Orchid Conservation and Mycorrhizal Associations



Mycorrhizal Fungus Mycorrhizal Association Orchid Species Plant Conservation Orchid Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander C, Alexander IJ (1984) Seasonal changes in populations of the orchid Goodyera repens Br. and in its mycorrhizal development. Transactions of the Botanical Society of Edinburgh 44, 219–227.Google Scholar
  2. Alexander C, Alexander IJ, Hadley G (1984) Phosphate uptake By Goodyera repens in relation to mycorrhizal infection. New Phytologist 97, 401–412.Google Scholar
  3. Alexander C, Hadley G (1983) Variation in symbiotic activity of Rhizoctonia isolates from Goodyera repens mycorrhizas. Transactions of the British Mycological Society 80, 99–106.CrossRefGoogle Scholar
  4. Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytologist 101, 657–665.Google Scholar
  5. Andersen TF (1996) A comparative taxonomic study of Rhizoctonia sensu lato employing morphological, ultrastructural and molecular methods. Mycological Research 100, 1117–1128.Google Scholar
  6. Anderson AB (1991) Symbiotic and asymbiotic germination and growth of Spiranthes magnicamporum (Orchidaceae). Lindleyana 6, 183–186.Google Scholar
  7. ANPC (1997) ‘Guidelines for the translocation of threatened plants in Australia.’ (Australian Network for Plant Conservation: Canberra)Google Scholar
  8. Arditti J (1990) Lewis Knudson (1884–1958), his science, his times, his legacy. Lindleyana 5, 1–79.Google Scholar
  9. Arditti J (1992) ‘Fundamentals of orchid biology.’ (John Wiley & Sons: New York)Google Scholar
  10. Arditti J, Ghani AKA (2000) Tansley review No. 110 — Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145, 367–421.CrossRefGoogle Scholar
  11. Atkins KJ (1999) ‘Declared rare and priority flora list.’ (Department of Conservation and Land Management: Perth)Google Scholar
  12. Batty AL, Dixon KW, Sivasithamparam K(2000) Soil seed bank dynamics of terrestrial orchids. Lindleyana 15, 227–236.Google Scholar
  13. Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K (2001a) Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytologist 152, 511–520.CrossRefGoogle Scholar
  14. Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K(2001b) Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Australian Journal of Botany 49, 619–628.CrossRefGoogle Scholar
  15. Benzing DH (1982) Mycorrhizal infections of epiphytic orchids in southern Florida. American Orchid Society Bulletin 51, 618–623.Google Scholar
  16. Benzing DH, Friedman WE (1981) Mycotrophy: it’s occurrence and possible significance among epiphytic Orchidaceae. Selbyana 5, 243–247.Google Scholar
  17. Bernard N (1903) La germination des Orchidées. Comptes Rendus Academie Science, Paris 137, 483–485.Google Scholar
  18. Bernard N (1909) L’evolution dans la symbiose, les orchidees et leures chamignons commensaux. Annals of Science and Natural Botany, Series 9, 1–196.Google Scholar
  19. Bjoerkman E (1960) Monotropa hypopitis L. an epiparasite on tree roots. Physiologia Plantarum 13, 308–327.Google Scholar
  20. Braunberger PG, Abbott LK, Robson AD (1997) Early vesicular-arbuscular mycorrhizal colonisation in soil collected from an annual clover-based pasture in a mediterranean environment: Soil temperature and the timing of autumn rains. Australian Journal of Agricultural Research 48, 103–110.CrossRefGoogle Scholar
  21. Brown AP, Coates DJ, Hopper SD (1998) ‘Why are there so many threatened plants in WA?’ (Department of Conservation and Land Management: Perth)Google Scholar
  22. Brundrett MC (1991) Mycorrhizas in natural ecosystems. In ‘Advances in ecological research.’ Vol. 21. (Eds A Macfayden, M Begon and AH Fitter) pp. 171–313. (Academic Press: London)Google Scholar
  23. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytologist 154, 275–304.CrossRefGoogle Scholar
  24. Brundrett MC, Abbott LK (1994) Mycorrhizal fungus propagules in the jarrah forest: I. Seasonal study of inoculum levels. New Phytologist 127, 539–546.Google Scholar
  25. Brundrett MC, Abbott LK (1995) Mycorrhizal fungus propagules in the jarrah forest. II. Spatial variability in inoculum levels. New Phytologist 131, 461–469.Google Scholar
  26. Brundrett MC, Abbott LK (2002) Arbuscular mycorrhizas in plant communities. In ‘Microorganisms in plant conservation and biodiversity (Eds K Sivasithamparam, KW Dixon and RL Barrett) pp. 151–193. (Kluwer Academic Publishers: Dordrecht)Google Scholar
  27. Brundrett MC, Cairney J (2002) Ectomycorrhizas in plant communities. In ‘Microorganisms in plant conservation and biodiversity (Eds K Sivasithamparam, KW Dixon and RL Barrett) pp. 105–150. (Kluwer Academic Publishers: Dordrecht)Google Scholar
  28. Brundrett MC, Kendrick WB (1988) The mycorrhizal status, root anatomy and phenology of plants in a sugar maple forest. Canadian Journal of Botany 66, 1153–1173.CrossRefGoogle Scholar
  29. Burgeff H (1909) ‘Die wurzelpilze der orchidaceen, ihre kultur und ihr leben in der pflanzen.’ (G. Fischer: Jena)Google Scholar
  30. Burgeff H (1932) ‘Saprophytismus und symbiose. Studien an tropischen orchideen.’ (G. Fischer: Jena)Google Scholar
  31. Burgeff H (1936) ‘Samenkeimung der orchideen.’ (Gustav Fischler Verlag: Jena)Google Scholar
  32. Burgeff H (1959) Mycorrhiza of orchids. In ‘The orchids a scientific study.’ (Ed. CL Withner) pp. 361–395. (The Roland Press Company: New York)Google Scholar
  33. Campbell EO (1962) The mycorrhiza of Gastrodia cunninghamii Hook. f. Transactions of the Royal Society of New Zealand 1, 289–296.Google Scholar
  34. Campbell EO (1963) Gastrodia minor Petrie, an epiparasite of manuka. Transactions of the Royal Society of New Zealand 2, 73–81.Google Scholar
  35. Campbell EO (1964) The fungal association in a colony of Gastrodia sesamoides R. Br. Transactions of the Royal Society of New Zealand 2, 237–246.Google Scholar
  36. Campbell EO (1970) The fungal association of Yoania australis. Transactions of the Royal Society of New Zealand 12, 5–12.Google Scholar
  37. Campbell EO (1972) The morphology of the fungal association of Corybas cryptanthus. Journal of the Royal Society of New Zealand 2, 43–47.Google Scholar
  38. Case FW (1990) Native orchid habitats: the horticulturist’s viewpoint. In ‘North American native terrestrial orchid propagation and production.’ (Ed. CE Sawyers). (Brandywine Conservatory: Chadds Ford)Google Scholar
  39. Clements MA, Muir H, Cribb PJ (1986) A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bulletin 41, 437–445.Google Scholar
  40. Currah RS, Zelmer CD, Hambleton S, Richardson KA (1997) Fungi from orchid mycorrhizas. In ‘Orchid biology: reviews and perspectives, VII.’ (Eds J Arditti and AM Pridgeon) pp. 117–170. (Kluwer academic Publishers: Dordrecht)Google Scholar
  41. Curtis JT (1939) The relationships of specificity of orchid mycorrhizal fungi to the problem of symbiosis. American Journal of Botany 26, 390–399.Google Scholar
  42. Dixon KW(1991) Seeder/clonal concepts in Western Australian orchids. In ‘Population ecology of terrestrial orchids.’ (Eds TCE Wells and JH Willems) pp. 111–123. (SPB Academic Publishing: The Hague)Google Scholar
  43. Dixon KW, Buirchell BJ, Collins MT (1989) ‘Orchids of Western Australia — cultivation and natural history.’Google Scholar
  44. Dixon KW, Hopper SD (1996) Australia. In: ‘Status, survey and conservation action plan: orchids.’ (Eds EE Hagsater and VE Dumont) pp. 109–119. (IUCN: Cambridge)Google Scholar
  45. Dixon KW, Pate JS (1984) Biology and distributional status of Rhizanthella gardneri Rogers (Orchidaceae), the Western Australian Underground Orchid. Kings Park Research Notes 9, 1–54.Google Scholar
  46. Dixon KW, Pate JS, Kuo J (1990) The Western Australian subterranean orchid Rhizanthella gardneri Rogers. In ‘Orchid biology, reviews and perspectives.’ Vol. 5. (Ed. J Arditti) pp. 37–62. (Timber Press: Oregon)Google Scholar
  47. Dixon KW, Read D (2002) Encoid mycorrhizas in plant communities. In ‘Microorganisms in plant conservation and biodiversity (Eds K Sivasithamparam, KW Dixon and RL Barrett) pp. 241–267. (Kluwer Academic Publishers: Dordrecht)Google Scholar
  48. Dressier RL (1981) ‘The orchids, natural history and classification.’ (Harvard University Press: Cambridge)Google Scholar
  49. Dressier RL (1993) ‘Phylogeny and classification of the orchid family.’ (Dioscorides Press: Portland)Google Scholar
  50. Furman TE, Trappe JM (1971) Phylogeny and ecology of mycotrophic achlorophyllous angiosperms. Quarterly Review of Biology 46, 219–275.CrossRefGoogle Scholar
  51. Garay LA, Sweet HR (1974) Orchidaceae. In ‘Flora of the Lesser Antilles.’ (Ed. RA Howard). (Arnold Arboretum. Hatward University. Jamaica Plains)Google Scholar
  52. Garrett SD (1970) ‘Biology of root-infecting fungi.’ (Cambridge University Press: Cambridge)Google Scholar
  53. Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 75, 1–34.Google Scholar
  54. George AS (1980) Rhizanthella gardneri, R.S.Rogers, the underground orchid of Western Australian. American Orchid Society Bulletin 49, 631–646.Google Scholar
  55. Hadley G (1970a) The interaction of kinetin, auxin, and other factors in the development of north temperate orchids. New Phytologist 69, 549–555.Google Scholar
  56. Hadley G (1970b) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytologist 69, 1015–1023.Google Scholar
  57. Hadley G (1982) Orchid mycorrhiza. In ‘Orchid biology: reviews and perspectives, II.’ (Ed. J Arditti) pp. 83–181. (Cornell University Press: Ithaca, New York)Google Scholar
  58. Hadley G, Pegg GF (1989) Host-fungus relationships in orchid mycorrhizal systems. In ‘Modern methods in orchid conservation: the role of physiology, ecology and management.’ (Ed. HW Pritchard). pp. 57–71. (Cambridge University Press: Cambridge)Google Scholar
  59. Hadley G, Williamson B (1971) Analysis of the post-infection growth stimulus in orchid mycorrhiza. New Phytologist 70, 445–455.Google Scholar
  60. Hadley G, Williamson B (1972) Features of mycorrhizal infection in some Malayan orchids. New Phytologist 71, 1111–1118.Google Scholar
  61. Hágsater EE (1993) Epidendnum floridense Hagsater. In ‘Icones orchidacearum 2. A century of new species in Epidendrum.’ (Eds E Hagsater and GA Salazar) pp. plate 133. (Asociacion Mexicana de Orquideologia: Mexico City)Google Scholar
  62. Hágsater EE, Dumont VE (1996) ‘Status survey and conservation action plan: orchids.’ (IUCN, Gland, Switzerland & Cambridge, UK Cambridge, UK)Google Scholar
  63. Hamada M (1939) Studien ueber die Mykorrhiza von Galeola septentrionalis Reichb. f. — Ein neuer Fall der Mykorrhiza-Bildung durch intraradicale Rhizomorpha. Japanese Journal of Botany 10, 151–211.Google Scholar
  64. Hamada M, Nakamura SI (1963) Wurzelsymbiose von Galeola altissima Reichb. F., einer chlorophyll freien Orchidee, mit dem holzzerstoerenden Pilz Hymenochaete crocicreas Berk. & Br. Science Reports of Tohoku University Series 4, 227–238.Google Scholar
  65. Harvais G (1974) Notes on the biology of some native orchids of Thunder Bay, their endophytes and symbionts. Canadian Journal of Botany 52, 451–460.Google Scholar
  66. Harvais G, Hadley G (1967) The development of Orchis purpurella in asymbiotic and inoculated cultures. New Phytologist 66, 217–230.Google Scholar
  67. Hayakawa S, Uetake Y, Ogoshi A (1999) Identification of symbiotic Rhizoctonias from naturally occurring protocorms and roots of Dactylorhiza aristata (Orchidaceae). Journal of the Faculty of Agriculture Hokkaido University 69, 129–141.Google Scholar
  68. Johansson DR (1977) Epiphytic orchids as parasites of their host trees. American Orchid Society Bulletin 46, 703–707.Google Scholar
  69. Jones DL (1993) ‘Native orchids of Australia.’ (Imago Publishing Ltd.: Hong Kong)Google Scholar
  70. Knudson L (1922) Non-symbiotic germination of orchid seeds. Botanical Gazette 73, 1–25.CrossRefGoogle Scholar
  71. Knudson L (1927) Symbiosis and asymbiosis relative to orchids. New Phytologist 26, 328–336.Google Scholar
  72. Kusano S (1911) Gastrodia elata and its symbiotic association with Armillaria mellea. Journal of the College of Agriculture Imperial University of Tokyo 4, 1–66.Google Scholar
  73. Leake JR (1994) Tansley review No. 69. The biology of myco-heterotrophic (’saprophytic’) plants. New Phytologist 127, 171–216.Google Scholar
  74. Mabberley DJ (1990) ‘The plant book.’ (Cambridge University Press: Cambridge)Google Scholar
  75. Masuhara G, Katsuya K (1989) Effects of mycorrhizal fungi on seed germination and early growth of three Japanese terrestrial orchids. Scientia Horticulturae 37, 331–337.CrossRefGoogle Scholar
  76. Masuhara G, Katsuya K (1992) Mycorrhizal differences between genuine roots and tuberous roots of adult plants of Spiranthes sinensis var. amoena (Orchidaceae). Botanical Magazine Tokyo 105, 453–460.CrossRefGoogle Scholar
  77. Masuhara G, Kimura S, Katsuya K (1988) Seasonal changes in the mycorrhizae of Bletilla striata (Orchidaceae). Transactions of the Mycological Society of Japan 29, 25–31.Google Scholar
  78. McKendrick SL (1995) The effects of herbivory and vegetation on laboratory-raised Dactylorhiza praetermissa (Orchidaceae) planted into grassland in southern England. Biological Conservation 73, 215–220.CrossRefGoogle Scholar
  79. McKendrick SL (1996) The effects of shade on seedlings of Orchis morio and Dactylorhiza fuchsii in chalk and clay soil. New Phytologist 134, 343–352.Google Scholar
  80. McKendrick SL, Leake JR, Taylor DL, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytologist 145, 523–537.Google Scholar
  81. Molvray M, Kores PJ, Chase MW (2000) Polyphyly of mycoheterotropic orchids and functional influences on floral and molecular characteristics. In ‘Monocots: systematics and evolution.’ (Eds KL Wilson and DA Morrison) pp. 441–448. (CSIRO: Melbourne)Google Scholar
  82. Muir HJ (1989) Germination and mycorrhizal fungus compatibility in European orchids. In ‘Modern methods in orchid conservation: The role of physiology ecology and management.’ (Ed. HW Pritchard) pp. 39–56. (Cambridge University Press: Cambridge)Google Scholar
  83. Oddie RLA, Dixon KW, McComb JA (1994) Influence of substrate on asymbiotic and symbiotic in vitro germination and seedling growth of two Australian terrestrial orchids. Lindleyana 9, 183–189.Google Scholar
  84. Perkins AJ, Masuhara G, McGee PA (1995) Specificity of the associations between Microtis parviflora (Orchidaceae) and its mycorrhizal fungi. Australian Journal of Botany 43, 85–91.Google Scholar
  85. Perkins AJ, McGee PA (1995) Distribution of the orchid mycorrhizal fungus Rhizoctonia solani, in relation to it’s host, Pterostylis acuminata, in the field. Australian Journal of Botany 43, 565–575.Google Scholar
  86. Peterson RL, Uetake Y, Zelmer C (1998) Fungal symbioses with orchid protocorms. Symbiosis 25, 29–55.Google Scholar
  87. Pittman HA (1929) Note on the morphology and endotrophic mycorrhiza of Rhizanthella gardneri, Rogers, and certain other Western Australian Orchids. Journal of the Royal Society of Western Australia Vol. XV. 15, 71–79.Google Scholar
  88. Rabinowitz D, Cairns S, Dillon T (1986) Seven forms of rarity and their frequency in the flora of the British Isles. In ‘Conservation biology: the science of scarcity and diversity.’ (Ed. E Soule) pp. 182–204. (Sinauer: Sunderland)Google Scholar
  89. Ramsay RR, Sivasithamparam K, Dixon KW (1986) Patterns of infection and endophytes associated with Western Australian orchids. Lindleyana 1, 203–214.Google Scholar
  90. Ramsay RR, Sivasithamparam K, Dixon KW (1987) Anastomosis groups among Rhizoctonia-like endophytic fungi in southwestern Australia Pterostylis species (Orchidaceae). Lindleyana 2, 161–166.Google Scholar
  91. Ramsay MM, Stewart J (1998) Re-establishment of the Lady’s Slipper Orchid (Cypripediumcalceolus L.) in Britain. Botanical Journal of the Linnean Society 126, 173–181.CrossRefGoogle Scholar
  92. Rasmussen HN (1992) Seed dormancy patterns in Epipactis palustris (Orchidaceae): Requirements for germination and establishment of mycorrhiza. Physiologia Plantarum 86, 161–167.CrossRefGoogle Scholar
  93. Rasmussen HN (1995) ‘Terrestrial orchids from seed to mycotrophic plant.’ (Cambridge University Press: Cambridge)Google Scholar
  94. Rasmussen HN, Johansen B, Andersen TF (1989) Density-dependent interactions between seedlings of Dactylorhiza majalis (Orchidaceae) in symbiotic in vitro culture. Physiologia Plantarum 77, 473–478.Google Scholar
  95. Rasmussen HN, Whigham D (1993) Seed ecology of dust seeds in situ: A new study technique and its application in terrestrial orchids. American Journal of Botany 80, 1374–1378.Google Scholar
  96. Rasmussen HN, Whigham D (1998) Importance of woody debris in seed germination of Tipularia discolor (Orchidaceae). American Journal of Botany 85, 829–834.Google Scholar
  97. Roberts P (1998) Thanatephorus ochraceus: a saprotrophic and orchid endomycorrhizal species. Sydowia 50, 252–256.Google Scholar
  98. Robertson DC, Robertson J (1982) Ultrastructure of Plerospora andromeda Nutall and Sarcodes sanguinae Torrey mycorrhizas. New Phytologist 92, 539–551.Google Scholar
  99. Rubluo A, Chavez V, Martinez A (1989) In vitro seed germination and re-introduction of Bletia urbana (Orchidaceae) in its natural habitat. Lindleyana 4, 68–73.Google Scholar
  100. Ruinen J (1953) Epiphytosis — a second view of epiparasitism. Annales Bogoriensis 1, 101–157.Google Scholar
  101. Salmia A (1988) Endomycorrhizal fungus in chlorophyll-free and green forms of the terrestrial orchid Epipactis helleborine. Karstenia 28, 3–18.Google Scholar
  102. Sen R, Hietala AM, Zelmer CD (1999) Common anastomosis and internal transcribed spacer RFLP groupings in binucleate Rhizoctonia isolates representing root endophytes of Pinus sylvestris, Ceratorhiza spp. from orchid mycorrhizas and a phytopathogenic anastomosis group. New Phytologist 144, 331–341.CrossRefGoogle Scholar
  103. Sheviak CJ (1974) An Introduction to the Ecology of the Illinois Orchidaceae. Illinois State Museum Science Papers 14, 1–89.Google Scholar
  104. Sivasithamparam K (1993) Ecology of root infecting pathogenic fungi in mediterranean environments. Advances in Plant Pathology 10, 245–279.Google Scholar
  105. Smith SE (1966) Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytologist 65, 488–499.Google Scholar
  106. Smith SE (1967) Carbohydrate translocation in orchid mycorrhizas. New Phytologist 66, 371–378.Google Scholar
  107. Smith SE, Long CM, Smith FA (1990) Infection of roots with a dimorphic hypodermic: possible effects on solute uptake. Agriculture, Ecosystems and Environment 29, 403–407.CrossRefGoogle Scholar
  108. Smith SE, Read DJ (1997) ‘Mycorrhizal symbiosis.’ 2nd edn. (Academic Press: San Diego)Google Scholar
  109. Smreciu EA, Currah RS (1989) Symbiotic germination of seeds of terrestrial orchids of North America and Europe. Lindleyana 4, 6–15.Google Scholar
  110. Sneh B, Burpee L, Ogoshi A (1991) ‘Identification of Rhizoctonia species.’ (American Phytopathology Society: St. Paul)Google Scholar
  111. Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of Sciences of the United Stales of America 94, 4510–4515.Google Scholar
  112. Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Molecular Ecology 8, 1719–1732.Google Scholar
  113. Terashita T (1982) Fungi inhabiting wild orchids in Japan II. Isolation of symbionts from Spiranthes sinensis var. amoena. Transactions of the Mycological Society of Japan 23, 319–328.Google Scholar
  114. Terashita T (1985) Fungi inhabiting wild orchids in Japan III. A symbiotic experiment with Armillariella mellea and Caleola septentrionalis. Transactions of the Mycological Society of Japan 26, 47–54.Google Scholar
  115. Terashita T, Chuman S (1987) Fungi inhabiting wild orchids in Japan IV. Armillariella tabescens a new symbiont of Caleola septentrionalis. Transactions of the Mycological Society of Japan 28, 145–154.Google Scholar
  116. Tsutsui K, Tomita M (1989) Effect of plant density on the growth of seedlings of Spiranthes sinensis Ames and Liparis nervosa Lindl. in symbiotic culture. Journal of the Japanese Societv for Horticultural Science 57, 668–673.Google Scholar
  117. Umata H (1997) Formation of endomycorrhizas by an achlorophyllous orchid, Erythrorchis ochobiensis, and Auriculariapolytricha. Mycoscience 38, 335–339.Google Scholar
  118. Umata H (1998) A new biological function of shiitake mushroom, Lentinula edodes, in a myco-heterotrophic orchid, Erythrorchis ochobiensis. Mycoscience 39, 85–88.Google Scholar
  119. Umata H (1999) Germination and growth of Erythrorchis ochobiensis (Orchidaceae) accelerated by monokaryons and dikaryons of Lenzites betulinus and Trametes hirsuta. Mycoscience 40, 367–371.Google Scholar
  120. van der Heijden MGA, Klironomos JH, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Weimken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem viability and productivity. Nature 396, 69–72.Google Scholar
  121. van der Kinderen G (1995a) A method for the study of field germinated seeds of terrestrial orchids. Lindleyana 10, 68–73.Google Scholar
  122. van der Kinderen G (1995b) Observations on in situ germination of Epipactis helleborine (L.) Crantz. Lindleyana 10, 223–231.Google Scholar
  123. Wahrlich W (1886) Beitrag zur kenntniss der orchideenwurzelpilze. Botanische Zeitung 44, 480–487.Google Scholar
  124. Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytologist 72, 387–392.Google Scholar
  125. Warcup JH (1975) Factors affecting symbiotic germination of orchid seed. In ‘Endomycorrhizas.’ (Eds FE Sanders, B Mosse and PB Tinker) pp. 87–104. (Academic Press: London)Google Scholar
  126. Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytologist 87, 371–381.Google Scholar
  127. Warcup JH (1985a) Pathogenic Rhizoctonia and orchids. In ‘Ecology and management of soil-borne plant pathogens.’ (Eds CA Parker, KV Moore, PTW Wong, AD Rovira and JK Kollmorgen) pp. 69–70. (American Phytopathological Society: St. Paul)Google Scholar
  128. Warcup JH (1985b) Rhizanthella gardneri (Orchidaceae), its Rhizoctonia endophyte and close association with Melaleuca uncinata (Myrtaceae) in Western Australia. New Phytologist 99, 273–280.Google Scholar
  129. Warcup JH, Talbot PHB (1967) Perfect states of rhizoctonias associated with orchids. I. New Phytologist 66, 631–641.Google Scholar
  130. Warcup JH, Talbot PHB (1980) Perfect states of rhizoctonias associated with orchids. III. New Phytologist 86, 267–272.Google Scholar
  131. Williams PG (1985) Orchidaceous rhizoctonias in pot cultures of vesicular-arbuscular mycorrhizal fungi. Canadian Journal of Botany 63, 1329–1333.CrossRefGoogle Scholar
  132. Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Science 156, 145–150.PubMedCrossRefGoogle Scholar
  133. Zelmer CD, Currah RS (1995) Evidence for a fungal liaison between Corallorhiza trifida (Orchidaceae) and Pinus contorta (Pinaceae). Canadian Journal of Botany 73, 862–866.Google Scholar
  134. Zelmer CD, Currah RS (1997) Symbiotic germination of Spiranthes lacera (Orchidaceae) with naturally occurring endophyte. Lindleyana 12, 142–148.Google Scholar
  135. Zelmer CD, Cuthbertson L, Currah RS (1996) Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience 37, 439–448.Google Scholar
  136. Zettler LW, Hofer CJ (1998) Propagation of the little club-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implications. Environmental and Experimental Botany 39, 189–195.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Soil Science and Plant Nutrition, Faculty of Natural and Agricultural SciencesThe University of Western AustraliaCrawley
  2. 2.Kings Park and Botanic GardenBotanic Gardens and Parks AuthorityWest Perth
  3. 3.Plant Biology, Faculty of Natural and Agricultural SciencesCrawley

Personalised recommendations