMOS-compatible VT asymmetric-gate FinFET devices,” In IEDM Tech. Dig., pp. 437–440, 2001.

    Google Scholar 

  65. N. Lindert, L. Chang, Y.-K. Choi, E. Anderson, W.-C. Lee, T.-J. King, J. Bokor and C. Hu, “Sub-60-nm quasi-planar FinFETs fabricated using a simplified process,” IEEE Electron Dev. Lett., 22(10), pp. 487–489, 2001.

    Article  Google Scholar 

  66. D. Rabe and W. Nebel, “Short circuit power consumption of glitches,” In Int. Symp. Low Power Electronics and Design, Dig. Tech. Papers, pp. 125–128, 1996.

    Google Scholar 

  67. J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan and V. De., “Adaptive body-bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage,” In 2002 ISSCC, paper 25.7, 2002.

    Google Scholar 

  68. K. W. Guarini, P. M. Solomon, Y. Zhang, K. K. Chan, E. C. Jones, G. M. Cohen, A. Krasnoperova, M. Ronay, O. Dokumaci, J. J. Bucchignano, C. C. Jr.,, C. Lavoie, V. Ku, D. C. Boyd, K. S. Petrarca, I. V. Babich, J. Treichler, P. M. Kozlowski, J. S. Newbury, C. P. D’Emic, R. M. Sicina and H.-S. Wong, “Triple-self-aligned, planar double-gate MOSFETs: Devices and circuits,” In IEDM Tech. Dig., pp. 425–428, 2001.

    Google Scholar 

  69. J.-H. Lee, G. Tarashi, A. Wei, T. Langdo, E. A. Fitzgerald and D. Antoniadis, “Super self-aligned double-gate (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy,” In IEDM Tech. Dig., pp. 71–74, Dec. 1999.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Frank, D.J. (2002). CMOS Device Technology Trends for Power-Constrained Applications. In: Pedram, M., Rabaey, J.M. (eds) Power Aware Design Methodologies. Springer, Boston, MA. https://doi.org/10.1007/0-306-48139-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48139-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7152-2

  • Online ISBN: 978-0-306-48139-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics