Skip to main content

Rubisco: Assembly and Mechanism

  • Chapter
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 9))

Summary

Ribulose-bisphosphate carboxylase/oxygenase (Rubisco, E.C. 4.1.1.39) is unique to photosynthetic metabolism. Two intensively studied aspects of Rubisco physiology are covered in this chapter, its post-translational assembly and its mechanism of action. Bacterial Rubisco can be assembled in vitro and in bacterial hosts but, as yet, assembly in vitro of higher-plant Rubiscos has not been reported. This focuses attention on the assembly pathway for higher plant Rubisco, which has been known for some time to be related to the presence of molecular chaperones in chloroplasts. Analysis of mutants, transformation of plants and bacteria with chloroplast chaperones, and the development of in vitro translation and assembly systems based on chloroplast extracts, have been directed at resolving this problem. It appears from these data that certain bacterial chaperones do not interfere with the assembly of higher plant Rubisco. As in cyanobacterial systems, the absence of S subunits leads to the accumulation of L8-like particles whose subunits can later be recruited to form Rubisco. Subtle differences between the way S subunits assemble with higher-plant and cyanobacterial L8-like particles suggest that this process may be concerted with assembly of L8 in the case of the higher-plant enzyme. The catalytic mechanism of Rubisco depends on two co-factors; a divalent metal ion, usually Mg2+ and a CO2 molecule that carbamylates a specific lysyl residue, K201, in the active site. This carbamate plays a crucial role in initiating catalysis by abstracting the C3 proton of ribulose bisphosphate and it may also act as a general-base catalyst for succeeding steps. Sofar, Rubisco’s use of a carbamate as a base appears to be unique among enzymes. The catalytic sequences of both the carboxylation reaction, and the oxygenation reaction that competes with it, proceed through multiple steps, each of a complexity rivaling that of the complete reaction of many other enzymes. The structure of the active site must change subtly between steps. Selectivity between CO2 and O2, of paramount importance to photosynthetic efficiency, is determined by the relative reactivity of the enediol(ate) form of the substrate for the two gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

2′(or 4′)-carboxyarabinitol-P2:

2′(or 4′)-carboxyarabinitol-1,5-bisphosphate

carboxytetritol-P2:

2′-carboxytetritol-1,4-bisphosphate

Cpn60:

chaperonin 60

pentodiulose-P2:

D-glycero-2,3 -pentodiulose-1,5 -bisphosphate

P-glycerate:

3-phospho-d-glycerate

P-glycolate:

2-phosphoglycolate

ribulose-P2:

d-ribulose-1,5-bisphosphate

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39)

xylulose-P2:

d-xylulose-1,5-bisphosphate

References

  • Abell LM and Schloss JV (1991) Oxygenase side reactions of acetolactate synthase and other carbanion-forming enzymes. Biochemistry 30: 7883–7887

    PubMed  CAS  Google Scholar 

  • Akoyunoglou G and Calvin M (1963) Mechanism of the carboxydismutase reaction. II. Carboxylation of the enzyme. Biochem Z 338: 20–30

    PubMed  CAS  Google Scholar 

  • Andersson I (1996) Large structures at high resolution: The 1.6Å crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate. J Mol Biol 259: 160–174

    Article  PubMed  CAS  Google Scholar 

  • Andrés J, Safont VS and Tapia O (1992) Straining the double bond in 1,2-dihydroxyethylene. A simple theoretical model for the enediol moiety in Rubisco’s substrate and analogs. Chem Phys Lett 198: 515–520

    Google Scholar 

  • Andrés J, Safont VS, Queralt J and Tapia O (1993) A theoretical study of the singlet-triplet energy gap dependence upon rotation and pyramidalization for 1,2-dihydroxyethylene. A simple model to study the enediol moiety in Rubisco’s substrate. J Phys Chem 97: 7888–7893

    Google Scholar 

  • Andrews TJ (1988) Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J Biol Chem 263: 12213–12220

    PubMed  CAS  Google Scholar 

  • Andrews TJ and Abel KM (1981) Kinetics and subunit interactions of ribulose bisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcussp. J Biol Chem 256: 8445–8451

    PubMed  CAS  Google Scholar 

  • Andrews TJ and Ballment B (1983) The function of the small subunits of ribulose bisphosphate carboxylase-oxygenase. J Biol Chem 258: 7514–7518

    PubMed  CAS  Google Scholar 

  • Andrews TJ and Ballment B (1984) Active site carbamate formation and reaction-intermediate-analog binding by ribulose bisphosphate carboxylase-oxygenase in the absence of its small subunits. Proc Natl Acad Sci USA 81: 3660–3664

    CAS  Google Scholar 

  • Andrews TJ and Kane HJ (1991) Pyruvate is a by-product of catalysis by ribulose bisphosphate carboxylase/oxygenase. J Biol Chem 266: 9447–9452

    PubMed  CAS  Google Scholar 

  • Andrews TJ and Lorimer GH (1985) Catalytic properties of a hybrid between cyanobacterial large subunits and higher plant small subunits of ribulose bisphosphate carboxylase-oxygenase. J BiolChem 260: 4632–4636

    CAS  Google Scholar 

  • Andrews TJ and Lorimer GH (1987) Rubisco: Structure, mechanisms, and prospects for improvement. In: Hatch MD, Boardman NK (eds) The Biochemistry of Plants: A Comprehensive Treatise, Vol 10, Photosynthesis, pp 131–218. Academic Press, New York

    Google Scholar 

  • Andrews TJ, Lorimer GH and Tolbert NE (1973) Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction-1 protein of leaves. Biochemistry 12:11–18

    PubMed  CAS  Google Scholar 

  • Andrews TJ, Badger MR and Lorimer GH (1975) Factors affecting interconversion between kinetic forms of ribulose diphosphate carboxylase-oxygenase from spinach. Arch Biochem Biophys 171: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Andrews TJ, Greenwood DM and Yellowlees D (1984) Catalytically active hybrids formed in vitro between large and small subunits of different procaryotic ribulose bisphosphate carboxylases. Arch Biochem Biophys 234: 313–317

    Article  PubMed  CAS  Google Scholar 

  • Andrews TJ, Lorimer GH and Pierce J (1986) Three partial reactions of ribulose-bisphosphate carboxylase require both large and small subunits. J Biol Chem 261: 12184–12188

    PubMed  CAS  Google Scholar 

  • Andrews TJ, Hudson GS, Mate CJ, von Caemmerer S, Evans JR and Arvidsson YBC (1995) Rubisco: The consequences of altering its expression and activation in transgenic plants. J Exp Bot 46:1293–1300

    CAS  Google Scholar 

  • Badger MR and Andrews TJ (1974) Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem Biophys Res Commun 60: 204–210

    Article  PubMed  CAS  Google Scholar 

  • Badger MR and Lorimer GH (1976) Activation of ribulose-1,5-bisphosphate oxygenase. The role of Mg2+, CO2 and pH. Arch Biochem Biophys 175: 723–729

    Article  PubMed  CAS  Google Scholar 

  • Bahr JT and Jensen RG (1974) Ribulose diphosphate carboxylase from freshly ruptured spinach chloroplasts having an in vivo K m [CO2]. Plant Physiol 53: 39–44

    CAS  Google Scholar 

  • Baneyx F, Bertsch U, Kalbach CE, Vandervies SM, Soll J and Gatenby AA (1995) Spinach chloroplast Cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60. J Biol Chem 270: 10695–10702

    PubMed  CAS  Google Scholar 

  • Barraclough R and Ellis RJ (1980) Assembly of newly synthesized large subunits into ribulose bisphosphate carboxylase in isolated pea chloroplasts. Biochim Biophys Acta 608: 19–31

    PubMed  CAS  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM and Holden HM (1995) Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry 34: 7973–7978

    Article  PubMed  CAS  Google Scholar 

  • Bertsch U, Soll J, Seetharam R and Viitanen PV (1992) Identification, characterization, and DNA sequence of a functional ‘double’ Cpn 10-like chaperonin from chloroplasts of higher plants. Proc Natl Acad Sci USA 89: 8696–8700

    PubMed  CAS  Google Scholar 

  • Blair G and Ellis R 1974. Protein synthesis in chloroplasts. I. Light driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta 319: 223–234

    Google Scholar 

  • Bloom M, Milos P and Roy H (1983) Light dependent assembly of ribulose 1,5-bisphosphate carboxylase. Proc Nat Acad Sci USA 80: 1013–1017

    CAS  Google Scholar 

  • Bochkareva ES, Lissin NM and Girshovich AS (1988) Transient association of newly synthesized unfolded proteins with the heat-shock groEL protein. Nature 336: 254–257

    Article  PubMed  CAS  Google Scholar 

  • Boston RS, Viitanen PV and Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32: 191–222

    Article  PubMed  CAS  Google Scholar 

  • Bowes G, Ogren WL and Hageman RH. (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45: 716–722

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, van der Vies S and Gatenby AA (1986) Expression of cyanobacterial and higher-plant ribulose 1,5-bisphosphate carboxylase genes in Escherichia coli. Phil Trans R Soc Lond B 313:447–458

    CAS  Google Scholar 

  • Braig K, Simon M, Furuya F, Hainfeld J and Horwich A (1993) A polypeptide bound by the chaperonin GroEL is localized within a central cavity. Proc Natl Acad Sci USA 90: 3978–3982

    PubMed  CAS  Google Scholar 

  • Brändén R, Nilsson T and Styring S (1984) An intermediate formed by the Cu2+-activated ribulose-1,5-bisphosphate carboxylase/oxygenase in the presence of ribulose 1,5-bisphosphate and O2. Biochemistry 23: 4378–382

    Google Scholar 

  • Buchberger A, Schroder H, Hesterkamp T, Schonfeld HJ and Bukau B (1996) Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol 261: 328–333

    Article  PubMed  CAS  Google Scholar 

  • Buchner J 1994 Symmetric complexes of groE chaperonins as part of the functional cycle. Science 265: 656–659

    PubMed  Google Scholar 

  • Burston SG, Weissman JS, Farr GW, Fenton WA and Horwich AL (1996) Release of both native and non-native proteins from a cis-only GroEL ternary complex. Nature 383: 96–99

    Article  PubMed  CAS  Google Scholar 

  • Calvin M and Massini P (1952) The path of carbon in photosynthesis. XX. The steady state. Experientia 8: 445–457

    Article  PubMed  CAS  Google Scholar 

  • Cannon S, Wang P and Roy H (1986) Inhibition of ribulose bisphosphate carboxylase assembly by antibody to a binding protein. J Cell Biol 103: 1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Checa S and Viale A (1997) The 70-kDa heat-shock protein/DnaK chaperone system is required for the productive folding of ribulose-bisphosphate carboxylase subunits in Eschericia coli. Eur. J. Biochem 248: 848–855

    Article  PubMed  CAS  Google Scholar 

  • Chen GG and Jagendorf AT (1994) Chloroplast molecular chaperone-assisted refolding and reconstitution of an active multisubunit coupling factor CF1 core. Proc Natl Acad Sci USA 91: 11497–11501

    PubMed  CAS  Google Scholar 

  • Chen Y-R and Hartman FC (1995) A signature of the oxygenase intermediate in catalysis by ribulose-bisphosphate carboxylase/oxygenase as provided by a site-directed mutant. J Biol Chem 270: 11741–11744

    PubMed  CAS  Google Scholar 

  • Chen Z and Spreitzer RJ (1991) Proteolysis and transition-state-analogue binding of mutant forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Chlamydomonas reinhardtii. Planta 183: 597–603

    Article  CAS  Google Scholar 

  • Chua N-H and Schmidt G (1978) Post-translational import into intact chloroplasts of a precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75:6110–6114

    CAS  Google Scholar 

  • Cleland WW (1990) Kinetic competence of enzymic intermediates: Fact or fiction. Biochemistry 29: 3194–3197

    PubMed  CAS  Google Scholar 

  • Cleland WW, Andrews TJ, Gutteridge S, Hartman FC and Lorimer GH (1998) Mechanism of Rubisco—the carbamate as general base. Chem Rev 98: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Cloney LP, Bekkaoui DR, Wood MG and Hemmingsen SM (1992a) Assessment of plant chaperonin-60 gene function in Escherichia coli. J Biol Chem 267: 23333–23336

    PubMed  CAS  Google Scholar 

  • Cloney LP, Wu HB and Hemmingsen SM (1992b) Expression of plant chaperonin-60 genes in Escherichia coli. J Biol Chem 267: 23327–23332

    PubMed  CAS  Google Scholar 

  • Cloney LP, Bekkaoui DR and Hemmingsen SM (1993) Co-expression of plastid chaperonin genes and a synthetic plant rubisco operon in Escherichia coli. Plant Mol Biol 23:1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Curmi PMG, Cascio D, Sweet RM, Eisenberg D and Schreuder H (1992) Crystal structure of the unactivated form of ribulose-1,5-bishosphate carboxylase/oxygenase from tobacco refined at 2.0 Å resolution. J Biol Chem 267: 16980–16989

    PubMed  CAS  Google Scholar 

  • Delwiche CF and Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13: 873–882

    PubMed  CAS  Google Scholar 

  • Edmondson DL, Badger MR and Andrews TJ (1990a) A kinetic characterization of slow inactivation of ribulose bisphosphate carboxylase during catalysis. Plant Physiol 93: 1376–1382

    CAS  Google Scholar 

  • Edmondson DL, Badger MR and Andrews TJ (1990b) Slow inactivation of ribulose bisphosphate carboxylase during catalysis is not due to decarbamylation of the catalytic site. Plant Physiol 93: 1383–1389

    CAS  Google Scholar 

  • Edmondson DL, Badger MR and Andrews TJ (1990c) Slow inactivation of ribulose bisphosphate carboxylase during catalysis is caused by accumulation of a slow, tight-binding inhibitor at the catalytic site. Plant Physiol 93: 1390–1397

    CAS  Google Scholar 

  • Edmondson DL, Kane HJ and Andrews TJ (1990d) Substrate isomerization inhibits ribulose bisphosphate carboxylase-oxygenase during catalysis. FEBS Lett 260: 62–66

    Article  CAS  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4: 241–244

    Article  CAS  Google Scholar 

  • Ellis RJ and Hartl FU (1996) Protein folding in the cell: competing models of chaperonin function. FASEB J 10: 20–26

    PubMed  CAS  Google Scholar 

  • Ellis RJ and vander Vies SK (1991) Molecular chaperones. Annu Rev Biochem 60: 321–347

    Article  PubMed  CAS  Google Scholar 

  • Flachmann R, Zhu GH, Jensen RG and Bohnert HJ (1997) Mutations in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase increase the formation of the misfire product xylulose-1,5-bisphosphate. Plant Physiol 114: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Frankvoort W (1978) The reaction between diacety 1 and hydrogen peroxide: Its mechanism and kinetic constants. Thermochim Acta 25: 35–49

    Article  CAS  Google Scholar 

  • Freeman BC and Morimoto RI (1996) The human cytosolic molecular chaperones Hsp90, Hsp70 (Hsc70) and Hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 15: 2969–2979

    PubMed  CAS  Google Scholar 

  • Frydman J, Nimmesgern K, Ohtsuka K and Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111–117

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT and Taylor WC (1995) Regulation of photosynthesis in C3 and C4 plants: A molecular approach. Plant Cell 7: 797–807

    Article  PubMed  CAS  Google Scholar 

  • Gatenby AA (1992) Protein folding and chaperonins. Plant Mol Biol 19: 677–687

    Article  PubMed  CAS  Google Scholar 

  • Gooding L, Roy H and Jagendorf A (1973) Immunological identification of nascent subunits of wheat ribulose bisphosphate carboxylase on ribosomes of both chloroplast and cytoplasmic origin. Arch Biochem Biophys 159: 324–335

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Gatenby AA and Lorimer GH (1989a) GroE heat shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337: 44–17

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge S (1991) The relative catalytic specificities of the large subunit core of Synechococcus ribulose bisphosphate carboxylase/oxygenase. J Biol Chem 266: 7359–7362

    PubMed  CAS  Google Scholar 

  • Gutteridge S and Gatenby AA (1995) Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7:809–819

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge S, Parry MAJ, Schmidt CNG and Feeney J (1984) An investigation of ribulose bisphosphate carboxylase activity by high-resolution 1H-NMR. FEBS Lett 170: 355–359

    Article  CAS  Google Scholar 

  • Gutteridge S, Rhoades DF and Herrmann C (1993) Site-specific mutations in a loop region of the C-terminal domain of the large subunit of ribulose bisphosphate carboxylase/oxygenase that influence substrate partitioning. J Biol Chem 268: 7818–7824

    PubMed  CAS  Google Scholar 

  • Haining RL and McFadden BA (1994) Active-site histidines in recombinant cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase examined by site-directed mutagenesis. Photosynth Res 41: 349–356

    Article  CAS  Google Scholar 

  • Harpel MR and Hartman FC (1992) Enhanced CO2/O2 specificity of a site-directed mutant of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem 267: 6475–6478

    PubMed  CAS  Google Scholar 

  • Harpel MR and Hartman FC (1996) Facilitation of the terminal proton transfer reaction of ribulose 1,5-bisphosphate carboxylase oxygenase by active-site Lys166. Biochemistry 35: 13865–13870

    Article  PubMed  CAS  Google Scholar 

  • Harpel MR, Larimer FW and Hartman FC (1991) Functional analysis of the putative catalytic bases His-321 and Ser-368 of Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase by site-directed mutagenesis. J Biol Chem 266: 24734–24740

    PubMed  CAS  Google Scholar 

  • Harpel MR, Serpersu EH, Lamerdin JA, Huang ZH, Gage DA and Hartman FC (1995) Oxygenation mechanism of ribulose-bisphosphate carboxylase/oxygenase. Structure and origin of 2-carboxytetritol 1,4-bisphosphate, a novel O2-dependent side product generated by a site-directed mutant. Biochemistry 34: 11296–11306

    Article  PubMed  CAS  Google Scholar 

  • Harpel MR, Larimer FW and Hartman FC (1998) Multiple catalytic roles of His 287 of Rhodospirillum rubrum ribulose 1,5-bisphosphate carboxylase/oxygenase. Protein Sci 7: 730–738

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hlodan R and Langer T (1994) Molecular chaperones in protein folding—the art of avoiding sticky situations. Trends Biochem Sci 19:20–25

    Article  PubMed  CAS  Google Scholar 

  • Hartman FC and Harpel MR (1994) Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Ann Rev Biochem 63: 197–234

    PubMed  CAS  Google Scholar 

  • Hartman FC and Lee EH (1989) Examination of the function of active site lysine 329 of ribulose-bisphosphate carboxylase/oxygenase as revealed by the proton exchange reaction. J Biol Chem 264: 11784–11789

    PubMed  CAS  Google Scholar 

  • Hartman FC, Milanez S and Lee EH (1985) Ionization constants of two active-site lysyl ε-amino groups of ribulose bisphosphate carboxylase/oxygenase. J Biol Chem 260: 13968–13975

    PubMed  CAS  Google Scholar 

  • Hartman FC, Soper TS, Niyogi SK, Mural PJ, Foote RS, Mitra S, Lee EH, Machanof. R and Larimer FW (1987) Function of Lys-166 of Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase as examined by site-directed mutagenesis. J Biol Chem 262: 3496–3501

    PubMed  CAS  Google Scholar 

  • Hemmingsen SM and Ellis RJ (1986) Purification and properties of ribulose bisphosphate carboxylase large subunit binding protein. Plant Physiol 80: 269–276

    CAS  Google Scholar 

  • Hixon M, Sinerius G, Schneider A, Walter C, Fessner WD and Schloss JV (1996) Quo vadis photorespiration: A tale of two aldolases. FEBS Lett 392: 281–284

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Weissman JS and Fenton WA (1995) Kinesis of polypeptide during GroEL-mediated folding. Cold Spring Harbor Symposia On Quantitative Biology 60: 435–140

    CAS  Google Scholar 

  • Houtz, RL Poneleit, L Jones, SB Royer, M and Stults, JT (1992) Post translational modifications in the amino-terminal region of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from several plant species. Plant Physiol 98:1170–1174

    CAS  Google Scholar 

  • Hubbs AE (1993) The in vitro synthesis and assembly of Rubisco large subunits: characterization of an unidentified large subunit containing species, and early chaperonin interactions with large subunits. PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY

    Google Scholar 

  • Hubbs AE and Roy H (1992) Synthesis and assembly of ribulose bisphosphate carboxylase/oxygenase in chloroplast extracts. Plant Physiol 100: 272–281

    CAS  Google Scholar 

  • Hubbs AE and Roy H (1993a) Assembly of in vitro synthesized large subunits into ribulose bisphosphate carboxylase/oxygenase is sensitive to Cl, requires ATP, and does not proceed when large subunits are synthesized at temperatures ≥32 °C. Plant Physiol 101: 523–533

    PubMed  CAS  Google Scholar 

  • Hubbs AE and Roy H (1993b) Assembly of in vitro synthesized large subunits into ribulose bisphosphate carboxylase/oxygenase: formation and discharge of an L8-like species J Biol Chem 268: 13519–13525

    PubMed  CAS  Google Scholar 

  • Hudson GS, Mahon JD, Anderson PA, Gibbs MJ, Badger MR, Andrews TJ and Whitfeld PR (1990) Comparisons of rbcL genes for the large subunit of ribulose-bisphosphate carboxylase from closely related C3 and C4 plant species. J Biol Chem 265: 808–814

    PubMed  CAS  Google Scholar 

  • Incharoensakdi A, Takabe T and Akazawa T (1985) Structure and functions of chloroplast proteins. 64. Factors affecting the dissociation and reconstitution of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Arch Biochem Biophys 237: 445–453

    Article  PubMed  CAS  Google Scholar 

  • Jabri E, Carr MB, Hausinger RP and Karplus PA (1995) The crystal structure of urease from Klebsiella aerogenes. Science 268: 998–1004

    PubMed  CAS  Google Scholar 

  • Jordan DB and Chollet R (1983) Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J Biol Chem 258: 13752–13758

    PubMed  CAS  Google Scholar 

  • Jordan DB and Chollet R (1985) Subunit dissociation and reconstitution of ribulose-1,5-bisphosphate carboxylase from Chromatium vinosum. Arch Biochem Biophys 236: 487–96

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB and Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase-oxygenase. Nature 291: 513–515

    Article  CAS  Google Scholar 

  • Jordan DB and Ogren WL (1983) Species variation in kinetic-properties of ribulose 1,5-bisphosphate carboxylase oxygenase. Arch Biochem Biophys 227: 425–433

    PubMed  CAS  Google Scholar 

  • Kane HJ, Viil J, Entsch B, Paul K, Morell MK and Andrews TJ (1994) An improved method for measuring the CO2/O2 specificity of ribulose bisphosphate carboxylase-oxygenase. Aust J Plant Physiol 21: 449–161

    CAS  Google Scholar 

  • Kane HJ, Wilkin J-M, Portis AR, Jr. and Andrews TJ (1998) Potent inhibition of ribulose-bisphosphate carboxylase by an oxidized impurity in ribulose-1,5-bisphosphate. Plant Physiol 117: 1059–1069

    Article  PubMed  CAS  Google Scholar 

  • Kanevski I and Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91: 1969–1973

    PubMed  CAS  Google Scholar 

  • Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol 119: 133–141

    Article  PubMed  CAS  Google Scholar 

  • Kessler F, Blobel G (1996) Interaction of the protein import and folding machineries in the chloroplast. Proc Natl Acad Sci USA 93:7684–7689

    PubMed  CAS  Google Scholar 

  • King W A, Gready JE and Andrews TJ (1998) Quantum chemical analysis of the enolization of ribulose-bisphosphate: The first hurdle in the fixation of CO2 by Rubisco. Biochemistry 37: 15414–15422

    PubMed  CAS  Google Scholar 

  • Klein RR. and Houtz RL (1995) Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase oxygenase arge subunit N-methyltransferase. Plant Molecular Biology 27: 249–261

    Article  PubMed  CAS  Google Scholar 

  • Knight S, Andersson I and Bråndén C-I (1990) Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution. Subunit interactions and active site. J Mol Biol 215: 113–160

    PubMed  CAS  Google Scholar 

  • Kostov RV, Small CL and McFadden BA (1997) Mutations in a sequence near the N-terminus of the small subunit alter the CO2/O2 specificity factor for ribulose bisphosphate carboxylase/oxygenase. Photosynth Res 54: 127–134

    Article  CAS  Google Scholar 

  • Laing WA and Christeller JT (1976) A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J 159: 563–570

    PubMed  CAS  Google Scholar 

  • Laing WA, Ogren WL and Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose 1,5-bisphosphate carboxylase. Plant Physiol 54: 678–685

    CAS  Google Scholar 

  • Langer T, Lu C, Echols H, Flanagan J, Hayer MK and Hartl FU (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Larimer FW, Harpel MR and Hartman FC (1994) β-Elimination of phosphate from reaction intermediates by site-directed mutants of ribulose-bisphosphate carboxylase/oxygenase. J. Biol Chem 269: 11114–11120

    PubMed  CAS  Google Scholar 

  • Larson EM, Larimer FW and Hartman FC (1995) Mechanistic insights provided by deletion of a flexible loop at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 34: 4531–4537

    PubMed  CAS  Google Scholar 

  • Lee B and Tabita FR (1990) Purification of recombinant ribulose-1,5-bisphosphat carboxylase/oxygenase large subunits suitable for reconstitution and assembly of L8S8 enzyme. Biochemistry 29: 9352–9357

    PubMed  CAS  Google Scholar 

  • Lee B, Berka RM and Tabita FR (1991a) Mutations in the small subunit of cyanobacterial ribulose-bisphosphate carboxylase/oxygenase that modulate interactions with large subunits. J Biol Chem 266: 7417–7422

    PubMed  CAS  Google Scholar 

  • Lee B, Read BA and Tabita FR (1991 b) Catalytic properties of recombinant octameric, hexadecameric, and heterologous cyanobacterial/bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 291: 263–269

    PubMed  CAS  Google Scholar 

  • Lee EH, Harpel MR, Chen Y-R and Hartman FC (1993) Perturbation of reaction-intermediate partitioning by a site-directed mutant of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem 268: 26583–26591

    PubMed  CAS  Google Scholar 

  • Lee GJ and McFadden BA (1992) Serine-376 contributes to the binding of substrate by ribulose-bisphosphate carboxylase/oxygenase from Anacystis nidulans. Biochemistry 31: 2304–2308

    PubMed  CAS  Google Scholar 

  • Lee GJ, McDonald KA and McFadden BA (1993) Leucine 332 influences the CO2/O2 specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase from Anacystis nidulans. Protein Sci 2: 1147–1154

    PubMed  CAS  Google Scholar 

  • Lilley RM, Riesen H and Andrews TJ (1993) The source and characteristics of chemiluminescence associated with the oxygenase reaction catalyzed by Mn2+-ribulose bisphosphate carboxylase. J Biol Chem 268: 13877–13884

    PubMed  CAS  Google Scholar 

  • Lorimer GH (1979) Evidence for the existence of discrete activator and substrate sites for CO2 on ribulose-1,5-bisphosphate carboxylase. J Biol Chem 254: 5599–5601

    PubMed  CAS  Google Scholar 

  • Lorimer GH (1981) Ribulose bisphosphate carboxylase—amino-acid sequence of a peptide bearing the activator carbon dioxide. Biochemistry 20: 1236–1240

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH (1996) A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEBJ 10: 5–9

    CAS  Google Scholar 

  • Lorimer G and Hartman FC (1988) Evidence supporting lysine-166 of Rhodospirillum rubrum ribulose bisphosphate carboxylase as the essential base which initiates catalysis. J Biol Chem 263: 6468–6471

    PubMed  CAS  Google Scholar 

  • Lorimer GH, Andrews TJ and Tolbert NE (1973) Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. Biochemistry 12: 18–23

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH, Badger MR and Andrews TJ (1976) The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism and physiological implications. Biochemistry 15: 529–536

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH, Andrews TJ, Pierce J and Schloss JV (1986) 2′-carboxy-3-keto-D-arabinitol-1,5-bisphosphate, the six-carbon intermediate of the ribulose bisphosphate carboxylase reaction. Phil Trans R Soc Lond B 313: 397–407

    CAS  Google Scholar 

  • Lorimer GH, Gutteridge S and Madden M (1987) Partial reactions of ribulose bisphosphate carboxylase: Their utility in the study of mutant enzymes. In: von Wettstein D, Chua N-H (eds) Plant Molecular Biology, pp 21–31. Plenum Press, New York

    Google Scholar 

  • Lorimer GH, Chen Y-R and Hartman FC (1993) A role for the E-amino group of lysine-334 of ribulose-1,5-bisphosphate carboxylase in the addition of carbon dioxide to the 2,3-enediol(ate) of ribulose 1,5-bisphosphate. Biochemistry 32: 9018–9024

    Article  PubMed  CAS  Google Scholar 

  • Lubben T, Donaldson G, Viitanen P, Gatenby A. (1989) Several proteins imported into chloroplasts form stable complexes with the groEL-related chloroplast molecular chaperone. Plant Cell 1:1223–1230

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist T and Schneider G (1989) Crystal structure of the complex of ribulose-1,5-bisphosphate carboxylase and a transition state analogue, 2-carboxy-D-arabinitol 1,5-bisphosphate. J Biol Chem 264:7078–7083

    PubMed  CAS  Google Scholar 

  • Lundqvist T and Schneider G (1991a) Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate. J Biol Chem 266:12604–12611

    PubMed  CAS  Google Scholar 

  • Lundqvist T and Schneider G (1991b) Crystal structure of the ternary complex of ribulose-1,5-bisphosphate carboxylase, Mg(II), and activator CO2 at 2.3-Å resolution. Biochemistry 30:904–908

    Article  PubMed  CAS  Google Scholar 

  • Madgwick PJ, Parmar S and Parry MAJ (1998) Effect of mutations of residue 340 in the large subunit polypeptide of Rubisco from Anacystis nidulans. Eur J Biochem 253:476–479

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Taguchi H and Yoshida M (1993) Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP. FEBS Lett 336:363–367

    Article  PubMed  CAS  Google Scholar 

  • Martin J and Hartl F-U (1997) The effect of macromolecular crowding on chaperonin-mediated protein folding. Proc. Natl. Acad. Sci. U.S.A. 94:1107–1112

    PubMed  CAS  Google Scholar 

  • Mclntosh L, Poulsen C, Bogorad L (1980) Chloroplast gene sequence for the large subunit of ribulose bisphosphate carboxylase of maize. Nature 288:556–560

    Google Scholar 

  • Mendoza JA and Horowitz PM (1994) Bound substrate polypeptides can generally stabilize the tetradecameric structure of Cpn60 and induce its reassembly from monomers. J Biol Chem 269:25963–25965

    PubMed  CAS  Google Scholar 

  • Milos P and Roy H (1984) ATP-released large subunits participate in the assembly of ribulose bisphosphate carboxylase. J Cell Biochem 24:153–162

    Article  PubMed  CAS  Google Scholar 

  • Miziorko HM and Mildvan AS (1974) Electron paramagnetic resonance, 1H and 13C and nuclear magnetic resonance studies of the interaction of manganese and bicarbonate with ribulose 1,5-diphosphate carboxylase. J Biol Chem 249:2743–2750

    PubMed  CAS  Google Scholar 

  • Mogel SN and McFadden BA (1990) Chemiluminescence of the Mn2+-activated ribulose-1,5-bisphosphate oxygenase reaction: Evidence forsinglet oxygen production. Biochemistry 29: 8333–8337

    Article  PubMed  CAS  Google Scholar 

  • Morell MK, Paul K, O’Shea NJ, Kane HJ and Andrews TJ (1994) Mutations of anactive site threonyl residue promote β elimination and other side reactions of the enediol intermediate of the ribulose bisphosphate carboxylase reaction. J Biol Chem 269:8091–8098

    PubMed  CAS  Google Scholar 

  • Morell MK, Wilkin J-M, Kane HJ and Andrews TJ (1997) Side reactions catalyzed by ribulose-bisphosphate carboxylase in the presence and absence of small subunits. J Biol Chem 272: 5445–5451

    PubMed  CAS  Google Scholar 

  • Morse D, Salois P, Markovic P and Hastings JW (1995) A nuclear-encoded form II RuBis CO in dinoflagellates. Science 268:1622–1624

    PubMed  CAS  Google Scholar 

  • Mullet JE, Klein RR and Grossman AR (1986) Optimization of protein synthesis in isolated higher plant chloroplasts. Identification of paused translation intermediates. Eur J Biochem 155:331–338

    Article  PubMed  CAS  Google Scholar 

  • Netzer WJ and Hartl FU (1998) Protein folding in the cytosol-chaperonin-dependent and-independent mechanisms. Trends Biochem Sci 23:68–73

    Article  PubMed  CAS  Google Scholar 

  • Newman J and Gutteridge S (1993) The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase activated quaternary complex at 2.2-Å resolution. J Biol Chem 268:25876–25886

    PubMed  CAS  Google Scholar 

  • Newman J and Gutteridge S (1994) Structure of aneffectorinduced inactivated state of ribulose 1,5-bisphosphate carboxylase/oxygenase: The binary complex between enzyme and xylulose 1,5-bisphosphate. Structure 2:495–502

    PubMed  CAS  Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol 35:415–442

    Article  CAS  Google Scholar 

  • Palmqvist K, Sültemeyer D, Baldet P, Andrews TJ and Badger MR (1995) Characterisation of inorganic carbon fluxes, carbonica nhydrase(s) and ribulose-1,5-biphosphate carboxylase-oxygenase in the green unicellular alga Coccomyxa. Comparisons with low-CO2 cells of Chlamydomonas reinhardtii. Planta 197:352–361

    Article  CAS  Google Scholar 

  • Parry MAJ, Madgwick P, Parmar S, Cornelius MJ and Keys AJ (1992) Mutations in loop six of the large subunit of ribulose-1,5-bisphosphate carboxylase affect substrate specificity. Planta 187:109–112

    CAS  Google Scholar 

  • Paul K, Morell MK and Andrews TJ (1991) Mutations in the small subunit of ribulose bisphosphate carboxylase affect subunit binding and catalysis. Biochemistry 30:10019–10026

    Article  PubMed  CAS  Google Scholar 

  • Paul K, Morell MK and Andrews TJ (1993) Amino-terminal truncations of the ribulose-bisphosphate carboxylase small subunit influence catalysis and subunit interactions. Plant Physiol 102:1129–1137

    Article  PubMed  CAS  Google Scholar 

  • Pierce J, Tolbert NE and Barker R (1980) Interaction of ribulose bisphosphate carboxylase/oxygenase with transition dstate analogues. Biochemistry 19:934–942

    Article  PubMed  CAS  Google Scholar 

  • Pierce J, Andrews TJ and Lorimer GH (1986a) Reaction intermediate partitioning by ribulose-bisphosphate carboxylases with differing substrate specificities. J Biol Chem 261: 10248–10256

    PubMed  CAS  Google Scholar 

  • Pierce J, Lorimer GH and Reddy GS (1986b) Kinetic mechanism of ribulose bisphosphate carboxylase: Evidence for anordered, sequential reaction. Biochemistry 25:1636–1644

    Article  CAS  Google Scholar 

  • Pon NG, Rabin BR and Calvin M (1963) Mechanism of the carboxydismutase reaction. I. The effect of preliminary incubation of substrates, metal ion and enzyme on activity. Biochem Z 338:7–19

    PubMed  CAS  Google Scholar 

  • Portis AR, Jr. (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol 43:415–437

    Article  CAS  Google Scholar 

  • Portis AR, Jr (1995) Theregulation of Rubisco by Rubisco activase. J Exp Bot 46 (290):1285–1291

    CAS  Google Scholar 

  • Quayle JR, Fuller RC, Benson AA and Calvin M (1954) Enzymatic carboxylation of ribulose diphosphate. J Amer Chem So. 76:3610–3611

    CAS  Google Scholar 

  • Read BA and Tabita FR (1992a) A hybrid ribulose bisphosphate carboxylase/oxygenase enzyme exhibiting a substantial increase in substrate specificity factor. Biochemistry 31:5553–5560

    PubMed  CAS  Google Scholar 

  • Read BA and Tabita FR (1992b) Amino acid substitutions in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase that influence catalytic activity of the holoenzyme. Biochemistry 31:519–525

    PubMed  CAS  Google Scholar 

  • Richard JP (1984) Acid-base catalysis of the elimination and isomerization reactions of triose phosphates. J Amer Chem Soc 106:4926–4936

    CAS  Google Scholar 

  • Rose IA (1981) Chemistry of proton abstraction by glycolytic enzymes (aldolase, isomerases and pyruvate kinase). Phil Trans R Soc Lond B 293:131–143

    CAS  Google Scholar 

  • Rowan R, Whitney SM, Fowler A and Yellowlees D (1996) Rubisco in marine symbiotic dinoflagellates: Form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell 8:539–553

    Article  PubMed  CAS  Google Scholar 

  • Roy H (1989) Rubisco assembly: A model system for studying the mechanism of chaperonin action. Plant Cell 1:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Roy H (1992) Chaperonins—what do they really do?. Plant Physiol (Lif Sci Adv) 11:75–78

    Google Scholar 

  • Roy H and Gilson M (1996) Rubisco and the chaperonins. In: Passararakli M (ed) Handbook of Photosynthesis, pp 295–304. Marcel Dekker, New York

    Google Scholar 

  • Roy H, Patterson R and Jagendorf A (1976) Identification of the small subunit of ribulose-1,5-bisphosphate carboxylase as a product of wheat leaf cytoplasmic ribosomes. Arch Biochem Biophys 172:64–73

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Adari H and Costa KA (1979) Characterization of free subunits of ribulose-1,5-bisphosphate carboxylase. Plant Science Letters 16:305–318

    Article  CAS  Google Scholar 

  • Roy H, Bloom M, Milos P and Monroe M (1982) Studies on the assembly of large subunits of ribulose bisphosphate carboxylase in isolated pea chloroplasts. J Cell Biol 94:20–27

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Hubbs A and Cannon S (1988) Stability and dissociation of the large subunit RuBisCO binding protein in vitro and in organello. Plant Physiol 86:50–53

    CAS  Google Scholar 

  • Rutner A and Lane M (1967) Nonidentical subunits of ribulose diphosphate carboxylase. Biochem Biophys Res Commun 28:531–537

    Article  PubMed  CAS  Google Scholar 

  • Rye HS, Burston SG, Fenton WA, Beechem JM, Xu ZH, et al. (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME and Ogren WL (1996) The mechanism of Rubisco activase: Insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    Article  CAS  Google Scholar 

  • Schloss JV and Lorimer GH (1982) The stereochemical course of ribulose bisphosphate carboxylase-reductive trapping of the six carbon reaction-intermediate. J Biol Chem 257:4691–4694

    PubMed  CAS  Google Scholar 

  • Schmidt M, Rutkat K, Rachel R, Pfeifer G, Jaenicke R, Viitanen P, Lorimer G and Buchner J (1994) Symmetric complexes of groE chaperonins as part of the functional cycle. Science 265: 656–659

    PubMed  CAS  Google Scholar 

  • Schneider G, Knight S, Andersson I, Brändén C-I, Lindqvist Y and Lundqvist T (1990) Comparison of the crystal structures of L2 and L8S8 Rubisco suggests a functional role for the small subunit. EMBO J 9:2045–2050

    PubMed  CAS  Google Scholar 

  • Schreuder HA, Knight S, Curmi PMG, Andersson I, Cascio D, Brändén C-I and Eisenberg D (1993a) Formation of the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase by a disorder-order transition from the unactivated to the activated form. Proc Natl Acad Sci USA 90:9968–9972

    PubMed  CAS  Google Scholar 

  • Schreuder HA, Knight S, Curmi PMG, Andersson I, Cascio D, Sweet RM, Brändén C-I and Eisenberg D (1993b) Crystal structure of activated tobacco rubisco complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate. Protein Sci 2:1136–1146

    PubMed  CAS  Google Scholar 

  • Sfatos CD Gutin AM Abkevich VI and Shakhnovich El (1996) Simulations of chaperone-assisted folding. Biochemistry 35: 334–339

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Foyer CH, Dulieu H, Parry MAJ and Yokota A (1996) A point mutation in the gene encoding the Rubisco large subunit interferes with holoenzyme assembly. Plant Mol Biol 31:399–103

    Article  PubMed  CAS  Google Scholar 

  • Shivji MS, Li N and Cattolico RA (1992) Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids. Mol Gen Genet 232: 65–73

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Criddle S, Peterson L and Huffaker RC (1974) Synthesis and assembly of ribulose bisphosphate carboxylase enzyme during greening of barley plants. Arch Biochem Biophys 165:494–504

    Article  PubMed  CAS  Google Scholar 

  • Smith MD, Ghosh S, Dumbroff EB and Thompson JE (1997) Characterization of thylakoid-derived lipid-protein particles bearing the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 115:1073–1082

    PubMed  CAS  Google Scholar 

  • Spreitzer RJ (1993) Genetic dissection of Rubisco structure and function. Annu Rev Plant Physiol Plant Mol Biol 44:411–434

    Article  CAS  Google Scholar 

  • Sue JM and Knowles JR (1982) Ribulose-1,5-bisphosphate carboxylase — fate of the tritiumlabel in 3H-3-labeled ribulose 1,5-bisphosphate during the enzyme-catalyzed reaction. Biochemistry 21:5404–5410

    PubMed  CAS  Google Scholar 

  • Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 885–914. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tapia O and Andrés J (1992) Towards and explanation of the carboxylation/oxygenation bifunctionality in Rubisco. Transition structure for the carboxylation reaction of 2,3,4-pentanetriol. Mol Eng 2:37–41

    Article  CAS  Google Scholar 

  • Taylor TC and Andersson I (1996) Structural transitions during activation and ligand binding in hexadecameric Rubisco inferred from the crystal structure of the activated unliganded spinach enzyme. Nature Struct Biol 3:95–101

    Article  PubMed  CAS  Google Scholar 

  • Taylor TC and Andersson I (1997a) The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate. J Mol Biol 265:432–144

    Article  PubMed  CAS  Google Scholar 

  • Taylor TC and Andersson I (1997b) Structure of a product complex of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 36:4041–4046

    PubMed  CAS  Google Scholar 

  • Taylor TC, Fothergill MD and Andersson I (1996) A common structural basis for the inhibition of ribulose 1,5-bisphosphate carboxylase by 4-carboxyarabinitol 1,5-bisphosphate and xylulose 1,5-bisphosphate. J Biol Chem 271:32894–32899

    PubMed  CAS  Google Scholar 

  • Todd MJ, Viitanen P and Lorimer GH (1994) Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265:659–666

    PubMed  CAS  Google Scholar 

  • Todd MJ, Lorimer GH and Thirumalai D (1996) Chaperonin-facilitated protein folding—Optimization of rate and yield by an iterative annealing mechanism. Proc Natl Acad Sci USA 93:4030–4035

    Article  PubMed  CAS  Google Scholar 

  • Török Z, Vigh L and Goloubinoff P (1996) Fluorescence detection of symmetric GroEL(14)(GroES(7))(2) heterooligomers involved in protein release during the chaperonin cycle. J Biol Chem 271:16180–16186

    PubMed  Google Scholar 

  • Trown PW (1965) An improved method for the isolation of caboxydismutase. Probable identity with fraction 1 protein and the protein moiety of protochlorophyll holochrome. Biochemistry 4:908–918

    Article  PubMed  CAS  Google Scholar 

  • Tse JMT and Schloss JV (1993) The oxygenase reaction of acetolactate synthase. Biochemistry 32:10398–10403

    Article  PubMed  CAS  Google Scholar 

  • Uemura K, Anwaruzzaman, Miyachi S and Yokota A (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233:568–571

    Article  PubMed  CAS  Google Scholar 

  • Van Dyk DE and Schloss JV (1986) Deuterium isotope effects in the carboxylase reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 25:5145–5156

    Google Scholar 

  • Viitanen PV, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer GH, Gatenby A and Soll J (1995) Functional characterization of the higher plant chloroplast chaperonins. J Biol Chem 270:18158–18164

    PubMed  CAS  Google Scholar 

  • Voordouw G, De Vries PA, van den Berg WAM and De Clerck EPJ (1987) Site-directed mutagensis of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Anacystis nidulans. Eur J Biochem 163:591–598

    Article  PubMed  CAS  Google Scholar 

  • Watson GMF and Tabita FR (1997) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22

    PubMed  CAS  Google Scholar 

  • Webber AN, Nie GY and Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39:413–425

    Article  CAS  Google Scholar 

  • Weidner M and Fehling E (13985) Heat modification of ribulose-1,5-bisphosphate carboxylase/oxygenase by temperature pretreatment of wheat (Triticum aestivum L) seedlings. Planta 166:117–127

    Google Scholar 

  • Weissbach A, Smyrniotis PZ and Horecker BL (1954) Pentose phosphate and CO2 fixation with spinach extracts. J Amer Chem Soc 76:3611–3612

    CAS  Google Scholar 

  • Whitney SM and Andrews TJ (1998) The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidiniumn carterae. Aust J Plant Physiol 25: 131–138

    CAS  Google Scholar 

  • Wildman S and Bonner J (1947) The proteins of green leaves. I. Isolation, enzymatic properties, and auxin content of spinach cytoplasmic proteins. Arch Biochem 14:381–413

    CAS  Google Scholar 

  • Wildner GF, Schlitter J and Müller M (1996) Rubisco, an old challenge with new perspectives. Z Naturforsch [C] 51:263–276

    CAS  Google Scholar 

  • Wu HB, Feist GL and Hemmingsen SM (1993) A modified Escherichia coli chaperonin (GroEL) polypeptide synthesized in tobacco and targeted to the chloroplasts. Plant Mol Biol 22: 1087–1100

    PubMed  CAS  Google Scholar 

  • Xu ZH, Horwich AL and Sigler PB (1997) The crystal structure ofthe asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    PubMed  CAS  Google Scholar 

  • Yokota A (1991) Carboxylation and detoxification of xylulose bisphosphate by spinach ribulose bisphosphate carboxylase/oxygenase. Plant Cell Physiol 32:755–762

    CAS  Google Scholar 

  • Zabaleta E, Oropeza A, Assad N, Mandel A, Salerno G and Herrera-Estrella H (1994) Antisense expression of chaperonin 60βin transgenic tobacco plants leads to abnormal phenotypes and altered distribution of photoassimilates. Plant J 6:425–432

    Article  CAS  Google Scholar 

  • Zahn R, Buckle AM, Perrett S, Johnson CM, Corrales FJ, Golbik R and Fersht AR (1996) Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc Natl Acad Sci USA 93:15024–15029

    Article  PubMed  CAS  Google Scholar 

  • Zhang KYJ, Cascio D and Eisenberg D (1994) Crystal structure of the unactivated ribulose 1,5-bisphosphate carboxylase/oxygenase complexed with a transition state analog, 2-carboxy-D-arabinitol 1,5-bisphosphate. Protein Sci 3:64–69

    PubMed  CAS  Google Scholar 

  • Zhu G and Jensen RG (1991a) Xylulose 1,5-bisphosphate synthesized by ribulose 1,5-bisphosphate carboxylase/oxygenase during catalysis binds to decarbamylated enzyme. Plant Physiol 97:1348–1353

    CAS  Google Scholar 

  • Zhu G and Jensen RG (1991b) Fallover of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Decarbamylation of catalytic sites depends on pH. Plant Physiol 97:1354–1358

    CAS  Google Scholar 

  • Zhu GH, Bohnert HJ, Jensen RG and Wildner GF (1998) Formation of the tight-binding inhibitor, 3-ketoarabinitol-1,5-bisphosphate by ribulose-1,5-bisphosphate carboxylase/oxygenase is O2-dependent. Photosynth Res 55:67–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roy, H., Andrews, T.J. (2000). Rubisco: Assembly and Mechanism. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-48137-5_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48137-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6143-5

  • Online ISBN: 978-0-306-48137-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics