Synthesis of Nanoparticles in Microemulsions

  • M. A. López-Quintela
  • J. Rivas
  • M. C. Blanco
  • C. Tojo

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    see e.g., Handbook of Microemulsion Science and Technolgy, edited by P. Kumar and K. L. Mittal (Marcel Dekker, New York, 1999) Part III, 457–742; Reactions and Synthesis in Surfactant Systems, edited by J. Texter (Surfactant Science Series, Vol.100, Marcel Dekker, 2001) Part IV, 577–665; and references therein.Google Scholar
  2. 2.
    M. Boutonnet, J. Kizling, P. Stenius, and G. Maire, The preparation of monodisperse colloidal metal particles from microemulsions, Colloids Surf. 5, 209–225 (1982).CrossRefGoogle Scholar
  3. 3.
    P.D.I. Fletcher, A.M. Howe, and B.H. Robinson, The Kinetics of Solubilisate Exchange between water droplets of a water-in-oil microemulsion, J. Chem. Soc., Faraday Trans. 1 83, 985–1006 (1987).Google Scholar
  4. 4.
    M. A. López-Quintela, J. Samios, and W. Knoche, Steric hindrance of diffusion-controlled reactions, J. Mol. Liq. 29, 243–261 (1984).Google Scholar
  5. 5.
    A. M. North, The Collision Theory of Chemical Reactions in Liquids (Methuen, London, 1964).Google Scholar
  6. 6.
    R. M. Fuoss, Ionic association III. The equilibrium between ion pairs and free ions, J. Am. Chem. Soc. 80, 5059–5061 (1958).Google Scholar
  7. 7.
    J. L. Gebicki and L. Gebicka, Intermicellar material exchange and droplet clustering in AOT reverse micellar systems. A pulse radiolysis study of (SCN)2 radical anion spectra and decay, J. Phys. Chem. 101, 10828–10832 (1997).Google Scholar
  8. 8.
    S. S. Atik and J. K. Thomas, Transport of photoreduced ions in water in oil microemulsions: movement of ions from one water pool to another, J. Am. Chem. Soc. 103, 3543–3550 (1981).Google Scholar
  9. 9.
    Y. Alexandrov, N. Kozlovich, and Y. Feldman, Dielectric spectroscopy of cosurfactant facilitated percolation in reverse microemulsions, J. Chem. Phys. 111, 7023–7028 (1999).Google Scholar
  10. 10.
    T. F. Towey, A. N. Khan-Lodhi, and B. H. Robinson, Kinetics and mechanism of formation of quantum-sized cadmium sulphide particles in water-aerosol-OT-microemulsions, J. Chem. Soc., Faraday Trans. 86, 3757–3762 (1990).CrossRefGoogle Scholar
  11. 11.
    D. Langevin and J. Meunier, in: Physicochemical Hydrodynamics. Interfacial Phenomena, edited by M. G. Velarde (NATO ASI Series, series B, Physics Vol.174, Plenum Press, New York, 1988) pp. 147–162.Google Scholar
  12. 12.
    R. P. Bagwe and K. C. Khilar, Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT, Langmuir 13, 6432–6438 (1997).CrossRefGoogle Scholar
  13. 13.
    M. P. Pileni, Water in oil colloidal droplets used as microreactors, Adv. Colloid Interface Sci. 46, 139–163 (1993).CrossRefGoogle Scholar
  14. 14.
    J. F. Rivadulla, M. C. Vergara, M. C. Blanco, M. A. López-Quintela, and J. Rivas, Optical properties of platinum particles synthesized in microemulsions, J. Phys. Chem. B 101, 8997–9004 (1997).CrossRefGoogle Scholar
  15. 15.
    V. Chhabra, M. Lal, A. N Maitra, and P. Ayyub, Preparation of ultrafine high density gamma ferric oxide using aerosol OT microemulsions and its characterization, Colloid Polym. Sci. 273, 939–946 (1995).CrossRefGoogle Scholar
  16. 16.
    M. A. López-Quintela and J. Rivas, Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles, J. Colloid Interface Sci. 158, 446–451 (1993).Google Scholar
  17. 17.
    C. Petit, P. Lixon, and M. P. Pileni, Synthesis of cadmium sulfide in situ reverse micelles. 2. Influence of the interface on the growth of the particles, J. Phys. Chem. 94, 1598–1603 (1990).Google Scholar
  18. 18.
    Y. De Smet, L. Deriemaecker, and R. Finsy, A Simple computer simulation of Ostwald ripening, Langmuir 13, 6884–6888 (1997).Google Scholar
  19. 19.
    L. Taisne and B. Cabane, Emulsification and ripening following a temperature quench, Langmuir, 14, 4744–4752 (1998).CrossRefGoogle Scholar
  20. 20.
    M. P. Pileni, I. Lisiecki, L. Motte, C. Petit, J. Cizeron, N. Moumen, and P. Lixon, Synthesis “in situ” of nanopartciles in reverse micelles, Progr. Colloid Polym. Sci. 93, 1–9 (1993).Google Scholar
  21. 21.
    M. Wu, D. Chen and T. Huang, Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions, J. Colloid Interface Sci. 243, 102–108(2001).Google Scholar
  22. 22.
    S. Qiu, J. Dong and G. Chen, Preparation of Cu nanoparticles from water-in-oil microemulsions, J. Colloid Interface Sci. 216, 230–234 (1999).CrossRefGoogle Scholar
  23. 23.
    D. Chen and S. Wu, Synthesis of nickel nanoparticles in water-in-oil microemulsions, Chem. Mater. 12, 1354–1360 (2000).Google Scholar
  24. 24.
    C. Tojo, M. C. Blanco, and M. A. López-Quintela, Preparation of nanoparticles in microemulsions: a Monte Carlo study of the influence of the synthesis variables, Langmuir 13, 4527–4537 (1997).Google Scholar
  25. 25.
    C. Tojo, M. C. Blanco, and M. A. López-Quintela, Microemulsions as microreactors: a Monte Carlo simulation on the synthsis of particles, J. Non-Cryst. Solids 235–237, 688–691 (1998).CrossRefGoogle Scholar
  26. 26.
    M. Kotlarchyk, S. H. Chen, J. S. Huang, and M. W. Kim, Structure of three component microemulsions in the critical region determined by small-angle neutron scattering, Phys. Rev. A 29, 2054–2069 (1984).Google Scholar
  27. 27.
    G. X. Cheng, F. Shen, L. F. Yang, L. R. Ma, Y. Tang, K. D. Yao, and P. C. Sun, On properties and structure of the AOT-water-isooctane reverse micellar microreactor for nanoparticles, Mater. Chem. Phys. 56, 97–101 (1998).Google Scholar
  28. 28.
    J. Tanori, and M. P. Pileni, Control of the shape of copper metallic particles by using a colloidal system as template, Langmuir 13, 639–646 (1997).Google Scholar
  29. 29.
    A. Khan-Lodhi, B. H. Robinson, T. Towey, C. Hermann, W. Knoche, and U. Thesing, in: The Structure, Dynamics and Equilibrium Properties of Colloidal Systems, edited by D. M. Bloor and E. Wyn-Jones (NATO ASI Series C, Kluwer Academic Publishers, Dordrecht, 1990) vol.324, pp. 373–383.Google Scholar
  30. 30.
    G. D. Rees, R. Evans-Gowing, S. J. Hammond, and B. H. Robinson, Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions, Langmuir 15, 1993–2002 (1999).CrossRefGoogle Scholar
  31. 31.
    C. Tojo, M. C. Blanco, and M. A. López-Quintela, in: Non-Crystalline andNanoscale Materials, edited by J. Rivas and M.A. López-Quintela (World Scientific Publisher, Singapore, 1998), pp. 451–456.Google Scholar
  32. 32.
    S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, and W. Tan, Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants, Langmuir 17, 2900–2906 (2001).CrossRefGoogle Scholar
  33. 33.
    Ph. Monnoyer, A. Fonseca, and J. B. Nagy, Preparation of colloidal AgBr particles from microemulsions, Colloids Surf. 100, 233–243 (1995).Google Scholar
  34. 34.
    Y. Li, and C.-W. Park, Particle size distribution in the synthesis of nanoparticles using microemulsions, Langmuir 15, 952–956 (1999).Google Scholar
  35. 35.
    U. Natarajan, K. Handique, A. Mehra, J. R. Bellare, and K. C. Khilar, Ultrafine metal particle formation in reverse micellar systems: effects of intermicellar exchange on the formation of particles, Langmuir 12, 2670–2678 (1996).CrossRefGoogle Scholar
  36. 36.
    C. Tojo, F. Rivadulla, M. C. Blanco, and M. A. López-Quintela, Kinetics of the formation of particles in microemulsions, Langmuir 13, 1970–1977 (1997).Google Scholar
  37. 37.
    C. Tojo, M. C. Blanco, and M. A. López-Quintela, A computer simulation on the synthesis of nanoparticles in microemulsions, Curr. Topics in Coll. & Inter. Sci. 4, 103–112 (2001).Google Scholar
  38. 38.
    C. Tojo, M. C. Blanco, and M. A. López-Quintela, Synthesis of nanoparticles in microemulsions: a simulation study, Recent Res. Devel. Non-Cryst. Solids 2, in press (2002).Google Scholar
  39. 39.
    C. Tojo, M. C. Blanco, and M. A. López-Quintela, The influence of reactant excess and film flexibility on the mechanism of nanoparticle formation in microemulsions: a Monte Carlo simulation, Langmuir 14, 6835–6839 (1998).Google Scholar
  40. 40.
    S. Quintillán, C. Tojo, M. C. Blanco, and M. A. López-Quintela, Effects of the intermicellar exchange on the size control of nanoparticles synthesized in microemulsions, Langmuir 17, 7251–7254 (2001).Google Scholar
  41. 41.
    C. Petit, P. Lixon, and M. P. Pileni, In situ synthesis of silver nanoclusters in AOT reverse micelles, J. Phys. Chem. 97, 12974–12983 (1993).Google Scholar
  42. 42.
    C. Tojo, M. C. Blanco, and M. A. López-Quintela, in preparation.Google Scholar
  43. 43.
    I. Lisiecki and M. P. Pileni, Copper metallic particles synthesized “in situ” in reverse micelles: influence of various parameters on the size of the particles, J. Phys. Chem. 99, 5077–5082 (1995).Google Scholar
  44. 44.
    R. P. Bagwe and K. C. Khilar, Effects on the intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT, Langmuir 16, 905–910 (2000).CrossRefGoogle Scholar
  45. 45.
    L. Liz, M. A. López-Quintela, J. Mira, and J. Rivas, Preparation of colloidal Fe3O4 ultrafine particles in microemulsions, J Mater. Sci. 29, 3797–3801 (1994).CrossRefGoogle Scholar
  46. 46.
    M. A. López-Quintela and J. Rivas, in preparation.Google Scholar
  47. 47.
    S. S. P. Parkin, A. Mansour, and G. P. Felcher, Antiferromagnetic interlayer exchange coupling in sputtered iron/chromium multilayers: dependence on number of iron layers, Appl. Phys. Lett. 58, 1473–1475 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. A. López-Quintela
    • 1
  • J. Rivas
    • 2
  • M. C. Blanco
    • 1
  • C. Tojo
    • 3
  1. 1.Dept. of Physical ChemistryUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Dept. of Applied PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Dept. of Physical ChemistryUniversity of VigoVigoSpain

Personalised recommendations