Advertisement

Regulation of Ammonium Assimilation in Cyanobacteria

  • Francisco J. Florencio
  • José C. Reyes
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 12)

Summary

Ammonia assimilation constitutes a central part of the cyanobacterial metabolism closely linked to photosynthesis. Ammonium taken up directly from the medium by specific permeases, or resulting from the metabolization of alternative nitrogen sources, is incorporated into carbon skeletons by the sequential action of two enzymes: glutamine synthetase (GS) and glutamate synthase (GOGAT). Two types of GS (GSI and GSIII) and two types of GOGAT (ferredoxin-GOGAT and NADH-GOGAT) have been described in cyanobacteria. Carbon skeletons required for ammonium assimilation are supplied in the form of 2-oxoglutarate, which is synthesized by isocitrate dehydrogenase (ICDH). Glutamate dehydrogenase (GDH) is also present in some cyanobacteria, but its role in ammonium assimilation seems to be limited to specific growth conditions. Regulation of the GS-GOGAT pathway is essential for the carbon/nitrogen balance in cyanobacteria. Both the level of GS protein and GS activity are finely controlled by different environmental conditions, such as nitrogen and carbon availability. The transcription factor NtcA increases the expression of ammonium permease, ICDH, GSI and GSIII under conditions of nitrogen limitation. Furthermore, in the cyanobacterium Synechocystis sp. PCC 6803, NtcA represses the synthesis of two inhibitory polypeptides (IF7 and IF 17) that inactivate GSI by protein-protein direct interaction.

Abbreviations

2OG—2-oxoglutarate CAP — catabolite activator protein CRP — cAMP receptior protein DON — 6-diazo-5-oxo-L-norleucine Fd — ferredoxin GDH — glutamate dehydrogenase Gln — glutamine Glu — glutamate GOGAT — glutamate synthase GS — glutamine synthetase ICDH — isocitrate dehydrogenase IF — inactivating factor MSX — L-methionine-DL-sulphoximine TCA — tricarboxylic acid WT — wild-type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanco F, Alana A, Llama MJ and Serra JL (1989) Purification and properties ofglutamine synthetase from the non-N2-fixing cyanobacterium Phormidium laminosum. J Bacteriol 171: 1158–1165PubMedGoogle Scholar
  2. Binda C, Bossi R, Wakatsuki S, Artz S, Coda A, Curti B, Vanoni MA and Mattevi A (2000) Cross-talk and ammonia channeling between active centres in the unexpected domain arrangement of glutamate synthase. Struct Fold Des 8: 1299–1308CrossRefGoogle Scholar
  3. Böhme H (1998) Regulation of nitrogen fixation in heterocyst-forming cyanobacteria. Trends Plant Sci 3: 346–351Google Scholar
  4. Bothe H and Neuer G (1988) Electron donation to nitrogenase in heterocysts. Methods Enzymol 167: 469–501Google Scholar
  5. Boussiba S, Dilling W and Gibson J (1984) Methylammonium transport in Anacystis nidulans R-2. J Bacteriol 160: 204–210PubMedGoogle Scholar
  6. Busby S and Ebright RH (1997) Transcription activation at class II CAP-dependent promoters. Mol Microbiol 23: 853–859CrossRefPubMedGoogle Scholar
  7. Chastain CJ, Brusca JS, Ramasubramaniam TS, Wei T-F and Golden JW (1990) A sequence-specific DNA-binding factor (VF1) from Anabaena sp strain PCC7120 vegetative cells binds to three adjacent sites in the xisA upstream region. J Bacteriol 172: 5044–5051PubMedGoogle Scholar
  8. Chávez S (1992) Glutamato deshidrogenasas en cianobacterias. Ph.D thesis, Universidad de Sevilla, Sevilla, SpainGoogle Scholar
  9. Chávez S and Candau P (1991) An NAD-specific glutamate dehydrogenase from cyanobacteria. Identification and properties. FEBS Lett 285: 35–38PubMedGoogle Scholar
  10. Chávez S, Reyes JC, Chauvat F, Florencio FJ and Candau P (1995) The NADP-glutamate dehydrogenase of the cyano-bacterium Synechocystis 6803: Cloning, transcriptional analysis and disruption of the gdhA gene. Plant Mol Biol 28: 173–188PubMedGoogle Scholar
  11. Chávez S, Lucena JM, Reyes JC, Florencio FJ and Candau P (1999) The presence of glutamate dehydrogenase is a selective advantage for the cyanobacterium Synechocystis sp. strain PCC 6803 under nonexponential growth conditions. J Bacteriol 181: 808–813PubMedGoogle Scholar
  12. Cogoni C, Valenzuela L, González-Halphen D, Olivera H, Macino G, Ballario P and González A (1995) Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J Bacteriol 177: 792–798PubMedGoogle Scholar
  13. Cohen-Kupiec R, Gurevitz M and Zilberstein A (1993) Expression of glnA in the cyanobacterium Synechococcus sp. strain PCC 7942 is initiated from a single nif-like promoter under various nitrogen conditions. J Bacteriol 175: 7727–7731PubMedGoogle Scholar
  14. Cohen-Kupiec R, Zilberstein A and Gurevitz M (1995) Characterization of cis elements that regulate the expression of glnA in Synechococcus sp. strain PCC 7942. J Bacteriol 177: 2222–2226PubMedGoogle Scholar
  15. Collado-Vides J, Magasanik B and Gralla JD (1991) Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev 55: 371–394PubMedGoogle Scholar
  16. Collier JL and Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13: 1039–1047PubMedGoogle Scholar
  17. Crespo JL, García-Domínguez M and Florencio FJ (1998) Nitrogen control of the glnN gene that codes for GS type III, the only glutamine synthetase in the cyanobacterium Pseudanabaena sp. PCC 6903. Mol Microbiol 30: 1101–1112CrossRefPubMedGoogle Scholar
  18. Crespo JL, Guerrero MG and Florencio FJ (1999) Mutational analysis of Asp5l of Anabaena azollae glutamine synthetase. D51E mutation confers resistance to the active site inhibitors L-methionine-DL-sulfoximine and phosphinothricin. Eur J Biochem 266: 1202–1209CrossRefPubMedGoogle Scholar
  19. Deuel TF and Prusiner S (1974) Regulation of glutamine synthetase from Bacillus subtilis by divalent cations, feedback inhibitors, and L-glutamine. J Biol Chem 249: 257–264PubMedGoogle Scholar
  20. Dharmawardene MW, Haystead A and Stewart WD (1973) Glutamine synthetase of the nitrogen-fixing alga Anabaena cylindrica. Arch Mikrobiol 90: 281–295CrossRefPubMedGoogle Scholar
  21. Ebright RH (1993) Transcription activation at Class I CAP-dependent promoters. Mol Microbiol 8: 797–802PubMedGoogle Scholar
  22. Eisenberg D, Gill HS, Pfluegl GM and Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477: 122–145PubMedGoogle Scholar
  23. Elmorjani K, Liotenberg S, Houmard J and Tandeau de Marsac N (1992) Molecular characterization of the gene encoding glutamine synthetase in the cyanobacterium Calothrix sp. PCC 7601. Biochem Biophys Res Commun 189: 1296–1302CrossRefPubMedGoogle Scholar
  24. Fisher R, Tuli R and Haselkorn R (1981) A cloned cyanobacterial gene for glutamine synthetase functions in Escherichia coli, but the enzyme is not adenylylated. Proc Natl Acad Sci USA 78: 3393–3397PubMedGoogle Scholar
  25. Florencio FJ and Ramos JL (1985) Purification and characterization of glutamine synthetase from the unicellular cyanobacterium Anacystis nidulans. Biochim Biophys Acta 838: 39–48Google Scholar
  26. Florencio FJ, Marqués S and Candau P (1987) Identification and characterization of a glutamate dehydrogenase in the unicellular cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 233: 37–41Google Scholar
  27. Flores E and Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant A (ed) The Molecular Biology of Cyanobacteria, pp 487–517. Kluwer Academic Publishers, DordrechtGoogle Scholar
  28. Flores E and Muro-Pastor AM (1990) Mutation and kinetic analysis of basic amino acid transport in the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 154: 521–527CrossRefGoogle Scholar
  29. Flores E, Guerrero MG and Losada M (1980) Short-term ammonium inhibition of the nitrate utilization by Anacystis nidulans and other cyanobacteria. Arch Microbiol 128: 137–144CrossRefGoogle Scholar
  30. Flores E, Muro-Pastor AM and Herrero A (1999) Cyanobacterial nitrogen assimilation genes and NtcA-dependent control of gene expression. In: Peschek GA, Löffelhardt W and Schmetterer G (eds) The phototrophic prokaryotes, pp 463–477. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  31. Forchhammer K and Tandeau de Marsac N (1994) The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacteriol 176: 84–91PubMedGoogle Scholar
  32. Forchhammer K and Tandeau de Marsac N (1995a) Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 177: 2033–2040PubMedGoogle Scholar
  33. Forchhammer K and Tandeau de Marsac N (1995b) Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: Analysis of in vitro kinase activity. J Bacteriol 177: 5812–5817PubMedGoogle Scholar
  34. Frias JE, Merida A, Herrero A, Martin-Nieto J and Flores E (1993) General distribution of the nitrogen control gene ntcA in cyanobacteria. J Bacteriol 175: 5710–5713PubMedGoogle Scholar
  35. Frias JE, Flores E and Herrero A (1994) Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 14: 823–832PubMedGoogle Scholar
  36. Frias JE, Flores E and Herrero A (1997) Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179: 477–486PubMedGoogle Scholar
  37. Friga GM and Farkas GL (1981) Isolation and properties of an isocitrate dehydrogenase from Anacystis nidulans. Arch Microbiol 129: 331–334PubMedGoogle Scholar
  38. Galván F, Márquez AJ and Vega JM (1984) Purification and molecular properties of ferredoxin-glutamate synthase from Chlamydomonas reinhardtii. Planta 162: 180–187Google Scholar
  39. Garcia E, Bancroft S, Rhee SG and Kustu S (1977) The product of a newly identified gene, glnF, is required for synthesis of glutamine synthetase in Salmonella. Proc Natl Acad Sci USA 74: 1662–1666PubMedGoogle Scholar
  40. García-Domínguez M and Florencio FJ (1997) Nitrogen availability and electron transport control the expression of glnB gene (encoding PII protein) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 35: 723–734PubMedGoogle Scholar
  41. García-Domínguez M, Reyes JC and Florencio FJ (1997) Purification and characterization of a new type of glutamine synthetase from cyanobacteria. Eur J Biochem 244: 258–264PubMedGoogle Scholar
  42. García-Domínguez M, Reyes JC and Florencio FJ (1999) Glutamine synthetase inactivation by protein-protein interaction. Proc Natl Acad Sci USA 96: 7161–7166PubMedGoogle Scholar
  43. García-Domínguez M, Reyes JC and Florencio FJ (2000) NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803. Mol Microbiol 35: 1192–1201PubMedGoogle Scholar
  44. Gregerson RG, Miller SS, Twary SN, Gantt JS and Vance CP (1993) Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell 5: 215–226CrossRefPubMedGoogle Scholar
  45. Guerrero MG and Lara C (1987) Assimilation of inorganic nitrogen. In: Fay P and Van Baalen C (eds) The Cyanobacteria, pp 163–185. Elsevier Science Publishers, New YorkGoogle Scholar
  46. Harrison MA, Keen JN, Findlay JB and Allen JF (1990) Modification of a glnB-like gene product by photosynthetic electron transport in the cyanobacterium Synechococcus 6301. FEBS Lett 264: 25–28CrossRefPubMedGoogle Scholar
  47. Haselkorn R (1998) How cyanobacteria count to 10. Science 282: 891–892CrossRefPubMedGoogle Scholar
  48. Helling RB (1994) Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol 176: 4664–4668PubMedGoogle Scholar
  49. Helling RB (1998) Pathway choice in glutamate synthesis in Escherichia coli. J Bacteriol 180: 4571–4575PubMedGoogle Scholar
  50. Herrero A, Flores E and Guerrero MG (1981) Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119, and Nostoc sp. strain 6719. J Bacteriol 145: 175–180PubMedGoogle Scholar
  51. Hirasawa M and Tamura G (1984) Flavin and iron-sulfur containing ferredoxin-linked glutamate synthase from spinach leaves. J Biochem 95: 983–994PubMedGoogle Scholar
  52. Hirasawa M, Hurley JK, Salamon Z, Tollin G and Knaff DB (1996) Oxidation-reduction and transient kinetic studies of spinach ferredoxin-dependent glutamate synthase. Arch Biochem Biophys 330: 209–215CrossRefPubMedGoogle Scholar
  53. Hu P, Leighton T, Ishkhanova G and Kustu S (1999) Sensing of nitrogen limitation by Bacillus subtilis: Comparison to enteric bacteria. J Bacteriol 181: 5042–5050PubMedGoogle Scholar
  54. Ikeda TP, Shauger AE and Kustu S (1996) Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J Mol Biol 259: 589–607PubMedGoogle Scholar
  55. Ip SM, Rowell P and Stewart WD (1983) The role of specific cations in regulation of cyanobacterial glutamine synthetase. Biochem Biophys Res Commun 114: 206–213CrossRefPubMedGoogle Scholar
  56. Jayakumar A, Epstein W and Barnes EM, Jr. (1985) Characterization of ammonium (methylammonium)/potassium antiport in Escherichia coli. J Biol Chem 260: 7528–7532PubMedGoogle Scholar
  57. Jiang F, Hellman U, Sroga GE, Bergman B and Mannervik B (1995) Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J Biol Chem 270: 22882–22889PubMedGoogle Scholar
  58. Jiang F, Mannervik B and Bergman B (1997) Evidence for redox regulation of the transcription factor NtcA, acting both as an activator and a represser, in the cyanobacterium Anabaena PCC 7120. Biochem J 327: 513–517PubMedGoogle Scholar
  59. Jiang F, Wisen S, Widersten M, Bergman B and Mannervik B (2000) Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library. J Mol Biol 301: 783–793CrossRefPubMedGoogle Scholar
  60. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136PubMedGoogle Scholar
  61. Karni L and Tel-Or E (1983) Isocitrate dehydrogenase as a potential electron donor to nitrogenase of Nostoc muscorum. In: Papageorgiou GC and Packer L (eds) Photosynthetic Prokaryotes, pp 257–264. Elsevier Biomedical, New YorkGoogle Scholar
  62. Kleiner D (1981) The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta 639: 41–52PubMedGoogle Scholar
  63. Knaff DB and Hirasawa M (1991) Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta 1056: 93–125PubMedGoogle Scholar
  64. Knaff DB, Hirasawa M, Ameyibor E, Fu W and Johnson MK (1991) Spectroscopic evidence for a [3Fe−4S] cluster in spinach glutamate synthase. J Biol Chem 266: 15080–15084PubMedGoogle Scholar
  65. Kolb A, Busby S, Buc H, Garges S and Adhya S (1993) Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62: 749–795CrossRefPubMedGoogle Scholar
  66. Labarre J, Thuriaux P and Chauvat F (1987) Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803. J Bacteriol 169: 4668–4673PubMedGoogle Scholar
  67. Lam HM, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh MH and Coruzzi G (1995) Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell 7: 887–898CrossRefPubMedGoogle Scholar
  68. LaPorte D and Koshland DE Jr (1982) A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle. Nature 300: 458–460Google Scholar
  69. Lea PJ and Miflin BJ (1975) Glutamate synthase in blue-green algae. Biochem Soc Trans 3: 381–384PubMedGoogle Scholar
  70. Lee HM, Flores E, Herrero A, Houmard J and Tandeau de Marsac N (1998) A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett 427: 291–295CrossRefPubMedGoogle Scholar
  71. Lee HM, Vazquez-Bermudez MF and Tandeau de Marsac N (1999) The global nitrogen regulator NtcA regulates transcription of the signal transducer PII (GlnB) and influences its phosphorylation level in response to nitrogen and carbon supplies in the Cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 181: 2697–2702PubMedGoogle Scholar
  72. Luque I, Flores E and Herrero A (1994) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13: 2862–2869PubMedGoogle Scholar
  73. Maeda S, Kawaguchi Y, Ohe TA and Omata T (1998) cis-Acting sequences required for NtcB-dependent, nitrite-responsive positive regulation of the nitrate assimilation operon in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 180: 4080–4088PubMedGoogle Scholar
  74. Marqués S, Florencio FJ and Candau P (1992a) Purification and characterization of the ferredoxin-glutamate synthase from the unicellular cyanobacterium Synechococcus sp. PCC 6301. Eur J Biochem 206: 69–77PubMedGoogle Scholar
  75. Marqués S, Candau P and Florencio FJ (1992b) Light-mediated regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechococcus sp. PCC 6301. Planta 187: 247–253Google Scholar
  76. Márquez AJ, Gotor C, Romero LC, Galván F and Vega JM (1986) Ferredoxin-glutamate synthase from Chlamydomonas reinhardtii. Prosthetic groups and preliminary studies of mechanism. Internat J Biochem 18: 531–535Google Scholar
  77. Martín-Figueroa E, Navarro F and Florencio FJ (2000) The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120. FEBS Lett 476: 282–286PubMedGoogle Scholar
  78. Martinez-Bilbao M, Martinez A, Urkijo I, Llama MJ and Serra JL (1988) Induction, isolation, and some properties of the NADPH-dependent glutamate dehydrogenase from the nonheterocystous cyanobacterium Phormidium laminosum. J Bacteriol 170: 4897–4902PubMedGoogle Scholar
  79. McMaster BJ, Danton MS, Storch TA and Dunham VL (1980) Regulation of glutamine synthetase in the blue-green alga Anabaena flos-aquae. Biochem Biophys Res Commun 96: 975–983CrossRefPubMedGoogle Scholar
  80. Meeks JC, Wolk CP, Thomas J, Lockau W, Shaffer PW, Austin SM, Chien WS and Galonsky A (1977) The pathways of assimilation of 13NH4+ by the cyanobacterium, Anabaena cylindrica. J Biol Chem 252: 7894–7900PubMedGoogle Scholar
  81. Meeks JC, Wolk CP, Lockau W, Schilling N, Shaffer PW and Chien WS (1978) Pathways of assimilation of [13N]N2 and 13NH4+ by cyanobacteria with and without heterocysts. J Bacteriol 134: 125–130PubMedGoogle Scholar
  82. Mérida A, Leurentop L, Candau P and Florencio FJ (1990) Purification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. strain PCC 6803 and Calothrix sp. strain PCC 7601. J Bacteriol 172: 4732–4735PubMedGoogle Scholar
  83. Mérida A, Candau P and Florencio FJ (1991a) In vitro reactivation of in vivo ammonium-inactivated glutamine synthetase from Synechocystis sp, PCC 6803. Biochem Biophys Res Commun 181: 780–786PubMedGoogle Scholar
  84. Mérida A, Candau P and Florencio FJ (1991b) Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: Effect of ammonium. J Bacteriol 173: 4095–4100PubMedGoogle Scholar
  85. Merrick MJ and Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59: 604–622PubMedGoogle Scholar
  86. Montesinos ML, Muro-Pastor AM, Herrero A and Flores E (1998) Ammonium/methylammonium permeases of a Cyanobacterium. Identification and analysis of three nitrogen-regulated amt genes in Synechocystis sp. PCC 6803. J Biol Chem 273: 31463–31470CrossRefPubMedGoogle Scholar
  87. Mulholland MR and Capone DG (2000) The nitrogen physiology of the marine N2-fixing cyanobacteria Trichodesmium spp. Trends Plant Sci 5: 148–153CrossRefPubMedGoogle Scholar
  88. Muro-Pastor AM, Valladares A, Flores E and Herrero A (1999) The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development. J Bacteriol 181: 6664–6669PubMedGoogle Scholar
  89. Muro-Pastor MI and Florencio FJ (1992) Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 203: 99–105CrossRefPubMedGoogle Scholar
  90. Muro-Pastor MI and Florencio FJ (1994) NADP(+)-isocitrate dehydrogenase from the cyanobacterium Anabaena sp. strain PCC 7120: Purification and characterization of the enzyme and cloning, sequencing, and disruption of the icd gene. J Bacteriol 176: 2718–2726PubMedGoogle Scholar
  91. Muro-Pastor MI, Reyes JC and Florencio FJ (1996) The NADP+-isocitrate dehydrogenase gene (icd) is nitrogen regulated in cyanobacteria. J Bacteriol 178: 4070–4076PubMedGoogle Scholar
  92. Muro-Pastor MI, Reyes JC and Florencio FJ (2001) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276: 38320–38328PubMedGoogle Scholar
  93. Nalbantoglu B, Hirasawa M, Moomaw C, Nguyen H, Knaff DB and Allen R (1994) Cloning and sequencing of the gene encoding spinach ferredoxin-dependent glutamate synthase. Biochim Biophys Acta 1183: 557–561PubMedGoogle Scholar
  94. Navarro F, Chávez S, Candau P and Florencio FJ (1995) Existence of two ferredoxin-glutamate synthases in the cyanobacterium Synechocystis sp. PCC 6803. Isolation and insertional inactivation of gltB and gltS genes. Plant Mol Biol 27: 753–767CrossRefPubMedGoogle Scholar
  95. Navarro F, Martín-Figueroa E, Candau P and Florencio FJ (2000) Ferredoxin-dependent iron-sulfur flavoprotein glutamate synthase (GlsF) from the cyanobacterium Synechocystis sp. PCC 6803. Expression and Assembly in Escherichia coli. Arch Biochem Biophys 379: 267–276CrossRefPubMedGoogle Scholar
  96. Neilson AH and Doudoroff M (1973) Ammonia assimilation in blue-green algae. Arch Mikrobiol 89: 15–22CrossRefPubMedGoogle Scholar
  97. Ninfa AJ, Jiang P, Atkinson MR and Peliska JA (2000) Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. In: Stafman, ER and Chock, PB (eds) Current Topic in Cellular Regulation, Vol 36, pp 31–75. Academic Press, New YorkGoogle Scholar
  98. Okuhara H, Matsumura T, Fujita Y and Hase T (1999) Cloning and inactivation of genes encoding ferredoxin-and NADH-dependent glutamate synthases in the cyanobacterium Plectonema boryanum. Imbalances in nitrogen and carbon assimilations caused by deficiency of the ferredoxin-dependent enzyme. Plant Physiol 120: 33–42CrossRefPubMedGoogle Scholar
  99. Orr J and Haselkorn R (1981) Kinetic and inhibition studies of glutamine synthetase from the cyanobacterium Anabaena 7120. J Biol Chem 256: 13099–13104PubMedGoogle Scholar
  100. Orr J, Keefer LM, Keim P, Nguyen TD, Wellems T, Heinrikson RL and Haselkorn R (1981) Purification, physical characterization, and NH2-terminal sequence of glutamine synthetase from the cyanobacterium Anabaena 7120. J Biol Chem 256: 13091–13098PubMedGoogle Scholar
  101. Pardo MA, Llama MJ and Serra JL (1999) Purification, properties and enhanced expression under nitrogen starvation of the NADP+-isocitrate dehydrogenase from the cyanobacterium Phormidium laminosum. Biochim Biophys Acta 1431: 87–96PubMedGoogle Scholar
  102. Purich DL (1998) Advances in the enzymology of glutamine synthesis. In: Purich DL (ed) Amino Acid Metabolism, pp 9–42. John Wiley & Sons, New YorkGoogle Scholar
  103. Rai AN, Rowell P and Stewart WDP (1984) Evidence for an ammonium transport system in free-living and symbiotic cyanobacteria. Arch Microbiol 137: 241–246CrossRefGoogle Scholar
  104. Ramasubramanian TS, Wei TF, Oldham AK and Golden JW (1996) Transcription of the Anabaena sp. strain PCC 7120 ntcA gene: multiple transcripts and NtcA binding. J Bacteriol 178: 922–926PubMedGoogle Scholar
  105. Reith M and Munholland J (1993) A high resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465–475CrossRefPubMedGoogle Scholar
  106. Reyes JC and Florencio FJ (1994) A new type of glutamine synthetase in cyanobacteria: The protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bacteriol 176: 1260–1267PubMedGoogle Scholar
  107. Reyes JC and Florencio FJ (1995a) Electron transport controls transcription of the glutamine synthetase gene (glnA) from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 27: 789–799CrossRefPubMedGoogle Scholar
  108. Reyes JC and Florencio FJ (1995b) A novel mechanism of glutamine synthetase inactivation by ammonium in the cyanobacterium Synechocystis sp. PCC 6803. Involvement of an inactivating protein. FEBS Lett 367: 45–48CrossRefPubMedGoogle Scholar
  109. Reyes JC, Crespo JL, García-Dominguez M and Florencio FJ (1995) Electron transport controls glutamine synthetase activity in the facultative heterotrophic cyanobacterium Synechocystis sp. PCC6803. Plant Physiol 109: 899–905PubMedGoogle Scholar
  110. Reyes JC, Muro-Pastor MI and Florencio F J (1997) Transcription of glutamine synthetase genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is differently regulated in response to nitrogen availability. J Bacteriol 179: 2678–2689PubMedGoogle Scholar
  111. Rowell P, Enticott S and Stewart WDP (1977) Glutamine synthetase and nitrogenase activity in the blue-green alga Anabaena cylindrica. New Phytol 79: 41–54Google Scholar
  112. Rowell P, Sampaio MJAM, Ladha JK and Stewart WDP (1979) Alteration of cyanobacterial glutamine synthetase activity in vivo in response to light and NH4+. Arch Microbiol 120: 195–200CrossRefGoogle Scholar
  113. Sakakibara H, Watanabe M, Hase T and Sugiyama T (1991) Molecular cloning and characterization of complementary DNA encoding for ferredoxin-dependent glutamate synthase in maize leaf. J Biol Chem 266: 2028–2035PubMedGoogle Scholar
  114. Sauer J, Dirmeier U and Forchhammer K (2000) The Synechococcus strain PCC 7942 glnN product (glutamine synthetase III) helps recovery from prolonged nitrogen chlorosis. J Bacteriol 182: 5615–5619CrossRefPubMedGoogle Scholar
  115. Sawhney SK and Nicholas DJ (1978) Effects of amino acids, adenine nucleotides and inorganic pyrophosphate on glutamine synthetase from Anabaena cylindrica. Biochim Biophys Acta 527: 485–496PubMedGoogle Scholar
  116. Schmitz S, Navarro F, Kutzki CK, Florencio FJ and Böhme H (1996) Glutamate 94 of [2Fe−2S]-ferredoxins is important for efficient electron transfer in the 1∶1 complex formed with ferredoxin-glutamate synthase (GltS) from Synechocystis sp. PCC 6803. Biochim Biophys Acta 1277: 135–140PubMedGoogle Scholar
  117. Soupene E, He L, Yan D and Kustu S (1998) Ammonia acquisition in enteric bacteria: Physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95: 7030–7034CrossRefPubMedGoogle Scholar
  118. Southern JA, Parker JR and Woods DR (1986) Expression and purification of glutamine synthetase cloned from Bacteroides fragilis. J Gen Microbiol 132: 2827–2835PubMedGoogle Scholar
  119. Stacey G, Tabita FR and Van Baalen C (1977) Nitrogen and ammonia assimilation in the cyanobacteria: purification of glutamine synthetase from Anabaena sp. strain CA. J Bacteriol 132: 596–603PubMedGoogle Scholar
  120. Stacey G, Bottomley PJ, Van Baalen C and Tabita FR (1979) Control of heterocyst and nitrogenase synthesis in cyanobacteria. J Bacteriol 137: 321–326PubMedGoogle Scholar
  121. Stal LJ and Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21: 179–211Google Scholar
  122. Stanier RY and Cohen-Bazire G (1977) Phototrophic prokaryotes: The cyanobacteria. Annu Rev Microbiol 31: 225–274CrossRefPubMedGoogle Scholar
  123. Stewart WD and Rowell P (1975) Effects of L-methionine-DL-sulphoximine on the assimilation of newly fixed NH3 acetylene reduction and heterocyst production in Anabaena cylindrica. Biochem Biophys Res Commun 65: 846–856CrossRefPubMedGoogle Scholar
  124. Suzuki I, Sugiyama T and Omata T (1993) Primary structure and transcriptional regulation of the gene for nitrite reductase from the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol 34: 1311–1320Google Scholar
  125. Takahashi M, Blazy B, Baudras A and Hillen W (1989) Ligand-modulated binding of a gene regulatory protein to DNA. Quantitative analysis of cyclic-AMP induced binding of CRP from Escherichia coli to non-specific and specific DNA targets. J Mol Biol 207: 783–796CrossRefPubMedGoogle Scholar
  126. Tapia MI, Llama MJ and Serra JL (1996a) Regulation of nitrate assimilation in the cyanobacterium Phormidium laminosum. Planta 198: 24–30Google Scholar
  127. Tapia MI, Ochoa de Alda JAG, Llama MJ and Serra JL (1996b) Changes in intracellular amino acids and organic acids induced by nitrogen starvation and nitrate or ammonium resupply in the cyanobacterium Phormidium laminosum. Planta 198: 526–531Google Scholar
  128. Temple SJ, Vance CP and Gantt JS (1998) Glutamate synthase and nitrogen assimilation. Trends Plant Sci 3: 51–56CrossRefGoogle Scholar
  129. Tuli R and Thomas J (1980) Regulation of glutamine synthetase in the blue-green alga Anabaena L-31. Biochim Biophys Acta 613: 526–533PubMedGoogle Scholar
  130. Tuli R and Thomas J (1981) In vivo regulation of glutamine synthetase by ammonium in the cyanobacterium Anabaena L-31. Arch Biochem Biophys 206: 181–189CrossRefPubMedGoogle Scholar
  131. Turner NE, Robinson SJ and Haselkorn R (1983) Different promoters for the Anabaena glutamine synthetase during growth using molecular or fixed nitrogen. Nature 306: 337–342CrossRefGoogle Scholar
  132. Valentin K, Kostrzewa M and Zetsche K. (1993) Glutamate synthase is plastid-encoded in a red alga: Implications for the evolution of glutamate synthases. Plant Mol Biol 23: 77–85CrossRefPubMedGoogle Scholar
  133. Valladares A, Muro-Pastor AM, Fillat MF, Herrero A and Flores E (1999) Constitutive and nitrogen-regulated promoters of the petH gene encoding ferredoxin:NADP+ reductase in the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 449: 159–164CrossRefPubMedGoogle Scholar
  134. Vanoni MA and Curti B (1999) Glutamate synthase: A complex iron-sulfur flavoprotein. Cell Mol Life Sci 55: 617–638PubMedGoogle Scholar
  135. Vázquez-Bermúdez MF (2000) Estudios sobre el control de la asimilación del nitrógeno en la cianobacteria Synechococcus sp. mediado por el regulador transcripcional NtcA. Ph.D. thesis, Universidad de Sevilla, Sevilla, SpainGoogle Scholar
  136. Vega-Palas MA, Madueno F, Herrero A and Flores E (1990) Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 172: 643–647PubMedGoogle Scholar
  137. Vega-Palas MA, Flores E and Herrero A (1992) NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6: 1853–1859PubMedGoogle Scholar
  138. Wagner SJ, Thomas SP, Kaufman RI, Nixon BT and Stevens SE, Jr. (1993) The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 is nonessential for ammonium assimilation. J Bacteriol 175: 604–612PubMedGoogle Scholar
  139. Wei TF, Ramasubramanian TS, Pu F and Golden JW (1993) Anabaena sp. strain PCC 7120 bifA gene encoding a sequence-specific DNA-binding protein cloned by in vivo transcriptional interference selection. J Bacteriol 175: 4025–4035PubMedGoogle Scholar
  140. Wisen S, Jiang F, Bergman B and Mannervik B (1999) Expression and purification of the transcription factor NtcA from the cyanobacterium Anabaena PCC 7120. Protein Expr Purif 17: 351–357PubMedGoogle Scholar
  141. Wolk CP, Thomas J, Shaffer PW, Austin SM and Galonsky A (1976) Pathway of nitrogen metabolism after fixation of 13N-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J Biol Chem 251: 5027–5034PubMedGoogle Scholar
  142. Wolk CP, Ernst A and Elhai J (1994) Heterocyst metabolism and development. In: Bryant A (ed) The Molecular Biology of Cyanobacteria, pp 769–823. Kluwer Academic Publishers, DordrechtGoogle Scholar
  143. Woods DR and Reid SJ (1993) Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol Rev 11: 273–283PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Francisco J. Florencio
    • 1
  • José C. Reyes
    • 1
  1. 1.Instituto de Bioquímica Vegetal y Fotosíntesis. Centro de Investigaciones Cientificas Isla de la CartujaUniversidad de Sevilla-CSICSevillaSpain

Personalised recommendations