Skip to main content

Three-Dimensional Photonic Crystals Made from Colloids

  • Chapter
Nanoscale Materials

5. Conclusions

In this chapter the fabrication and optical properties of three-dimensional photonic crystals made from colloids has been described. Recent progress has led to the preparation of photonic crystals with a high degree of order and a low defect density. Combination with templating methods has made it possible to achieve the high refractive index contrasts needed for useful photonic applications. The use of core-shell type composite particles or anisotropic particles to tune and improve photonic properties holds great promise for future research. In order to build actual photonic devices with colloidal crystals it will be necessary to insert lattice defects with a high degree of control. This is a much more challenging task in crystals formed by self-assembly than in those made by lithographic techniques. One way of reaching this goal was recently demonstrated by writing waveguide structures into a self-assembled crystal using multi-photon polymerization in a confocal microscope.208 External control is another important requirement. Indeed, switching of photonic crystals with electric fields has been achieved by filling colloidal crystals with liquid crystals.209 These examples show that self-assembly of colloidal particles is a powerful way of fabricating three-dimensional photonic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. S. Hachisu, Y. Kobayashi, and A. Kose, Phase separation in monodisperse latices, J. Colloid Interface Sci. 42, 342–348 (1973).

    Article  CAS  Google Scholar 

  2. S. Hachisu and Y. Kobayashi, Kirkwood-Alder transition in monodisperse latexes. II. Aqueous latexes of high electrolyte concentration, J. Colloid Interface Sci. 46, 470–476 (1974).

    Article  CAS  Google Scholar 

  3. P. N. Pusey and W. van Megen, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature 320, 340–342 (1986).

    Article  CAS  Google Scholar 

  4. J. V. Sanders, Colour of precious opal, Nature 204, 1151–1153 (1964).

    Google Scholar 

  5. J. B. Jones, J. V. Sanders, and E. R. Segnit, Structure of opal, Nature 204, 990–991 (1964).

    CAS  Google Scholar 

  6. J. V. Sanders and M. J. Murray, Ordered arrangements of spheres of two different sizes in opal, Nature 275, 201–202 (1978).

    Article  CAS  Google Scholar 

  7. P. L. Flaugh, S. E. O’Donnell, and S. A. Asher, Development of a new optical wavelength rejection filter: demonstration of its utility in Raman spectroscopy, Appl. Spectrosc. 38, 847–850 (1984).

    Article  CAS  Google Scholar 

  8. G. S. Pan, R. Kesavamoorthy, and S. A. Asher, Optically nonlinear Bragg diffracting nanosecond optical switches, Phys. Rev. Lett. 78, 3860–3863 (1997).

    Article  CAS  Google Scholar 

  9. J. H. Holtz and S. A. Asher, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 389, 829–832 (1997).

    CAS  Google Scholar 

  10. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  11. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  CAS  Google Scholar 

  12. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band-structure — the face-fentered-fubic fase employing nonspherical atoms, Phys. Rev. Lett. 67, 2295–2298 (1991).

    CAS  Google Scholar 

  13. C. M. Soukoulis (Ed.), Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, Dordrecht, The Netherlands, 2001).

    Google Scholar 

  14. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths, Nature 394, 251–253 (1998).

    Article  CAS  Google Scholar 

  15. J. G. Fleming and S. Y. Lin, Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm, Opt. Lett. 24, 49–51 (1999).

    CAS  Google Scholar 

  16. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science 289, 604–606 (2000).

    Article  CAS  Google Scholar 

  17. I. I. Tarhan and G. H. Watson, Photonic band structure of fcc colloidal crystals, Phys. Rev. Lett. 76, 315–318 (1996).

    Article  CAS  Google Scholar 

  18. W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, Strong effects of photonic band structures on the diffraction of colloidal crystals, Phys. Rev. B 53, 16231–16235 (1996).

    CAS  Google Scholar 

  19. W. H. Zachariasen, Theory of X-Ray Diffraction in Crystals (Wiley, New York, 1945).

    Google Scholar 

  20. R. W. James, The Optical Principles of the Diffraction of X-Rays (G. Bell & Sons, London, 1948).

    Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  22. A. Moroz and C. Sommers, Photonic band gaps of three-dimensional face-centred cubic lattices, J. Phys. Cond. Matter 11, 997–1008 (1999).

    CAS  Google Scholar 

  23. R. Sprik, B. A. VanTiggelen, and A. Lagendijk, Optical emission in periodic dielectrics, Europhys. Lett. 35, 265–270 (1996).

    Article  CAS  Google Scholar 

  24. K. Busch and S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E 58, 3896–3908 (1998).

    Article  CAS  Google Scholar 

  25. K. M. Leung and Y. F. Liu, Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media, Phys. Rev. Lett. 65, 2646–2649 (1990).

    Article  CAS  Google Scholar 

  26. Z. Zhang and S. Satpathy, Electromagnetic wave propagation in periodic structures — Bloch wave solution of Maxwell equations, Phys. Rev. Lett. 65, 2650–2653 (1990).

    CAS  Google Scholar 

  27. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152–3155 (1990).

    CAS  Google Scholar 

  28. H. S. Sozuer, J. W. Haus, and R. Inguva, Photonic bands — Convergence problems with the plane-wave method, Phys. Rev. B 45, 13962–13972 (1992).

    Google Scholar 

  29. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Donor and acceptor modes in photonic band-structure, Phys. Rev. Lett. 67, 3380–3383 (1991).

    CAS  Google Scholar 

  30. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Photonic bound-states in periodic dielectric materials, Phys. Rev. B 44, 13772–13774 (1991).

    Google Scholar 

  31. J. B. Pendry and A. Mackinnon, Calculation of photon dispersion-relations, Phys. Rev. Lett. 69, 2772–2775 (1992).

    Article  CAS  Google Scholar 

  32. J. B. Pendry, Calculating photonic band structure, J. Phys. Cond. Matt. 8, 1085–1108 (1996)

    CAS  Google Scholar 

  33. A. Moroz, Density-of-states calculations and multiple-scattering theory for photons, Phys. Rev. B 51, 2068–2081 (1995).

    Article  CAS  Google Scholar 

  34. N. Stefanou, V. Karathanos, and A. Modinos, Scattering of electromagnetic-waves by periodic structures, J. Phys. Cond. Matt. 4, 7389–7400 (1992).

    Google Scholar 

  35. V. Yannopapas, N. Stefanou, and A. Modinos, Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals, J. Phys. Cond. Matt. 9, 10261–10270 (1997).

    CAS  Google Scholar 

  36. N. Stefanou, V. Yannopapas, and A. Modinos, MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals, Comput. Phys. Commun. 132, 189–196 (2000).

    CAS  Google Scholar 

  37. A. Taflove, Computational Electrodynamics. The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

    Google Scholar 

  38. P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, Dynamical Bragg-diffraction from crystalline colloidal arrays, J. Chem. Phys. 91, 4932–4941 (1989).

    Article  CAS  Google Scholar 

  39. Y. Monovoukas, G. G. Fuller, and A. P. Gast, Optical anisotropy in colloidal crystals. J. Chem. Phys. 93, 8294–8299 (1990).

    Article  CAS  Google Scholar 

  40. Y. Monovoukas and A. P. Gast, A study of colloidal crystal morphology and orientation via polarizing microscopy, Langmuir 7, 460–468 (1991).

    Article  CAS  Google Scholar 

  41. K. W. K. Shung and Y. C. Tsai, Surface effects and band measurements in photonic crystals, Phys. Rev. B 48, 11265–11269 (1993).

    Article  Google Scholar 

  42. I. I. Tarhan and G. H. Watson, Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation, Phys. Rev. B 54, 7593–7597 (1996).

    CAS  Google Scholar 

  43. D. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L. Colvin, Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation, J. Chem. Phys. 111, 345–354 (1999).

    Article  CAS  Google Scholar 

  44. G. S. Pan, A. K. Sood, and S. A. Asher, Polarization dependence of crystalline colloidal array diffraction, J. Appl. Phys. 84, 83–86 (1998).

    CAS  Google Scholar 

  45. S. Satpathy, Z. Zhang, and M. R. Salehpour, Theory of photon bands in 3-dimensional periodic dielectric structures, Phys. Rev. Lett. 64, 1239–1242 (1990).

    Article  CAS  Google Scholar 

  46. K. M. Leung and Y. F. Liu, Photon band structures — The plane-wave method, Phys. Rev. B 41, 10188–10190 (1990).

    Article  Google Scholar 

  47. M. S. Thijssen, R. Sprik, J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, Inhibited light propagation and broadband reflection in photonic air-sphere crystals, Phys. Rev. Lett. 83, 2730–2733 (1999).

    Article  CAS  Google Scholar 

  48. Y. A. Vlasov, M. Deutsch, and D. J. Norris, Single-domain spectroscopy of self-assembled photonic crystals, Appl. Phys. Lett. 76, 1627–1629 (2000).

    Article  CAS  Google Scholar 

  49. J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals, Phys. Rev. Lett. 83, 300–303 (1999).

    Article  CAS  Google Scholar 

  50. K. P. Velikov, A. Moroz, and A. van Blaaderen, Photonic crystals of core-shell colloidal particles, Appl. Phys. Lett. 80, 49–51 (2002).

    Article  CAS  Google Scholar 

  51. W. L. Vos and H. M. van Driel, Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap, Phys. Lett. A 272, 101–106 (2000).

    Article  CAS  Google Scholar 

  52. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Measurement of photonic band-structure in a 2-dimensional periodic dielectric array, Phys. Rev. Lett. 68, 2023–2026 (1992).

    CAS  Google Scholar 

  53. K. Sakoda, Group-theoretical classification of eigenmodes in three-dimensional photonic lattices, Phys. Rev. B 55, 15345–15348 (1997).

    Article  CAS  Google Scholar 

  54. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, On-chip natural assembly of silicon photonic bandgap crystals, Nature 414, 289–293 (2001).

    Article  CAS  Google Scholar 

  55. P. Pieranski, Colloidal crystals, Contemp. Phys. 24, 25–73 (1983).

    CAS  Google Scholar 

  56. T. Yoshiyama, I. Sogami, and N. Ise, Kossel line analysis on colloidal crystals in semidilute aqueous solutions, Phys. Rev. Lett. 53, 2153–2156 (1984).

    Article  CAS  Google Scholar 

  57. T. Yoshiyama and I. S. Sogami, Kossel images as direct manifestations of the gap structure of the dispersion surface for colloidal crystals, Phys. Rev. Lett. 56, 1609–1612 (1986).

    Article  CAS  Google Scholar 

  58. R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, Photonic band structure of bcc colloidal crystals, Phys. Rev. B 55, 9503–9507 (1997).

    CAS  Google Scholar 

  59. S. John and J. Wang, Quantum electrodynamics near a photonic band-gap — Photon bound-states and dressed atoms, Phys. Rev. Lett. 64, 2418–2421 (1990).

    Article  CAS  Google Scholar 

  60. S. John and J. Wang, Quantum optics of localized light in a photonic band-gap, Phys. Rev. B 43, 12772–12789 (1991).

    Google Scholar 

  61. Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, Existence of a photonic pseudogap for visible light in synthetic opals, Phys. Rev. B 55, 13357–13360 (1997).

    Article  Google Scholar 

  62. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, Photonic band gap phenomenon and optical properties of artificial opals, Phys. Rev. E 55, 7619–7625 (1997).

    Article  CAS  Google Scholar 

  63. S. G. Romanov, A. V. Fokin, V. I. Alperovich, N. P. Johnson, and R. M. De La Rue, The effect of the photonic stop-band upon the photoluminescence of CdS in opal, Phys. Status Solidi A-Appl. Res. 164, 169–173 (1997).

    Article  CAS  Google Scholar 

  64. S. G. Romanov, A. V. Fokin, and R. M. De La Rue, Anisotropic photoluminescence in incomplete three-dimensional photonic band-gap environments, Appl. Phys. Lett. 74, 1821–1823 (1999).

    CAS  Google Scholar 

  65. T. Yamasaki and T. Tsutsui, Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres, Appl. Phys. Lett. 72, 1957–1959 (1998).

    Article  CAS  Google Scholar 

  66. A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, CdS photoluminescence inhibition by a photonic structure, Appl. Phys. Lett. 73, 1781–1783 (1998).

    Article  CAS  Google Scholar 

  67. M. Megens, J. Wijnhoven, A. Lagendijk, and W. L. Vos, Light sources inside photonic crystals, J. Opt. Soc. Am. B 16, 1403–1408 (1999).

    CAS  Google Scholar 

  68. S. G. Romanov, A. V. Fokin, and R. M. De La Rue, Eu3+ emission in an anisotropic photonic band gap environment, Appl. Phys. Lett. 76, 1656–1658 (2000).

    Article  CAS  Google Scholar 

  69. K. Sumioka, H. Nagahama, and T. Tsutsui, Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic-inorganic layered perovskite, Appl. Phys. Lett. 78, 1328–1330 (2001).

    Article  CAS  Google Scholar 

  70. A. J. Campillo, J. D. Eversole, and H. B. Lin, Cavity quantum electrodynamic enhancement of stimulated-emission in microdroplets, Phys. Rev. Lett. 67, 437–440 (1991).

    Article  CAS  Google Scholar 

  71. B. Y. Tong, P. K. John, Y. T. Zhu, Y. S. Liu, S. K. Wong, and W. R. Ware, Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles, J. Opt. Soc. Am. B 10, 356–359 (1993).

    CAS  Google Scholar 

  72. M. J. A. de Dood, L. H. Slooff, A. Polman, A. Moroz, and A. van Blaaderen, Local optical density of states in SiO2 spherical microcavities: Theory and experiment, Phys. Rev. A 64, 033807 (2001).

    Google Scholar 

  73. M. J. A. de Dood, L. H. Slooff, A. Polman, A. Moroz, and A. van Blaaderen, Modified spontaneous emission in erbium-doped SiO2 spherical colloids, Appl. Phys. Lett. 79, 3585–3587 (2001).

    Google Scholar 

  74. K. H. Drexhage, Influence of a dielectric interface on fluorescence decay time, J. Lumines. 1,2, 693 (1970).

    Google Scholar 

  75. E. Snoeks, A. Lagendijk, and A. Polman, Measuring and modifying the spontaneous emission rate of Erbium near an interface, Phys. Rev. Lett. 74, 2459–2462 (1995).

    Article  CAS  Google Scholar 

  76. J. Martorell and N. M. Lawandy, Observation of inhibited spontaneous emission in a periodic dielectric structure, Phys. Rev. Lett. 65, 1877–1880 (1990).

    Article  CAS  Google Scholar 

  77. N. M. Lawandy, Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles — Comment, J. Opt. Soc. Am. B 10, 2144–2146 (1993).

    Article  CAS  Google Scholar 

  78. M. Tomita, K. Ohosumi, and H. Ikari, Enhancement of molecular interactions in strongly scattering dielectric composite optical media, Phys. Rev. B 50, 10369–10372 (1994).

    Article  CAS  Google Scholar 

  79. E. P. Petrov, V. N. Bogomolov, Kalosha, II, and V. Gaponenko, Spontaneous emission of organic molecules embedded in a photonic crystal, Phys. Rev. Lett. 81, 77–80 (1998).

    Article  CAS  Google Scholar 

  80. Z. Y. Li and Z. Q. Zhang, Weak photonic band gap effect on the fluorescence lifetime in three-dimensional colloidal photonic crystals, Phys. Rev. B 63, 125106 (2001).

    Google Scholar 

  81. M. Megens, H. P. Schriemer, A. Lagendijk, and W. L. Vos, Comment on “Spontaneous emission of organic molecules embedded in a photonic crystal”, Phys. Rev. Lett. 83, 5401–5401 (1999).

    Article  CAS  Google Scholar 

  82. E. P. Petrov, V. N. Bogomolov, Kalosha, II, and S. V. Gaponenko, Comment on “Spontaneous emission of organic molecules embedded in a photonic crystal” — Reply, Phys. Rev. Lett. 83, 5402–5402 (1999).

    Article  CAS  Google Scholar 

  83. K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal, Appl. Phys. Lett. 73, 3506–3508 (1998).

    Article  CAS  Google Scholar 

  84. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Enhancement and suppression of thermal emission by a three-dimensional photonic crystal, Phys. Rev. B 62, R2243–R2246 (2000).

    CAS  Google Scholar 

  85. H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals, Phys. Rev. A 63, 011801 (2001).

    Article  Google Scholar 

  86. A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk, and W. L. Vos, Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals, Phys. Rev. Lett. 88, 143903 (2002).

    Article  CAS  Google Scholar 

  87. I. I. Tarhan, M. P. Zinkin, and G. H. Watson, Interferometric technique for the measurement of photonic band structure in colloidal crystals, Opt. Lett. 20, 1571–1573 (1995).

    Article  CAS  Google Scholar 

  88. B. T. Rosner, G. J. Schneider, and G. H. Watson, Interferometric investigation of photonic band-structure effects in pure and doped colloidal crystals, J. Opt. Soc. Am. B 15, 2654–2659 (1998).

    CAS  Google Scholar 

  89. A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, Large dispersive effects near the band edges of photonic crystals, Phys. Rev. Lett. 83, 2942–2945 (1999).

    Article  CAS  Google Scholar 

  90. Y. A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal, Phys. Rev. E 60, 1030–1035 (1999).

    Article  CAS  Google Scholar 

  91. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Photonic band-gaps in 3-dimensions —New layer-by-layer periodic structures, Solid State Commun. 89, 413–416 (1994).

    Article  CAS  Google Scholar 

  92. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, Measurement of a 3-dimensional photonic band-gap in a crystal-structure made of dielectric rods, Phys. Rev. B 50, 1945–1948 (1994).

    Google Scholar 

  93. C. C. Cheng and A. Scherer, Fabrication of photonic band-gap crystals, J. Vac. Sci. Technol, B 13, 2696–2700 (1995).

    CAS  Google Scholar 

  94. C. C. Cheng, A. Scherer, V. Arbet-Engels, and E. Yablonovitch, Lithographic band gap tuning in photonic band gap crystals, J. Vac. Sci. Technol. B 14, 4110–4114 (1996).

    CAS  Google Scholar 

  95. A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. M. Lourtioz, Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon, Appl. Phys. Lett. 77, 2943–2945 (2000).

    Article  CAS  Google Scholar 

  96. A. Birner, R. B. Wehrspohn, U. M. Gosele, and K. Busch, Silicon-based photonic crystals, Adv. Mater. 13, 377–388 (2001).

    Article  CAS  Google Scholar 

  97. J. Schilling, F. Muller, S. Matthias, R. B. Wehrspohn, U. Gosele, and K. Busch, Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter, Appl. Phys. Lett. 78, 1180–1182 (2001).

    Article  CAS  Google Scholar 

  98. S. Shoji and S. Kawata, Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin, Appl. Phys. Lett. 76, 2668–2670 (2000).

    Article  CAS  Google Scholar 

  99. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53–56 (2000).

    CAS  Google Scholar 

  100. Y. Monovoukas and A. P. Cast, The experimental phase-diagram of charged colloidal suspensions, J. Colloid Interface Sci. 128, 533–548 (1989).

    Article  CAS  Google Scholar 

  101. P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. G. Rarity, and S. M. Underwood, Structure of crystals ofhard colloidal spheres, Phys. Rev. Lett. 63, 2753–2756 (1989).

    Article  CAS  Google Scholar 

  102. N._A. M. Verhaegh, J. S. van Duijneveldt, A. van Blaaderen, and H. N. W. Lekkerkerker, Direct observation of stacking disorder in a colloidal crystal, J. Chem. Phys. 102, 1416–1421 (1995).

    Article  CAS  Google Scholar 

  103. V. N. Astratov, Y. A. Vlasov, O. Z. Karimov, A. A. Kaplyanskii, Y. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev, Photonic band gaps in 3D ordered fcc silica matrices. Phys. Lett. A 222, 349–353 (1996).

    Article  CAS  Google Scholar 

  104. S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, Enhancement of the photonic gap of opal-based three-dimensional gratings, Appl. Phys. Lett. 70, 2091–2093 (1997).

    Article  CAS  Google Scholar 

  105. H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, Photonic crystal properties of packed submicrometric SiO2 spheres, Appl. Phys. Lett. 71, 1148–1150 (1997).

    Article  CAS  Google Scholar 

  106. H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, and V. Fornes, Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering, Adv. Mater. 10, 480–483 (1998).

    CAS  Google Scholar 

  107. H. Miguez, A. Blanco, F. Meseguer, C. Lopez, H. M. Yates, M. E. Pemble, V. Fornes, and A. Mifsud, Bragg diffraction from indium phosphide infilled fcc silica colloidal crystals, Phys. Rev. B 59, 1563–1566 (1999).

    CAS  Google Scholar 

  108. S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals, Phys. Rev. E 63, 056603 (2001).

    CAS  Google Scholar 

  109. A. Reynolds, F. Lopez-Tejeira, D. Cassagne, F. J. Garcia-Vidal, C. Jouanin, and J. Sanchez-Dehesa, Spectral properties of opal-based photonic crystals having a silica matrix, Phys. Rev. B 60, 1142211426 (1999).

    Google Scholar 

  110. R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, Photonic band gaps in colloidal systems, Phys. Rev. B 57, 3701–3705 (1998).

    CAS  Google Scholar 

  111. R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, Photonic band gaps of porous solids, Phys. Rev. B 61, 4549–4553 (2000).

    CAS  Google Scholar 

  112. A. Imhof and D. J. Pine, Ordered macroporous materials by emulsion templating, Nature 389, 948–951 (1997).

    CAS  Google Scholar 

  113. A. Imhof and D. J. Pine, Uniform macroporous ceramics and plastics by emulsion templating, Adv. Mater. 10, 697–700 (1998).

    Article  CAS  Google Scholar 

  114. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Porous silica via colloidal crystallization, Nature 389, 447–448 (1997).

    Article  CAS  Google Scholar 

  115. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Microstructured porous silica obtained via colloidal crystal templates, Chem. Mater. 10, 3597–3602 (1998).

    Article  CAS  Google Scholar 

  116. B. T. Holland, C. F. Blanford, and A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science 281, 538–540 (1998).

    Article  CAS  Google Scholar 

  117. B. T. Holland, C. F. Blanford, T. Do, and A. Stein, Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites, Chem. Mater. 11, 795–805 (1999).

    Article  CAS  Google Scholar 

  118. J. E. G. J. Wijnhoven and W. L. Vos, Preparation of photonic crystals made of air spheres in titania, Science 281, 802–804 (1998).

    Article  CAS  Google Scholar 

  119. C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic, San Diego, 1990).

    Google Scholar 

  120. A. Imhof and D. J. Pine, in Recent Advances in Catalytic Materials, edited by N. M. Rodriguez, S. L. Soled and J. Hrbek (Materials Research Society, Boston, 1997), Vol. 497, p. 167–172.

    Google Scholar 

  121. M. Antonietti, B. Berton, C. Goeltner, and H. P. Hentze, Synthesis of mesoporous silica with large pores and bimodal size distribution by templating of polymer latices, Adv. Mater. 10, 154–159 (1998).

    Article  CAS  Google Scholar 

  122. J. S. Yin and Z. L. Wang, Template-assisted self-assembly and cobalt doping of ordered mesoporous titania nanostructures, Adv. Mater. 11, 469–472 (1999).

    Article  CAS  Google Scholar 

  123. A. Richel, N. P. Johnson, and D. W. McComb, Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix, Appl. Phys. Lett. 76, 1816–1818 (2000).

    Article  CAS  Google Scholar 

  124. J. Wijnhoven, L. Bechger, and W. L. Vos, Fabrication and characterization of large macroporous photonic crystals in titania, Chem. Mater. 13, 4486–4499 (2001).

    Article  CAS  Google Scholar 

  125. M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Photonic crystal films with high refractive index contrast, Adv. Mater. 12, 1499–1503 (2000).

    CAS  Google Scholar 

  126. S. A. Johnson, P. J. Ollivier, and T. E. Mallouk, Ordered mesoporous polymers of tunable pore size from colloidal silica templates, Science 283, 963–965 (1999).

    CAS  Google Scholar 

  127. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, Carbon structures with three-dimensional periodicity at optical wavelengths, Science 282, 897–901 (1998).

    Article  CAS  Google Scholar 

  128. Y. A. Vlasov, N. Yao, and D. J. Norris, Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots, Adv. Mater. 11, 165–169 (1999).

    Article  CAS  Google Scholar 

  129. P. Jiang, K. S. Hwang, D. M. Mittleman, J. F. Bertone, and V. L. Colvin, Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids, J. Am. Chem. Soc. 121, 11630–11637 (1999).

    CAS  Google Scholar 

  130. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. López, F. Meseguer, H. Míguez, J. P. Mondía, G. A. Ozin, O. Toader, H. M. van Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers, Nature 405, 437–440 (2000).

    CAS  Google Scholar 

  131. G. Subramanian, V. N. Manoharan, J. D. Thorne, and D. J. Pine, Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials, Adv. Mater. 11, 1261–1265 (1999).

    CAS  Google Scholar 

  132. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, Optical photonic crystals fabricated from colloidal systems, Appl. Phys. Lett. 74, 3933–3935 (1999).

    Article  CAS  Google Scholar 

  133. G. Subramania, R. Biswas, K. Constant, M. M. Sigalas, and K. M. Ho, Structural characterization ofthin film photonic crystals, Phys. Rev. B 63, 235111 (2001).

    Article  CAS  Google Scholar 

  134. Q. B. Meng, Z. Z. Gu, O. Sato, and A. Fujishima, Fabrication of highly ordered porous structures, Appl. Phys. Lett. 77, 4313–4315 (2000).

    CAS  Google Scholar 

  135. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, A class of porous metallic nanostructures, Nature 401, 548–548 (1999).

    Article  CAS  Google Scholar 

  136. P. Tessier, O. D. Velev, A. T. Kalambur, A. M. Lenhoff, J. F. Rabolt, and E. W. Kaler, Structured metallic films for optical and spectroscopic applications via colloidal crystal templating, Adv. Mater. 13, 396–400 (2001).

    Article  CAS  Google Scholar 

  137. S. H. Park and Y. Xia, Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates, Chem. Mater. 10, 1745–1747 (1998).

    CAS  Google Scholar 

  138. M. Deutsch, Y. A. Vlasov, and D. J. Norris, Conjugated-polymerphotonic crystals, Adv. Mater. 12, 1176–1180 (2000).

    Article  CAS  Google Scholar 

  139. H. Miguez, F. Meseguer, C. Lopez-Tejeira, and J. Sanchez-Dehesa, Synthesis and photonic bandgap characterization of polymer inverse opals, Adv. Mater. 13, 393–396 (2001).

    CAS  Google Scholar 

  140. H. W. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl, and A. Stein, General synthesis of periodic macroporous solids bytemplated salt precipitation and chemical conversion, Chem. Mater. 12, 1134–1141 (2000).

    CAS  Google Scholar 

  141. H. Yan, C. F. Blanford, B. T. Holland, M. Parent, W. H. Smyrl, and A. Stein, A chemical synthesis of periodic macroporous NiO and metallic Ni, Adv. Mater. 11, 1003–1006 (1999).

    Article  CAS  Google Scholar 

  142. P. V. Braun and P. Wiltzius, Electrochemically grown photonic crystals, Nature 402, 603–604 (1999).

    Article  CAS  Google Scholar 

  143. P. V. Braun and P. Wiltzius, Electrochemical fabrication of 3D microperiodic porous materials, Adv. Mater. 13, 482–485 (2001).

    Google Scholar 

  144. J. Wijnhoven, S. J. M. Zevenhuizen, M. A, Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, Electrochemical assembly of ordered macropores in gold, Adv. Mater. 12, 888–890 (2000).

    Article  CAS  Google Scholar 

  145. M. C. Netti, S. Coyle, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, Confined surface plasmons in gold photonic nanocavities, Adv. Mater. 13, 1368–1370 (2001).

    CAS  Google Scholar 

  146. P. Jiang, J. Cizeron, J. F. Bertone, and V. L. Colvin, Preparation of macroporous metal films from colloidal crystals, J. Am. Chem. Soc. 121, 7957–7958 (1999).

    CAS  Google Scholar 

  147. N. Eradat, J. D. Huang, Z. V. Vardeny, A. A. Zakhidov, I. Khayrullin, I. Udod, and R. H. Baughman, Optical studies of metal-infiltrated opal photonic crystals, Synthetic Metals 116, 501–504 (2001).

    CAS  Google Scholar 

  148. H. Miguez, E. Chomski, F. Garcia-Santamaria, M. Ibisate, S. John, C. Lopez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition, Adv. Mater. 13, 1634–1637 (2001).

    CAS  Google Scholar 

  149. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, 1. B. Ivanov, H. Yoshimura, and K. Nagayama, Mechanism of formation of 2-dimensional crystals from latex particles on substrates, Langmuir 8, 3183–3190 (1992).

    Article  CAS  Google Scholar 

  150. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, 2-Dimensional crystallization, Nature 361, 26–26 (1993).

    Article  Google Scholar 

  151. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Single-crystal colloidal multilayers of controlled thickness, Chem. Mater. 11, 2132–2140 (1999).

    Article  CAS  Google Scholar 

  152. M. E. Turner, T. J. Trentler, and V. L. Colvin, Thin films of macroporous metal oxides, Adv. Mater. 13, 180–183 (2001).

    Article  CAS  Google Scholar 

  153. S. H. Park, D. Qin, and Y. Xia, Crystallization of mesoscale particles over large areas, Adv. Mater. 10, 1028–1032 (1998).

    CAS  Google Scholar 

  154. S. H. Park and Y. Xia, Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters, Langmuir 15, 266–273 (1999).

    CAS  Google Scholar 

  155. B. Gates, D. Qin, and Y. Xia, Assembly of nanoparticles into opaline structures over large areas, Adv. Mater. 11, 466–469 (1999).

    Article  CAS  Google Scholar 

  156. B. T. Mayers, B. Gates, and Y. Xia, Crystallization of mesoscopic colloids into 3D opaline lattices in packing cells fabricated by replica molding, Adv. Mater. 12, 1629–1632 (2000).

    Article  CAS  Google Scholar 

  157. R. M. Amos, J. G. Rarity, P. R. Tapster, T. J. Shepherd, and S. C. Kitson, Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment, Phys. Rev. E 61, 2929–2935 (2000).

    Article  CAS  Google Scholar 

  158. M. Trau, D. A. Saville, and I. A. Aksay, Field-induced layering of colloidal crystals, Science 272, 706–709 (1996).

    CAS  Google Scholar 

  159. M. Holgado, et al., Electrophoretic deposition to control artificial opal growth, Langmuir 15, 4701–4704 (1999).

    Article  CAS  Google Scholar 

  160. R. C. Hayward, D. A. Saville, and I. A. Aksay, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns, Nature 404, 56–59 (2000).

    CAS  Google Scholar 

  161. A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoisha, Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals, Chem. Mater. 12, 2721–2726 (2000).

    CAS  Google Scholar 

  162. A. van Blaaderen, R. Ruel, and P. Wiltzius, Template-directed colloidal crystallization, Nature 385, 321–324 (1997).

    Google Scholar 

  163. A. van Blaaderen and P. Wiltzius, Growing large, well-oriented colloidal crystals, Adv. Mater. 9, 833 (1997).

    Google Scholar 

  164. P. V. Braun, R. W. Zehner, C. A. White, M. K. Weldon, C. Kloc, S. S. Patel, and P. Wiltzius, Epitaxial growth of high dielectric contrast three-dimensional photonic crystals, Adv. Mater. 13, 721–724 (2001).

    CAS  Google Scholar 

  165. A. van Blaaderen et al., in Photonic Crystals and Light Localization in the 21st Century, edited by C. M. Soukoulis (Kluwer Academic, Dordrecht, 2001).

    Google Scholar 

  166. Y. D. Yin and Y. N. Xia, Growth of large colloidal crystals with their (100) planes orientated parallel to the surfaces of supporting substrates, Adv. Mater. 14, 605–608 (2002).

    Article  CAS  Google Scholar 

  167. S. Hachisu and S. Yoshimura, Nature 283, 188 (1980).

    Article  CAS  Google Scholar 

  168. P. Bartlett, R. H. Ottewill, and P. N. Pusey, Superlattice formation in binary mixtures of hard-sphere colloids, Phys. Rev. Lett. 68, 3801–3804 (1992).

    Article  CAS  Google Scholar 

  169. K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, Layer-by-layer growth of binary colloidal crystals, Science 296, 106–109 (2002).

    Article  CAS  Google Scholar 

  170. U. Dassanayake, S. Fraden, and A. van Blaaderen, Structure of electrorheological fluids, J. Chem. Phys. 112, 3851–3858 (2000).

    Article  CAS  Google Scholar 

  171. F. García-Santamaría, C. López, F. Meseguer, F. López-Tejeira, J. Sánchez-Dehesa, and H. T. Miyazaki, Opal-like photonic crystal with diamond lattice, Appl. Phys. Lett. 79, 2309–2311 (2001).

    Google Scholar 

  172. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope, J. Appl. Phys. 87, 7152–7158 (2000).

    Article  CAS  Google Scholar 

  173. R. D. Pradhan, Tarhan, II, and G. H. Watson, Impurity modes in the optical stop bands of doped colloidal crystals, Phys. Rev. B 54, 13721–13726 (1996).

    Article  CAS  Google Scholar 

  174. Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, Different regimes of light localization in a disordered photonic crystal, Phys. Rev. B 60, 1555–1562 (1999).

    Article  CAS  Google Scholar 

  175. Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, Manifestation of intrinic defects in optical properties of self-organized opal photonic crystals, Phys. Rev. E 61, 5784–5793 (2000).

    CAS  Google Scholar 

  176. A. F. Koenderink, M. Megens, G. van Soest, W. L. Vos, and A. Lagendijk, Enhanced backscattering from photonic crystals, Phys. Lett. A 268, 104–111 (2000).

    Google Scholar 

  177. J. Huang, N. Eradat, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, Anomalous coherent backscattering of light from opal photonic crystals, Phys. Rev. Lett. 86, 4815–4818 (2001).

    Article  CAS  Google Scholar 

  178. Z. Y. Li and Z. Q. Zhang, Fragility of photonic band gaps in inverse-opal photonic crystals, Phys. Rev. B 62, 1516–1519 (2000).

    CAS  Google Scholar 

  179. Z. Y. Li and Z. Q. Zhang, Photonic bandgaps in disordered inverse-opal photonic crystals, Adv. Mater. 13, 433–436 (2001).

    CAS  Google Scholar 

  180. S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Theoretical Investigation of Fabrication-Related Disorder On the Properties of Photonic Crystals, J. Appl. Phys. 78, 1415–1418 (1995).

    Article  CAS  Google Scholar 

  181. A. Chutinan and S. Noda, Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal, J. Opt. Soc. Am. B 16, 240–244 (1999).

    CAS  Google Scholar 

  182. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, Effect of disorder on photonic band gaps, Phys. Rev. B 59, 12767–12770 (1999).

    Article  CAS  Google Scholar 

  183. V. Yannopapas, N. Stefanou, and A. Modinos, Effect of stacking faults on the optical properties of inverted opals, Phys. Rev. Lett. 86, 4811–4814 (2001).

    Article  CAS  Google Scholar 

  184. F. Caruso, Nanoengineering of particle surfaces, Adv. Mater. 13, 11–22 (2001).

    CAS  Google Scholar 

  185. A. van Blaaderen and A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres, Langmuir 8, 2921–2931 (1992).

    Google Scholar 

  186. A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Mohwald, A. Eychmuller, and H. Weller, Nano-and microengineering: Three-dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells, Adv. Mater. 12, 333–337 (2000).

    Article  CAS  Google Scholar 

  187. P. Jiang, J. F. Bertone, and V. L. Colvin, A lost-wax approach to monodisperse colloids and their crystals, Science 291, 453–457 (2001).

    Article  CAS  Google Scholar 

  188. R. Rengarajan, P. Jiang, D. C. Larrabee, V. L. Colvin, and D. M. Mittleman, Colloidal photonic superlattices, Phys. Rev. B 64, 205103 (2001).

    Article  CAS  Google Scholar 

  189. A. Imhof, Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17, 3579–3585 (2001).

    Article  CAS  Google Scholar 

  190. G. R. Yi and S. M. Yang, Bandgap engineering of face-centered cubic photonic crystals made of hollow spheres, J. Opt. Soc. Am. B 18, 1156–1160 (2001).

    CAS  Google Scholar 

  191. A. Moroz, Three-dimensional complete photonic-band-gap structures in the visible, Phys. Rev. Lett. 83, 5274–5277 (1999).

    Article  CAS  Google Scholar 

  192. A. Moroz, Photonic crystals of coated metallic spheres, Europhys. Lett. 50, 466–472 (2000).

    Article  CAS  Google Scholar 

  193. W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, Robust photonic band gap from tunable scatterers, Phys. Rev. Lett. 84, 2853–2856 (2000).

    CAS  Google Scholar 

  194. Z. L. Wang, C. T. Chan, W. Y. Zhang, N. B. Ming, and P. Sheng, Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency, Phys. Rev. B 64, 113108 (2001).

    Google Scholar 

  195. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Nanoengineering of optical resonances, Chem. Phys. Lett. 288, 243–247 (1998).

    Article  CAS  Google Scholar 

  196. C. Graf and A. van Blaaderen, Metallodielectric colloidal core-shell particles for photonic applications, Langmuir 18, 524–534 (2002).

    Article  CAS  Google Scholar 

  197. B. Jackson and N. J. Halas, Silver nanoshells: Variations in morphologies and optical properties, J. Phys. Chem. B 105, 2743–2746 (2001).

    Article  CAS  Google Scholar 

  198. A. B. R. Mayer, W. Grebner, and R. Wannemacher, Preparation of silver-latex composites, J. Phys. Chem. B 104, 7278–7285 (2000).

    CAS  Google Scholar 

  199. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, Light scattering from dipole and quadrupole nanoshell antennas, Appl. Phys. Lett. 75, 1063–1065 (1999).

    CAS  Google Scholar 

  200. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates, J. Chem. Phys. 111, 4729–4735 (1999).

    Article  CAS  Google Scholar 

  201. M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission, Nano Letters 1, 309–314 (2001).

    Article  CAS  Google Scholar 

  202. J. W. Haus, H. S. Sozuer, and R. Inguva, Photonic bands — Ellipsoidal dielectric atoms in an f.c.c. lattice, J. Mod. Opt. 39, 1991–2005 (1992).

    CAS  Google Scholar 

  203. Z. Y. Li, J. Wang, and B. Y. Gu, Creation of partial band gaps in anisotropic photonic-band-gap structures, Phys. Rev. B 58, 3721–3729 (1998).

    CAS  Google Scholar 

  204. E. Matijevic, Preparation and properties of uniform size colloids, Chem. Mater. 5, 412–426 (1993).

    Article  CAS  Google Scholar 

  205. Y. Lu, Y. D. Yin, and Y. N, Xia, Three-dimensional photonic crystals with non-spherical colloids as building blocks, Adv. Mater. 13, 415–420 (2001).

    CAS  Google Scholar 

  206. E. Snoeks, A. van Blaaderen, T. van Dillen, C. M. van Kats, M. L. Brongersma, and A. Polman, Colloidal ellipsoids with continuously variable shape, Adv. Mater. 12, 1511–1514 (2000).

    Article  CAS  Google Scholar 

  207. E. Snoeks, A. van Blaaderen, T. van Dillen, C. M. van Kats, K. Velikov, M. L. Brongersma, and A. Polman, Colloidal assemblies modified by ion irradiation, Nuclear Instruments & Methods in Physics Research Section B 178, 62–68 (2001).

    CAS  Google Scholar 

  208. W. M. Lee, S. A. Pruzinsky, and P. V. Braun, Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals, Adv. Mater. 14, 271–274 (2002).

    CAS  Google Scholar 

  209. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal, Appl. Phys. Lett. 75, 932–934 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Imhof, A. (2004). Three-Dimensional Photonic Crystals Made from Colloids. In: Liz-Marzán, L.M., Kamat, P.V. (eds) Nanoscale Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48108-1_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-48108-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7366-3

  • Online ISBN: 978-0-306-48108-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics