Skip to main content

Tools and Techniques for Integrated Hardware-Software Energy Optimizations

  • Chapter
  • 372 Accesses

Abstract

With the emergence of a plethora of embedded and portable applications, energy dissipation has joined throughput, area, and accuracy/precision as a major design constraint. Thus, designers must be concerned with both estimating and optimizing the energy consumption of circuits, architectures, and software. Most of the research in energy optimization and/or estimation has focused on single components of the system and has not looked across the interacting spectrum of the hardware and software. This chapter describes the design of energy estimation tools that support both software and architectural experimentation within a single framework. Furthermore, techniques that optimize the hardware-software interaction from an energy perspective are illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Brooks and M. Martonosi, “Dynamic thermal management for high-performance microprocessors,” In Proceedings of the Seventh International Symposium on High Performance Computer Architecture, January 2001.

    Google Scholar 

  2. V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing Power in High-Performance Microprocessors,” In Proceedings of the Design Automation Conference, June 1998.

    Google Scholar 

  3. M. Irwin, M. Kandemir, N. Vijaykrishnan, and A. Sivasubramaniam, “A Holistic approach to system level energy optimization,” In Proceedings of the International Workshop on Power and Timing Modeling, Optimization, and Simulation, September 2000.

    Google Scholar 

  4. D. Marculescu, R. Marculescu, and M. Pedram, “Information theoretic measures of energy consumption at register transferlevel,” In Proceedings of 1995 International Symposium on Low Power Design, pp. 81, April 1995.

    Google Scholar 

  5. J. M. Rabaey and M. Pedram, “Low power design methodologies,” Kluwer Academic Publishers, Inc., 1996.

    Google Scholar 

  6. S. Powell and P. Chau, “Estimating power dissipation of VLSI signal processing chips: the PFA technique,” In VLSI Signal Processing, IV, pp. 250, 1990.

    Google Scholar 

  7. N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-driven behavioral synthesis for low power VLSI systems,” IEEE Design and Test Magazine, pp. 70, Fall 1995.

    Google Scholar 

  8. D. Liu and C. Svensson, “Power consumption estimation in CMOS VLSI chips,” IEEE Journal of Solid State Circuits, pp. 663, June 1994.

    Google Scholar 

  9. P. Landman and J. Rabaey, “Activity-sensitive architectural power analysis,” IEEE Transaction on CAD, TCAD-15(6), pp. 571, June 1996.

    Google Scholar 

  10. H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based on clustering,” In Proceedings of the 33rd Design Automation Conference, pp. 702, June 1996.

    Google Scholar 

  11. Q. Wu, Q. Qiu, M. Pedram, and C-S. Ding, “Cycle-accurate macro-models for rt-level power analysis,” IEEE Transactions on VLSI Systems, 6(4), pp. 520, December 1998.

    Google Scholar 

  12. L. Benini, A. Bogoliolo, M. Favalli, and G. De Micheli, “Regression models for behavioral power estimates,” In Proceedings of International Workshop on Power, Timing Modeling, Optimization and Simulation, pp. 179, September 1996.

    Google Scholar 

  13. W. Ye, N. Vijaykrishnan, M. Kandemir, and M. Irwin, “The design and use of simplepower: a cycle-accurate energy estimation tool,” In Proceedings of the Design Automation Conference, June 2000.

    Google Scholar 

  14. S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kandemir, T. Li, and L. K. John, “Using complete machine simulation for software power estimation: The SoftWatt Approach,” In Proceedings of the International Symposium on High Performance Computer Architecture, Feb 2002.

    Google Scholar 

  15. D. Brooks, V. Tiwari, and M. Martonosi. Wattch, “A framework for architectural-level power analysis and optimizations,” In Proceedings of the 27th International Symposium on Computer Architecture, June 2000.

    Google Scholar 

  16. M. B. Kamble and K. Ghose, “Analytical energy dissipation models for low power caches,” In Proceedings of the International Symposium on Low Power Electronic Design, pp. 143–148, August 1997.

    Google Scholar 

  17. R. Joseph, D. Brooks, and M. Martonosi, “Runtime power measurements as a foundation for evaluating power/performance tradeoffs,” In Proceedings of the Workshop on Complexity Effectice Design, June 2001.

    Google Scholar 

  18. I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and A. Sivasubramaniam, “vEC: virtual energy counters,” In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, June 2001.

    Google Scholar 

  19. K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–40, April 1996.

    Article  Google Scholar 

  20. S. A. Herrod, “Using complete machine simulation to understand computer system bavior,” PhD thesis, Stanford University, February 1998.

    Google Scholar 

  21. Toshiba Storage Devices Division, http://www.toshiba.com/.

  22. K. Li, R. Kumpf, P. Horton, and T. E. Anderson, “Quantitative Analysis of Disk Drive Power Management in Portable Computers,” Technical Report CSD-93-779, University of California, Berkeley, 1994.

    Google Scholar 

  23. D. Duarte, N. Vijaykrishnan, M. J. Irwin, and M. Kandemir, “Formulation and validation of an energy dissipation model for the clock generation circuitry and distribution networks,” In Proceedings of the 2001 VLSI Design Conference, 2001.

    Google Scholar 

  24. S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective superscalar processors,” In Proceedings of the 24th International Symposium on Computer Architecture, 1997.

    Google Scholar 

  25. R10000 Microprocessor User’s Manual. http://www.sgi.com/processors/r10k/manual/t5.ver.2.0.book_4.html.

  26. Texas instruments device information. http://dspvillage.ti.com/docs/dspproducthome.jhtml.

  27. W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. holm, and D. M. Lavery, “The superblock: an effective technique for VLIW and superscalar compilation,” The Journal of Supercomputing, pp. 229–248, May 1993.

    Google Scholar 

  28. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective compiler support for predicated execution using the hyperblock,” In Proceedings of 25th Annual International Symposium on Microarchitecture, pp. 45–54, 1992.

    Google Scholar 

  29. Trimaran, http://www.trimaran.org.

  30. Spec JVM98 Benchmark Suite. http://www.spec.org/osg/jvm98/.

  31. T. Li, L. K. John, N. Vijaykrishnan, A. Sivasubramaniam, J. Sabarinathan, and A. Murthy, “Using complete system simulation to characterize specjvm98 benchmarks,” In Proceedings of the International Conference on Supercomputing, pp. 22–33, May 2000.

    Google Scholar 

  32. Avant/ Star-Hspice. http://www.avanticorp.com/products.

  33. F. Douglis and P. Krishnan, “Adaptive disk spin-down policies for mobile computers,” Computing Systems, 8(4):381–413, 1995.

    Google Scholar 

  34. P. E. Landman, “High-level power estimation,” In Proceedings of the International Symposium on Low Power Electronics and Design, pp. 29, August 1996.

    Google Scholar 

  35. M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and A. Sangiovanni-Vincentelli, “Efficient Power Estimation Techniques for HW/SW Systems,” In Proceedings of IEEE Volta, 1999.

    Google Scholar 

  36. J. R. Lorch, “A complete picture of the energy consumption of a portable computer,” Master’s thesis, University of California, Berkeley, December 1995.

    Google Scholar 

  37. Y.-H. Lu and G. D. Micheli, “Adaptive hard disk power management on personal computers,” In Proceedings of the IEEE Great Lakes Symposium, March 1999.

    Google Scholar 

  38. R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha, “Power analysis of embedded operating systems,” In Proceedings of the 37th Conference on Design Automation, pp. 312–315, 2000.

    Google Scholar 

  39. M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete Computer System Simulation: The SimOS Approach,” IEEE Parallel and Distributed Technology: Systems and Applications, 3(4):34–43, 1995.

    Google Scholar 

  40. T. Simunic, L. Benini, and G. D. Micheli, “Cycle-accurate simulation of energy consumption in embedded Systems,” In Proceedings of the Design Automation Conference, June 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vijaykrishnan, N., Kandemir, M., Sivasubramaniam, A., Irwin, M.J. (2002). Tools and Techniques for Integrated Hardware-Software Energy Optimizations. In: Pedram, M., Rabaey, J.M. (eds) Power Aware Design Methodologies. Springer, Boston, MA. https://doi.org/10.1007/0-306-48139-1_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48139-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7152-2

  • Online ISBN: 978-0-306-48139-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics