Light-harvesting Complexes of Plants and Algae: Introduction, Survey and Nomenclature

  • David John Simpson
  • Jürgen Knoetzel
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 4)


BChl–bacteriochlorophyll BPhe–bacterio- pheophytin Chl–chlorophyll CP–chlorophyll protein EF–exoplasmic face ELIP–early light-induced protein LHC–light-harvesting chlorophyll a/b binding LHCI-light-harvesting complex of Photosystem I LHCII–light-harvesting complex of Photosystem II PS–photosystem Rb.–Rhodobacter Rp.–Rhodopseudomonas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamska I, Kloppstech K and Ohad I (1993) Early light-inducible protein in pea is stable during light stress but is degraded during recovery at low light intensity. J Biol Chem 268: 5438–5444PubMedGoogle Scholar
  2. Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335PubMedGoogle Scholar
  3. Bassi R and Wollman FA (1991) The chlorophyll-a/b proteins of Photosystem II in Chlamydomonas reinhardtii. Planta 183: 423–433CrossRefGoogle Scholar
  4. Bassi R, Rigoni R and Giacometti GM (1990) Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol 52: 1187–1206Google Scholar
  5. Bassi R, Soen SY, Frank G, Zuber H and Rochaix JD (1992) Characterization of chlorophyll a/b proteins of Photosystem I from Chlamydomonas reinhardtii. J Biol Chem 267: 25714–25736PubMedGoogle Scholar
  6. Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212: 297–303PubMedCrossRefGoogle Scholar
  7. Boczar BA and Prezelin BB (1987) Chlorophyll-protein complexes from the red-tide dinoflagellate, Gonyaulaxpolyedra Stein. Isolation, characterization, and the effect of growth irradiance on chlorophyll distribution. Plant Physiol 83: 805–812PubMedCrossRefGoogle Scholar
  8. Boekema EJ, Wynn RM and Malkin R (1990) The structure of spinach Photosystem I studied by electron microscopy. Biochim Biophys Acta 1017: 49–56Google Scholar
  9. Bruce BD and Malkin R (1988) Subunit stoichiometry of the chloroplast Photosystem I complex. J Biol Chem 263: 7302–7308PubMedGoogle Scholar
  10. Bylina EJ and Youvan DC (1988) Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Nat Acad Sci 85: 7226–7230PubMedCrossRefGoogle Scholar
  11. Bylina EJ, Kirmaier C, McDowell L, Holten D and Youvan DC (1988) Influence of an amino-acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction center complex. Nature 336: 182–184CrossRefGoogle Scholar
  12. Cammarata KV, Plumley FG and Schmidt GW (1992) Pigment and protein composition of reconstituted light-harvesting complexes and effects of some protein modifications. Photosynth Res 33: 235–250CrossRefGoogle Scholar
  13. Dainese P and Bassi R (1991) Subunit stoichiometry of the chloroplast Photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. J Biol Chem 266: 8136–8142PubMedGoogle Scholar
  14. Dainese P, Marquardt J, Pineau B and Bassi R (1992a) Identification of violaxanthin and zeaxanthin binding proteins in maize Photosystem II. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 287–290. Kluwer, DordrechtGoogle Scholar
  15. Dainese P, Santini C, Ghiretti-Magaldi A, Marquardt J, Tidu V, Mauro S, Bergantino E and Bassi R (1992b) The organization of pigment-proteins within Photosystem II. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 13–20. Kluwer, DordrechtGoogle Scholar
  16. Fawley MW (1993) Structure of a prasinoxanthin-chlorophyll a/b light-harvesting complex of the green flagellate Pseudoscourfieldia marina (Micromonadophyceaea) Biochim Biophys Acta 1183: 85–90Google Scholar
  17. Fowler GJS, Visschers RW, Grief GG, van Grondelle R and Hunter NC (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355: 848–850PubMedGoogle Scholar
  18. Glazer AN (1983) Comparative biochemistry of photosynthetic light-harvesting systems. Ann Rev Biochem 52: 125–157PubMedGoogle Scholar
  19. Golbeck JH and Bryant DA (1991) Photosystem I. Curr Top Bioenerg 16: 83–177Google Scholar
  20. Green BR, Pichersky E and Kloppstech K (1991) Chlorophyll a/b-binding proteins: An extended family. TIBS 16: 181–186PubMedGoogle Scholar
  21. Green BR, Durnford D, Aebersold R and Pichersky E (1992) Evolution of structure and function in the Chl a/b and Chl a/c antenna protein family. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 195–202. Kluwer, DordrechtGoogle Scholar
  22. Grossman A, Manodori A and Snyder D (1990) Light-harvesting proteins of diatoms: Their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into chloroplasts. Mol Gen Genet 224: 91–100PubMedCrossRefGoogle Scholar
  23. Gruszecki WI and Krupa Z (1993) LHCII, the major light-harvesting pigment-protein complex is a zeaxanthin epoxidase. Biochim Biophys Acta 1144: 97–101Google Scholar
  24. Harrison MA and Allen JF (1992) Protein phosphorylation and Mg2+ influence light harvesting and electron transport in chloroplast thylakoid membrane material containing only the chlorophyll-a/b-binding light-harvesting complex of Photosystem II and Photosystem I. Eur J Biochem 204: 1107–1114PubMedCrossRefGoogle Scholar
  25. Hiller RG and Martin CD (1987) Multiple forms of a type I phycoerythrin from a Chroomonas sp. (Cryptophyceae) varying in subunit composition. Biochim Biophys Acta 923: 98–102Google Scholar
  26. Holzenburg A, Bewley MC, Wilson FH, Nicholson WV and Ford RC (1993) Three-dimensional structure of Photosystem II. Nature 363: 470–472CrossRefGoogle Scholar
  27. Holzwarth AR (1991) Structure-function relationships and energy transfer in phycobiliprotein antennae. Physiol Plant 83: 518–528CrossRefGoogle Scholar
  28. Houlné G and Schantz R (1988) Characterization of cDNA sequences for LHCI apoproteins in Euglena gracilis: The mRNA encodes a large precursor containing several consecutive divergent polypeptides. Mol Gen Genet 213: 479–486PubMedGoogle Scholar
  29. Huber R (1990) A structural basis of light energy and electron transfer in biology. Eur J Biochem 187: 283–305PubMedCrossRefGoogle Scholar
  30. Ikeuchi M, Hirano A and Inoue Y (1991) Correspondence of apoproteins of light-harvesting chlorophyll a/b complexes associated with Photosystem I to cab genes: Evidence for a novel type IV apoprotein. Plant Cell Physiol 32: 103–112Google Scholar
  31. Imbault P, Wittemer C, Johanningmeier U, Jacobs JD and Howell SH (1988) Structure of the Chlamydomonas reinhardtii cabII-1 gene encoding a chlorophyll-a/b-binding protein. Gene 73: 397–407PubMedCrossRefGoogle Scholar
  32. Irrgang KD, Kablitz B, Vater J and Renger G (1993) Identification, isolation and partial characterisation of a 14–15 kDa pigment binding protein complex of PS II from spinach. Biochim Biophys Acta 1143: 173–182Google Scholar
  33. Jahns P and Junge W (1993) Another role of chlorophyll a/b binding proteins of higher plants: They modulate protolytic reactions associated with Photosystem II. Photochem Photobiol 57: 120–124Google Scholar
  34. Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19PubMedGoogle Scholar
  35. Jansson S, Pichersky E, Bassi R, Green BR, Ikeuchi M, Melis A, Simpson DJ, Spangfort M, Staehelin LA and Thornber JP (1992) A nomenclature for the genes encoding the chlorophyll a/b-binding proteins of higher plants. Plant Mol Biol 10: 242–253Google Scholar
  36. Jennings RC, Bassi R, Garlaschi FM, Dainese P and Zucchelli G (1993) Distribution of the chlorophyll spectral forms of the chlorophyll-protein complexes of photosystem antenna. Biochemistry 32: 3203–3210PubMedGoogle Scholar
  37. Katoh T, Mimuro M and Takaichi S (1989) Light-harvesting particles isolated from a brown alga, Dictyota dichotoma. A supramolecular assembly of fucoxanthin-chlorophyll-protein complexes. Biochim Biophys Acta 976: 233–240Google Scholar
  38. Kim S, Sandusky P, Bowlby NR, Aebersold R, Green BR, Vlahakis S, Yocum CF and Pichersky E (1992) Characerization of a spinach psbS cDNA encoding the 22 kDa protein of Photosystem II FEBS Lett 314: 67–71PubMedGoogle Scholar
  39. Knoetzel J and Rensing L (1990) Characterization of the photosynthetic apparatus from the marine dinoflagellate Gonyaulax polyedra I. Pigment and polypeptide composition of the pigment-protein complexes. J Plant Physiol 136: 271–279Google Scholar
  40. Knoetzel J and Simpson DJ (1991) Expression and organisation of antenna proteins in the light-and temperature-sensitive mutant chlorina-104 Planta 185: 111–123CrossRefGoogle Scholar
  41. Knoetzel J, Braumann T and Grimme LH (1988) Pigment-protein complexes of green algae: Improved methodological steps for the quantification of pigments in pigment-protein complexes derived from the green algae Chlorella and Chlamydomonas. J Photochem Photobiol B Biol 1: 475–491Google Scholar
  42. Knoetzel J, Svendsen I and Simpson DJ (1992) Identification of the Photosystem I antenna polypeptides in barley. Isolation of three pigment binding antenna complexes. Eur J Biochem 206: 209–215PubMedCrossRefGoogle Scholar
  43. Koka P and Song PS (1977) The chromatophore topography and binding environment of peridinin-chlorophyll a-protein complexes from marine dinoflagellate algae. Biochim Biophys Acta 495: 220–231PubMedGoogle Scholar
  44. Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of system-I of photosynthesis at 6 Å resolution. Nature 361: 326–331CrossRefGoogle Scholar
  45. Kühlbrandt W and Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350: 130–134PubMedGoogle Scholar
  46. Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621PubMedGoogle Scholar
  47. Levy H, Gokhman I and Zamir A (1992) Regulation and light-harvesting complex II association of a Dunaliella protein homologous to early light-induced proteins in higher plants. J Biol Chem 267: 18831–18836PubMedGoogle Scholar
  48. Lyon MK, Marr KM and Furcinitti PS (1993) Formation and characterization of two-dimensional crystals of Photosystem II. J Struct Biol 110: 133–140PubMedCrossRefGoogle Scholar
  49. Matthews BW, Fenna RE, Bolognesi MC, Schmidt MF and Olson JM (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131: 259–285PubMedCrossRefGoogle Scholar
  50. Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87–106Google Scholar
  51. Meyer M and Wilhelm C (1993) Reconstitution of light-harvesting complexes from Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). Z Naturforsch 48c: 461–473Google Scholar
  52. Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7CrossRefGoogle Scholar
  53. Mörschel E (1991) The light-harvesting antennae of cyanobacteria and red algae. Photosynthetica 25: 137–144Google Scholar
  54. Mullet JE, Burke JJ and Arntzen CJ (1980) Chlorophyll-proteins of Photosystem I. Plant Physiol 65: 814–822PubMedGoogle Scholar
  55. Olive J, M’Bina I, Vernotte C, Astier C and Wollman FA (1986) Randomization of the EF particles in thylakoid membranes of Synechocystis 6714 upon transition from state I to state II. FEBS Lett 208: 308–312CrossRefGoogle Scholar
  56. Paulsen H and Hobe S (1992) Pigment-binding properties of mutant light-harvestingchlorophyll-a/b-bindingprotein. Eur J Biochem 205: 71–76PubMedCrossRefGoogle Scholar
  57. Peter GF and Thornber JP (1991) Biochemical composition and organization of higher plant Photosystem II light-harvesting pigment-proteins. J Biol Chem 266: 16745–16754PubMedGoogle Scholar
  58. Piechulla B (1993) ‘Circadian clock’ directs the expression of plant genes. Plant Mol Biol 22: 533–542PubMedCrossRefGoogle Scholar
  59. Plumley FG and Schmidt GW (1987) Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci 84: 146–150PubMedGoogle Scholar
  60. Plumley FG, Martinson TA, Herrin DL, Ikeuchi M and Schmidt GW (1993) Structural relationships of the Photosystem I and Photosystem II chlorophyll a/b and a/c light harvesting apoproteins of plants and algae. Photochem Photobiol 57: 143–151Google Scholar
  61. Post AF, Ohad I, Warner KM and Bullerjahn GS (1993) Energy distribution between Photosystems I and II in the photosynthetic prokaryote Prochlorothrix hollandica involves a chlorophyll a/b antenna which associates with Photosystem I. Biochim Biophys Acta 1144: 374–384Google Scholar
  62. Rhiel E and Mörschel E (1993) The atypical chlorophyll a/b/c light-harvesting complex of Mantoniella squamata: Molecular cloning and sequence analysis. Mol Gen Genet 240: 403–413PubMedGoogle Scholar
  63. Rhiel E, Kunz J and Wehrmeyer W (1989) Immunocytochemical localization of phycoerythrin-545 and of a chlorophyll a/c light harvesting complex in Cryptomonas maculata (Cryptohyceae) Bot Acta 102: 46–53Google Scholar
  64. Sauer K (1986) Photosynthetic light reactions-physical aspects. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Vol 19, Photosynthesis III (New Series), pp 85–97. Springer, BerlinGoogle Scholar
  65. Schiff JA, Schwartzbach SD, Osafune T and Hase E (1991) Photocontrol and processing of LHCPII apoprotein in Euglena: Possible role of Golgi and other cytoplasmic sites. J Photochem Photobiol B Biol 11: 219–236Google Scholar
  66. Schirmer T, Bode W, Huber R, Sidler W and Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184: 257–277PubMedCrossRefGoogle Scholar
  67. Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811: 325–355Google Scholar
  68. Simpson DJ (1986) Freeze-fracture studies of mutant barley chloroplast membranes. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Vol 19, Photosynthesis III (New Series), pp 85–97. Springer, BerlinGoogle Scholar
  69. Simpson DJ (1988) Low temperature absorption spectroscopy of barley mutants. Gaussian deconvolution and fourth derivative analysis. Carlsberg Res Commun 53: 343–356CrossRefGoogle Scholar
  70. Spangfort M and Andersson B (1989) Subpopulations of the main chlorophyll a/b light-harvesting complex of Photosystem II-isolation and biochemical characterization. Biochim Biophys Acta 977: 163–170Google Scholar
  71. Staehelin LA and Arntzen CJ (eds) (1986) Encyclopedia of Plant Physiology, Vol 19, Photosynthesis III (New Series), Springer, BerlinGoogle Scholar
  72. Thornber JP (1975) Chlorophyll proteins: Light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26: 127–158CrossRefGoogle Scholar
  73. Vesk M, Dwarte D, Fowler S and Hiller RG (1992) Freeze fracture immunocytochemistry of light-harvesting pigment complexes in a cryptophyte. Protoplasma 170: 166–176CrossRefGoogle Scholar
  74. Wolfe GR, Cunningham FX, Durnford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568CrossRefGoogle Scholar
  75. Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83: 702–708CrossRefGoogle Scholar
  76. Zuber H (1985) Structure and function of light-harvesting complexes and their polypeptides. Photochem Photobiol 42: 821–844Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • David John Simpson
    • 1
  • Jürgen Knoetzel
    • 2
  1. 1.Department of PhysiologyCarlsberg LaboratoryCopenhagen ValbyDenmark
  2. 2.Institute of Cell Biology, Biochemistry and BiotechnologyUniversity of BremenBremenGermany

Personalised recommendations