Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Kareem AW, McRae SG (1984) The effects on topsoil of long-term storage in stockpiles. Plain and Soil 76, 357–363.

    CAS  Google Scholar 

  • Ahuzinudah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilisation of peptides and proteins by ectomycorrhizal fungi. New Phytologist 103, 481–493.

    Google Scholar 

  • Adams MB, O’Neill EG (1991) Effects of ozone and acidic deposition on carbon allocation and mycorrhizal colonization of Pinus taeda L. seedlings. Forest Science 37, 5–16.

    Google Scholar 

  • Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In ‘Mycorrhiza.’ (Eds A Varma and B Hock) pp. 685–734. (Springer Verlag: Berlin)

    Google Scholar 

  • Aggangan NS, Dell B. Malajzuk N (1996) Effects of soil pH on the ectomycorrhizal response of Eucalyptus urophylla seedlings. New Phytologist 134, 539–546.

    Google Scholar 

  • Aleksandrowicz-Trzcinska M, Grzywacz A (1997) The effect of fungicides used in the protection of forest tree seedlings on the growth of ectomycorrhizal fungi. Acta Mycologica 32, 315–322.

    Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JMa, Molin a R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant and Soil 170, 47–62.

    Article  CAS  Google Scholar 

  • Amaranthus MP, Perry DA (1987) Effect of soil transfer on ectomycorrhiza formation and the survival and growth of conifer seedlings on old, nonreforested clear-cuts. Canadian Journal of Forest Research 17, 944–950.

    Google Scholar 

  • Amaranthus MP, Trappe JM (1993) Effects of erosion on ecto-and VA-mycorrhizal inoculum potential of soil following forest fire in southwest Oregon. Plant and Soil 150, 41–49.

    Article  Google Scholar 

  • Anderson IC, Chambers SM, Cairney JWG (1998) Use of molecular methods to estimate the size and distribution of mycelial individuals of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycological Research 102, 295–300.

    Google Scholar 

  • Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5, 7–15.

    CAS  Google Scholar 

  • Arnebrant K (1996) Effects of “nitrogen amendments on the colonisation potential of some different ectomycorrhizal fungi grown in symbiosis with a host plant. In ‘Mycorrhizas in integrated systems.’ (Eds C Azcon-Aguilar and JM Barea) pp. 71–74. (European Commission. Brussels)

    Google Scholar 

  • Arnebrant K, Söderström B (1992) Effects of different fertilizer treatments on ectomycorrhizal colonization potential in two Scots pine forests in Sweden. Forest Ecology and Management 53, 77–89.

    Article  Google Scholar 

  • Arnolds E (1991) Decline of ectomycorrhizal fungi in Europe. Agriculture Ecosystems and Environment 35, 209–224.

    Article  Google Scholar 

  • Arora D (1991) ‘All that the rain promises and more...’ (Ten Speed Press: Berkeley)

    Google Scholar 

  • Arveby AS, Granhall U (1998) Occurrence and succession of mycorrhizas in Alnus incana. Swedish Journal of Agricultural Research, 28, 117–127.

    Google Scholar 

  • Ashford AE, Allaway WG (1985) Transfer cells and Hartig net in the root epidermis of the sheathing mycorrhiza of Pisonia grandix R. Br. from Seychelles. New Phytologist 100, 595–612.

    Google Scholar 

  • Ba AM, Garbaye J, Dexheimer J (1991) Influence of fungal propagules during the early stage of the time sequence of ectomycorrhizal colonization of Afzelia africana seedlings. Canadian Journal of Botany 69, 2442–2447.

    Google Scholar 

  • Ba AM, Garbaye J, Dexheimer J (1994) The influence of culture conditions on mycorrhiza formation between the ectomycorrhizal fungus Pisolithus sp. and Afzelia africana Sm. seedlings. Mycorrhiza 4, 121–129.

    Google Scholar 

  • Baar J, Kuyper TW (1998) Restoration of aboveground ectomycorrhizal flora in stands of Pinus sylvestris (Scots pine) in the Netherlands by removal of litter and humus. Restoration Ecology 6, 227–237.

    Article  Google Scholar 

  • Baar J, Horton TR, Kretzer AM, Brims TD, (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytologist 143, 409–418.

    Article  Google Scholar 

  • Bellei Mde M, Garbaye J, Gil M (1992) Mycorrhizal succession in young Eucalyptus viminalis plantations in Santa Catarina (southern Brazil). Forest Ecology and Management 54, 205–213.

    Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytologist 130, 401–409.

    CAS  Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and encoid mycorrhizal fungi. Mycological Research 101, 1348–1354.

    Article  CAS  Google Scholar 

  • Berliner R, Jacoby B, Zamski E (1986) Absence of Cistus incanus from basaltic soils in Israel: effect of mycorrhizae. Ecology 67, 1283–1288.

    Google Scholar 

  • Berntson GM, Wayne PM, Bazzaz FA (1997) Below-ground architectural and mycorrhizal responses to elevated CO2 in Betula alleghaniensis populations. Functional Ecology 11, 684–695.

    Article  Google Scholar 

  • Beyeler M, Heyser W (1997) The influence of mycorrhizal colonization on growth in the greenhouse and on catechin, epicatechin and procyanidin in roots of Fagus sylvatica L. Mycorrhiza 7, 171–177.

    Article  CAS  Google Scholar 

  • Bhat MN. Jeyarajan R, Ramaraj B (1997) Biocontrol of damping off of Eucalyptus tereticornis Sm. using ectomycorrhizae. Indian Forester 123, 307–312.

    Google Scholar 

  • Bills GF, Holtzman GI, Miller OK, J. (1986) Comparison of ectomycorrhizalbasidiomycete communities in red spruce versus northern hardwood forests of West Virginia. Canadian Journal of Botany 64, 760–768.

    Google Scholar 

  • Björkman E (1960) Monotropa hypopitys L. — an epiparasite on tree roots. Physiologia Plantarum 13, 308–327.

    Google Scholar 

  • Bougher NL (1995) Diversity of ectomycorrhizal fungi associated with eucalypts in Australia. In ‘Mycorrhizas for plantation forestry in Asia.’ ACIAR Proceedings No. 62. (Eds MC Brundrett, B Dell, N Malajczuk and MQ Gong) pp. 8–14. (ACIAR: Canberra)

    Google Scholar 

  • Bougher NL, Lebel T (2001) Sequestrate (truffle-like) fungi of Australia and New Zealand. Australian Systematic Botany 14, 439–484.

    Article  Google Scholar 

  • Bougher NL, Malajczuk N (1990) Effects of high soil moisture on formation of ectomycorrhizas and growth of karri (Eucalyptus diversicolor) seedlings inoculated with Descolea maculata, Pisolithus tinctorius and Laccaria laccata. New Phytologist 114, 87–91.

    Google Scholar 

  • Boujon C (1997) Decrease of mycorrhizal macrofungi in a Swiss forest: a retrospective study from 1925 to 1994. Mycologia Helvetica 9, 117–132.

    Google Scholar 

  • Boyle CD, Hellenbrand KE (1991) Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Canadian Journal of Botany 69, 1764–1771.

    Google Scholar 

  • Bradbury SM, Danielson RM, Visser S (1998) Ectomycorrhizas of regenerating stands of lodgepole pine (Pinus contorta). Canadian Journal of Botany 76, 218–227.

    Google Scholar 

  • Brandrud TE, Timmermann V, Wright RF, Rasmussen L (1998) Ectomycorrhizal fungi in the NITREX site at Gardsjon, Sweden below and above-ground responses to experimentally-changed nitrogen inputs 1990–1995. Forest Ecology and Management 101, 207–214.

    Article  Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. In ‘Advances in ecological research.’ Vol. 21. (Eds A Macfayden, M Begon and AH Fitter) pp. 171–313. (Academic Press: London)

    Google Scholar 

  • Brundrett MC (1999) Ectomycorrhizas. CSIRO Forestry and Forest Products: http://www.ffp.csiro.au/research/mycorrhiza/ecm.html

  • Brundrett MC (2000) What is the value of ectomycorrhizal inoculation for plantation-grown eucalypts? In ‘Mycorrhizal fungal diversity and technology for inoculation: Proceedings of the ACIAR international workshop on mycorrhizas.’ (Eds MQ Gong, DP Xu, CL Zhong, YL Chen, MC Brundrett and B Dell), pp. 151–160. (China Forestry Publishing House: Beijing)

    Google Scholar 

  • Brundrett MC, Abbott LK (1995) Mycorrhizal fungus propagules in the jarrah forest. II. Spatial variability in inoculum levels. New Phytologist 131, 461–469.

    Google Scholar 

  • Brundrett MC, Abbott LK (2002) Arbtiscular mycorrhizas in plant communities. In ‘Microorganisms in plant conservation and biodiversity.’ (Eds K Sivasithamparam, KW Dixon and RL Barrett) pp. 151–193. (Kluwer Academic Publishers: Dordrecht)

    Google Scholar 

  • Brundrett MC, Ashwath N, Jasper DA (1996a) Mycorrhizas in the Kakadu region of tropical Australia. I. Propagules of mycorrhizal fungi and soil properties in natural habitats. Plant and Soil 184, 159–171.

    Article  CAS  Google Scholar 

  • Brundrett MC, Ashwath N, Jasper DA (1996b) Mycorrhizas in the Kakadu region of tropical Australia. II. Propagules of mycorrhizal fungi in disturbed habitats. Plant and Soil 184, 173–184.

    Article  Google Scholar 

  • Brundrett MC, Bougher ML (1999) Ectomycorrhizal associates of eucalypts. CSIRO Forestry and Forest Products: >http://www.ffp.csiro.au/research/mycorrhiza/eucfungi.html<

  • Brundrett MC, Bougher NL, Dell B, Grove TS, Malajczuk N (1996c) ‘Working with mycorrhizas in forestry and agriculture.’ ACIAR Monograph 32, (ACIAR: Canberra)

    Google Scholar 

  • Brundrett MC, Kendrick B (1987) The relationship between the ash bolete (Boletinellus, merulioides) and an aphid parasitic on ash tree roots. Symbiosis 3, 315–319.

    Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant and Soil 170, 63–73.

    Article  CAS  Google Scholar 

  • Bruns TD, Szaro TM, Gardes M, Cullings KW, Pan JJ, Taylor DL, Morton TR, Kretzer A, Garbelotto M, Li Y (1998) A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Molecular Ecology 7, 257–272.

    Article  CAS  Google Scholar 

  • Burgess TI, Malajczuk N, Grove TS (1993) The ability of 16 ectomycorrhizal fungi to increase growth and phosphorus uptake of Eucalyptus globulus Labill. and E diversicolor F. Muell. Plant and Soil 153, 155–164.

    Article  CAS  Google Scholar 

  • Cairney JWG (1999) Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9, 125–135.

    Article  Google Scholar 

  • Cairney JWG, Alexander IJ (1992a) A study of ageing of spruce (Picea sitchensis Bong. Carr.) ectomycorrhizas. II. Carbon allocation in ageing Picea sitchensis/Tylospora fibrillosa (Burt.) Donk ectomycorrhizas. New Phytologist 122, 153–158.

    CAS  Google Scholar 

  • Cairney JWG, Alexander IJ (1992b) A study of ageing of spruce (Picea sitchensis Bong. Carr.) ectomycorrhizas. III. Phosphate absorption and transfer in ageing Picea sitchensis/Tylospora fibrillosa (Burt.) Donk ectomycorrhizas. New Phytologist 122, 159–164.

    CAS  Google Scholar 

  • Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytologist 134, 685–695.

    Google Scholar 

  • Cairney JWG, Meharg AA (1999) Influences of anthropogenic pollution on mycorrhizal fungal communities. Environmental Pollution 106, 169–182.

    Article  PubMed  CAS  Google Scholar 

  • Castellano MA (1994) Current status of outplanting studies using ectomycorrhizainoculated forest trees In ‘Mycorrhizae and plant health.’ (Eds FL Pfleger and RG Linderman) pp. 261–281. (American Phytopathological Society: St Paul)

    Google Scholar 

  • Castellano MA (1999) Resupinate ectomycorrhizal fungal genera. In ‘Ectomycorrhizal fungi: key genera in profile.’ (Eds JWG Cairney and SM Chambers) pp. 311–323. (Springer-Verlag: Heidelberg)

    Google Scholar 

  • Castellano MA, Bougher NL (1994) Consideration of the taxonomy and biodiversity of Australian ectomycorrhizal fungi. Plant and Soil 159, 37–46.

    Google Scholar 

  • Cázares E, Trappe JM (1994) Spore dispersal of ectomycorrhizal fungi on a glacier forefront by mammal mycophagy. Mycologia 86, 507–510.

    Google Scholar 

  • Cázares E, Luoma DL, Amaranthus MP, Chambers CL, Lehmkuhl JF, Halpern CB, Raphael MG (1999) Interaction of fungal sporocarp production with small mammal abundance and diet in Douglas-fir stands of the southern Cascade Range. Northwest Science 73, 64–76.

    Google Scholar 

  • Chalot M, Bran A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews 22, 21–44.

    Article  PubMed  CAS  Google Scholar 

  • Chambers SM, Cairney (1999) Pisolithus. In ‘Ectomycorrhizal fungi: key genera in profile.’ (Eds JWG Cairney and SM Chambers) pp. 1–31. (Springer-Verlag: Heidelberg)

    Google Scholar 

  • Chambers SM, Sharpies JM, Cairney JWG (1998) Towards a molecular identification of the Pisonia mycobiont. Mycorrhiza 7, 319–321.

    Article  CAS  Google Scholar 

  • Chappelka AH, Kush JS, Runion GB, Meier S, Kelley WD (1991) Effects of soil-applied lead on seedling growth and ectomycorrhizal colonisation of Loblolly Pine. Environmental Pollution 72, 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Dell B, Brundrett MC (2000) Effects of ectomycorrhizas and vesiculararbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytologist 146, 545–556.

    Google Scholar 

  • Christy EJ, Sollins P, Trappe JM (1982) First-year survival of Tsuga heterophylla without mycorrhizae and subsequent ectomycorrhizal development on decaying logs and mineral soil. Canadian Journal of Botany 60, 1601–1605.

    Google Scholar 

  • Chu-Chou M, Grace LJ (1982) Mycorrhizal fungi of Eucalyptus in the north island of New Zealand. Soil Biology and Biochemistry 14, 133–137.

    Article  Google Scholar 

  • Claridge AW, Castellano MA, Trappe JM (1996) Fungi as a food resource for mammals in Australia. In ‘Fungi of Australia Volume 1B, Introduction — fungi in the environment.’ pp. 239–268. (Australian Biological Resources Study: Canberra)

    Google Scholar 

  • Claridge AW, Tanton MT, Seebeck JH, Cork SJ, Cunningham RB (1992) Establishment of ectomycorrhizae on the roots of two species of Eucalyptus from fungal spores contained in the faeces of the long-nosed potoroo (Potorous tridactylus). Australian Journal of Ecology 17, 207–217.

    Google Scholar 

  • Cline ML, France RC, Reid CPP (1987) Intraspecific and interspecific growth variation of ectomycorrhizal fungi at different temperatures. Canadian Journal of Botany 65, 869–875.

    Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Canadian Journal of Botany 67, 29–39.

    Article  Google Scholar 

  • Conroy JP, Milham PJ, Reed ML, Barlow EW (1990) Increase in phosphorus requirements for CO2-enriched pine species. Plant Physiology 92, 977–982.

    CAS  PubMed  Google Scholar 

  • Cripps C, Miller OK Jr. (1993) Ectomycorrhizal fungi associated with aspen on three sites in the north-central Rocky Mountains. Canadian Journal of Botany 71, 1414–1420.

    Google Scholar 

  • Cromack KJ, Fichter BL, Moldenke AM, Entry JA, Ingham ER (1988) Interactions between soil animals and ectomycorrhizal fungal mats. Agriculture, Ecosystems and Environment 24, 161–168.

    Article  Google Scholar 

  • Callings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379, 63–66.

    Google Scholar 

  • Dahlberg A, Stenlid J (1995) Spatiotemporal patterns in ectomycorrhizal populations. Canadian Journal of Botany 73,(supplement) S1222–S1230.

    Google Scholar 

  • Danielson RM (1985) Mycorrhizae and reclamation of stressed terrestrial environments. In ‘Soil reclamation processes — microorganisms, analyses and applications.’ (Eds RL Tate and DA Klein) pp. 173–201. (Marcel Dekker: New York)

    Google Scholar 

  • Danielson RM, Pruden M (1989) The ectomycorrhizal status of urban spruce. Mycologia 81, 335–341.

    Google Scholar 

  • Danielson RM, Visser S (1989) Effects of forest soil acidification on ectomycorrhizal and vesicular-arbuscular mycorrhizal development. New Phytologist 112, 41–47.

    Google Scholar 

  • de la Bastide PY, Kropp BR, Piché Y (1994) Spatial distribution and temporal persistence of discrete genotypes of the ectomycorrhizal fungus Laccaria bicolor (Maire) Orton. New Phytologist 127, 547–556

    Google Scholar 

  • de Vries BWL, Jansen E, Dobben HF van, Kuyper TW (1995) Partial restoration of fungal and plant species diversity by removal of litter and humus layers in stands of Scots pine in the Netherlands. Biodiversity and Conservation 4, 156–164.

    Article  Google Scholar 

  • Delucia EH, Callaway RM, Thomas EM, Schlesinger WH (1997) Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Annals of Botany 79, 111–120.

    Article  CAS  Google Scholar 

  • Dighton J, Mason PA (1985) Mycorrhizal dynamics during forest tree development. In ‘Developmental biology of the higher fungi.’ (Eds D Moore, LA Casselton, DA Wood and JC Frankland) pp. 117–139. (Cambridge University Press: Cambridge)

    Google Scholar 

  • Dighton J, Skeffington RA (1987) Effects of artificial acid precipitation on the mycorrhizas of Scots pine seedlings. New Phytologist 107, 191–202.

    CAS  Google Scholar 

  • Dighton J, Thomas ED, Latter PM (1987) Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm. Biology and Fertility of Soils 4, 145–150.

    Article  Google Scholar 

  • Dixon RK, Rao MV, Garg VK (1993) Salt stress affects in vitro growth and in situ symbioses of ectomycorrhizal fungi. Mycorrhiza 3, 63–68.

    Article  Google Scholar 

  • Downes GM, Alexander IJ, Cairney JWG (1992) A study of ageing of spruce (Picea sitchensis (Bong.) Carr. ectomycorrhizas. I. Morphological and cellular changes in mycorrhizas formed by Tylospora fibrillosa (Burt.) Donk and Paxillus involutus (Batsch. ex Fr.) Fr. New Phytologist 122, 141–152.

    Google Scholar 

  • Dunstan WA, Dell B, Malajczuk N (1998) The diversity of ectomycorrhizal fungi associated with introduced Pinus spp. in the Southern Hemisphere, with particular reference to Western Australia. Mycorrhiza 8, 71–79.

    Article  Google Scholar 

  • Erland S, Taylor AFS (1999) Resupinatc ectomycorrhizal fungal genera. In ‘Ectomycorrhizal fungi: key genera in profile.’ (Eds JWG Cairney and SM Chambers) pp. 347–363. (Springer-Verlag: Heidelberg)

    Google Scholar 

  • Esher RJ, Marx DH, Ursie SJ, Baker RL, Brown LR, Coleman DC (1992) Simulated acid rain effects on fine roots, ectomycorrhizae, microorganisms and invertebrates in pine forests of the southern United States. Water, Air and Soil Pollution 61, 269–278.

    Article  CAS  Google Scholar 

  • Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cavipes. New Phytologist 112, 185–192.

    CAS  Google Scholar 

  • Fleming LV, Deacon JW, Last FT, Donaldson SJ (1984) Influence of propagating soil on the mycorrhizal succession of birch seedlings transplanted to a field site. Transactions of the British Mycological Society 82, 707–711.

    Article  Google Scholar 

  • Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Canadian Journal of Forest Research 9, 245–256.

    Google Scholar 

  • Frank B (1885) ‘On the root-symbiosis-depending nutrition through hypogeous fungi of certain trees’ (in German). Berichte der Deutschen Botanischen Gesellschaft 3, 128–145.

    Google Scholar 

  • Fries N (1987) Ecological and evolutionary aspects of spore germination in the higher basidiomycetes. Transactions of the British Mycological Society 88, 1–7.

    Article  Google Scholar 

  • Furman TE, Trappe JM (1971) Phylogeny and ecology of mycotrophic achlorophyllous Angiosperms. Quarterly Review of Biology 46, 219–275.

    Article  Google Scholar 

  • Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. New Zealand Journal of Forestry Science 5, 33–41.

    Google Scholar 

  • Garbaye J (1994) Mycorrhization helper bacteria: a new dimension in mycorrhizal symbiosis. Acta Botanica Gallica 141, 517–521.

    Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Canadian Journal of Botany 74, 1572–1583.

    Google Scholar 

  • Gardner JH, Mulajczuk N (1988) Recolonisation of rehabilitated bauxite mine sites in Western Australia by mycorrhizal fungi. Forest Ecology and Management 24, 27–42.

    Article  Google Scholar 

  • Gebauer G, Taylor AFS (1999) 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization. New Phytologist 142, 93–101.

    Article  Google Scholar 

  • Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pine communities growing in two environmental extremes. Ecology 79, 1562–1572.

    Google Scholar 

  • Gehring CA, Whitham TG (1994) Comparisons of ectomycorrhizae on pinyon pines (Pinus edulis; Pinaceae) across extremes of soil type and herbivory. American Journal of Botany 81, 1509–1516.

    Google Scholar 

  • Gibson F, Deacon JW (1990) Establishment of ectomycorrhizas in aseptic culture: effects of glucose, nitrogen and phosphorus in relation to successions. Mycological Research 94, 166–172.

    Google Scholar 

  • Girard I, Fortin JA (1985) Ecological habitat of mycorrhizae of northern temperate climax forests. In ‘Proceedings of the 6th North American conference on mycorrhizae’ (Ed R Molina) pp. 270. (Forest Research Laboratory, Oregon State University: Corvallis)

    Google Scholar 

  • Glen M, Bougher N, Tommerup I, O’Brien P (1999) Site management changes the structure of ectomycorrhizal fungal communities in natural forests. In ‘Abstracts of the IXth international congress of mycology.’ pp. 240. (IUMS: Sydney)

    Google Scholar 

  • Godbold DL, Berntson GM (1997) Elevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assemblages in Betula papyrifera. Tree Physiology 17, 347–350.

    PubMed  Google Scholar 

  • Godbold DL, Berntson GM, Bazzaz FA (1997) Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytologist 137, 433–440.

    Article  CAS  Google Scholar 

  • Goodman DM, Trofymow JA (1998) Distribution of ectomycorrhizas in micro-habitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver Island. Soil Biology and Biochemistry 30, 2127–2138.

    Article  CAS  Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biology and Biochemistry 26, 331–337.

    Article  CAS  Google Scholar 

  • Griffiths RP, Bradshaw GA, Marks B, Lienkaemper GW(1996) Spatial distribution of ectomycorrhizal mats in coniferous forests of the Pacific Northwest, USA. Plant and Soil 180, 147–158.

    Article  CAS  Google Scholar 

  • Griffiths RP, Ingham ER, Caldwell BA, Castellano MA, Cromack KJ (1991) Microbial characteristics of ectomycorrhizal mat communities in Oregon and California. Biology and Fertility of Soils 11, 196–202.

    Article  Google Scholar 

  • Gronbach E, Agerer R (1986) Charakterisierung und Inventur der Fichten-Mykorrhizen in Högwald und deren Reaktion auf saure Beregnung. Forstwissenschaftliche Centralblatt 105, 329–335.

    Google Scholar 

  • Hagerman SM, Jones MD, Bradfield GE, Gillespie M, Durall DM (1999) Effects of clearcut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Canadian Journal of Forest Research 29, 124–134.

    Google Scholar 

  • Hanson PJ, Dixon RK (1987) Allelopathic effects of interrupted fern on northern red oak seedlings: amelioration by Suillus luteus L.: Fr. Plant and Soil 98, 43–51.

    Google Scholar 

  • Harley JL, Harley EL, (1987) A check-list of mycorrhiza in the British flora. New Phytologist 2,(supplement) 102 pp.

    Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant and Soil 189, 303–319.

    Article  CAS  Google Scholar 

  • Harvey AE, Jurgensen MF, Larsen MJ (1978) Seasonal distribution of ectomycorrhizae in a mature Douglas-fir/larch forest soil in western Montana. Forest Science 24, 203–208.

    Google Scholar 

  • Harvey AE, Page-Dumroese DS, Jurgensen MF, Graham RT, Tonn JR (1997) Site preparation alters soil distribution of roots and ectomycorrhizae on outplantcd western white pine and Douglas-fir. Plant and Soil 188, 107–117.

    Article  CAS  Google Scholar 

  • Haug I, Pritsch K, Oberwinkler F (1992) Der einfluss von düngung auf feinwurzeln und mykorrhizen in kulturversuch und im freiland. Forschungbericht Kernforschungzentrum Karlsruhe KfK-PEF 97, 1–159.

    Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Canadian Journal of Botany 74, 1496–1506.

    Google Scholar 

  • Hiol FH, Dixon RK, Curl EA (1995) The feeding preference of mycophagous Collembola varies with the ectomycorrhizal symbiont. Mycorrhiza 5, 99–103.

    Google Scholar 

  • Högberg P (1986) Soil nutrient availability, root symbioses and tree species composition in tropical Africa: a review. Tropical Ecology 2, 359–372.

    Google Scholar 

  • Högberg P, Alexander IJ (1995) Roles of root symbioses in African woodland and forest: evidence from 15N abundance and foliar analysis. Journal of Ecology 83, 217–224.

    Google Scholar 

  • Högberg P. Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Sciences of the United States of America 96, 8534–8539.

    PubMed  Google Scholar 

  • Hooker JE, Black KE, Perry RL, Atkinson D (1995) Arbuscular mycorrhizal fungi induced alteration to root longevity of poplar. Plant and Soil 172, 327–329.

    Article  CAS  Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and Bishop pine (Pinus muricata). New Phytologist 139, 331–339.

    Article  Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Canadian Journal of Botany 77, 93–102.

    Article  Google Scholar 

  • Horton TR, Cázares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of Bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8, 11–18.

    Article  Google Scholar 

  • Hosford D, Pilz D, Molina R, Amaranthus M (1997) ‘Ecology and management of the commercially harvested American matsutake mushroom’ (United Sates Department of Agriculture, Forest Service General Technical Report PNW-GTR-412)

    Google Scholar 

  • Hung LL, Trappe JM (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75, 234–241.

    Google Scholar 

  • Hutchinson LJ (1989) Absence of conidia as a morphological character in ectomycorrhizal fungi. Mycologia 81, 587–594.

    Google Scholar 

  • Ineichen K, Wiemken V, Wiemken A (1995) Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant, Cell and Environment 18, 703–707.

    Google Scholar 

  • Ingham ER, Massicotte HB (1994) Protozoan communities around conifer roots colonized by ectomycorrhizal fungi. Mycorrhiza 5, 53–61.

    Google Scholar 

  • Ingleby K, Munro RC, Moor M, Mason PA, Clearwater MJ (1998) Ectomycorrhizal populations and growth of Shorea parvifolia (Dipterocarpaceae) seedlings regenerating under different canopies following logging. Forest Ecology and Management 111, 171–179.

    Article  Google Scholar 

  • Jackson RM, Walker C, Luff S, McEvoy C (1995) Inoculation and field testing of Sitka spruce and Douglas fir with ectomycorrhizal fungi in the United Kingdom. Mycorrhiza 5, 165–173.

    Google Scholar 

  • Janos DP (1980) Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61, 151–162.

    Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth: non-nutritional effects and interaction with mycorrhizae. Biology and Fertility of Soils 20, 263–269.

    Article  Google Scholar 

  • Johnson CN (1995) Interactions between fire, mycophagous mammals and dispersal of ectomycorrhizal fungi in Eucalyptus forests. Oecologia 104, 467–475.

    Article  Google Scholar 

  • Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Trends in Ecology and Evolution 11, 503–507.

    Google Scholar 

  • Jones MD, Durall DM, Harniman SMK, Classen DC, Simard SW (1997) Ectomycorrhizal diversity on Betula papyrifera and Pseudotsuga menziesii seedlings grown in the greenhouse or outplanted in single-species and mixed plots in southern British Columbia. Canadian Journal of Forest Research 27, 1872–1889.

    Article  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson MC, KÃ¥rén O, Zackrisson O (1999a) Continuity of etcomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytologist 142, 151–162.

    Article  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson MC, Zackrisson O, KÃ¥rén O (1999b) Ectomycorrhizal fungal communities in late-successional Swedish boreal forests and composition following wildfire. Molecular Ecology 8, 205–215.

    Article  Google Scholar 

  • Jongmans AG, van Breeman N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock-eating fungi. Nature 389, 683–683.

    Article  CAS  Google Scholar 

  • Jumpponen A, Trappe JM, Cazares E., (1999) Ectomycorrhizal fungi in Lyman Lake Basin: a comparison between primary and secondary successional sites. Mycologia 91, 575–582.

    Google Scholar 

  • KÃ¥rén O, Nylund JE (1997) Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Canadian Journal of Botany 75, 1628–1642.

    Google Scholar 

  • Keizer PJ, Arnolds E (1994) Succession of ectomycorrhizal fungi in roadside verges planted with common oak (Quercus robur L.) in Drenthe, the Netherlands. Mycorrhiza 4, 147–159.

    Google Scholar 

  • Khan AG (1993) Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3, 31–38.

    Article  Google Scholar 

  • Khan AG, Belik M (1995) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In ‘Mycorrhiza.’ (Eds A Varma and B Hock) pp. 627–666. (Springer-Verlag: Berlin)

    Google Scholar 

  • Kieliszewska-Roikicka B, Rudawska M, Leski T (1997) Ectomycorrhizae of young and mature Scots pine trees in industrial regions of Poland. Environmental Pollution 98, 315–324.

    Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75, 2373–2383.

    Google Scholar 

  • Kohn LM, Stasovski E (1990) The mycorrhizal status of plants at Alexandra Fjord, Ellesmere Island, Canada, a high arctic site. Mycologia 82, 23–35.

    Google Scholar 

  • Kohzu A, Takahashi M, Koba K, Wada E (1999) Natural 13C and 15N abundance of fieldcollected fungi and their ecological implications. New Phytologist 144, 323–330.

    Article  Google Scholar 

  • Kalotas AC (1996) Aboriginal knowledge and use of fungi. In ‘Fungi of Australia Vol. 1B Introduction — fungi in the environment.’ (Ed. AE Orchard) pp. 268–295. (Australian Biological Resources Study: Canberra)

    Google Scholar 

  • Kope HH, Warcup JH (1986) Synthesized ectomycorrhizal associations of some Australian herbs and shrubs. New Phytologist 104, 591–599.

    Google Scholar 

  • Kottke I, Oberwinkler F (1986) Root-fungus interactions observed on initial stages of mantle formation and Hartig net establishment in mycorrhizas of Amanita muscaria on Picea abies in pure culture. Canadian Journal of Botany 64, 2348–2354.

    Article  Google Scholar 

  • Kovacic DA, St John TV, Dyer MI (1984) Lack of vesicular-arbuscular mycorrhizal inoculum in a Ponderosa pine forest. Ecology 65, 1755–1759.

    Google Scholar 

  • Kretzer AM, Bidartondo MI, Grubisha LC, Spatafora JW, Szaro TM, Bruns TD (2000) Regional specialisation of Sarcodes sanguinea (Ericaceae) on a single fungal symbiont from the Rhizopogon ellenae (Rhizopogonaceae) species complex. American Journal of Botany 87, 1778–1782.

    PubMed  Google Scholar 

  • Landeweert R, Hofflund E, Finlay RD, van Breemen N (2001) Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology and Evolution 16, 248–254.

    Article  PubMed  Google Scholar 

  • Lapeyrie FF, Chilvers GA (1985) An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytologist 100, 93–104.

    Google Scholar 

  • Largent D (1986) ‘How to identify mushrooms to genus 1: macroscopic features’ (Mad River Press Inc.: Eureka)

    Google Scholar 

  • Last FT, Mason PA, Ingleby K, Fleming LV (1984) Succession of fruitbodies of sheathing mycorrhizal fungi associated with Betula pendula. Forest Ecology and Management 9, 229–234.

    Google Scholar 

  • Lawrence JF, Milner R (1996) Associations between arthropods and fungi. In ‘Fungi of Australia Vol. 1B Introduction — fungi in the environment’ (Ed. AE Orchard) pp. 137–202. (Australian Biological Resources Study: Canberra)

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7, 139–153.

    Article  CAS  Google Scholar 

  • Lindahl B, Stenlid J, Olsson S, Finlay R (1999) Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist 144, 183–193.

    Article  CAS  Google Scholar 

  • LoBuglio KF (1999) Cenococcum. In ‘Ectomycorrhizal fungi: key genera in profile.’ (Eds JWG Cairney and SM Chambers) pp. 287–309. (Springer-Verlag: Heidelberg)

    Google Scholar 

  • Lodge DJ (1989) The influence of soil moisture and flooding on formation of VA-endoand ectomycorrhizae in Populus and Salix. Plant and Soil 117, 243–253.

    Article  Google Scholar 

  • Lodge DJ, Wentworth TR (1990) Negative associations among VA-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root system. Oikos 57, 347–356.

    Google Scholar 

  • Lu XH, Malajczuk N, Brundrett M, Dell B (1999) Fruiting of putative ectomycorrhizal fungi under blue gum (Eucalyptus globulus) plantations of different ages in Western Australia. Mycorrhizal, 255–261.

    Google Scholar 

  • Lussenhop J, Fogel R (1999) Seasonal changes in phosphorus content of Pinus strobus-Cenococcum geophilum ectomycorrhizae. Mycologia 91, 742–746.

    CAS  Google Scholar 

  • Majdi H, Nylund JE (1996) Does liquid fertilisation affect fine root dynamics and lifespan of mycorrhizal short roots? Plant and Soil 185, 305–309.

    CAS  Google Scholar 

  • Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on roots of Eucalyptus urophylla in vitro. 1. Mycorrhiza formation in model systems. New Phytologist 114, 627–631.

    Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhizal formation in Eucalyptus I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytologist 91, 467–482.

    Google Scholar 

  • Malajczuk N, Reddell P, Brundrett M (1994) Role of ectomycorrhizal fungi in mine site reclamation. In ‘Mycorrhizae and plant health.’ (Eds FL Pfleger, RG Linderman) pp. 83–100 (American Phytopathological Society: St Paul)

    Google Scholar 

  • Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants. Proceedings of the National Academy of Sciences of the United States of America 77, 2113–2118.

    PubMed  CAS  Google Scholar 

  • Markkola AM, Ohtonen R, Tarvainen O, Ahonen-Jonnarth U (1995) Estimates of fungal biomass in Scots pine stands on an urban pollution gradient. New Phytologist 131, 139–147.

    Google Scholar 

  • Marmeisse R, Gryta H. Jargeat P. Fraissinet-Tachet L, Gay G, Debaud JC (1999) Hebeloma. In ‘Ectomycorrhizal fungi: key genera in profile.’ (Eds JWG Cairney and SM Chambers) pp. 89–127. (Springer-Verlag: Heidelberg)

    Google Scholar 

  • Marschner H (1995) ‘Mineral nutrition of higher plants.’ 2nd edn. (Academic Press: London)

    Google Scholar 

  • Martin F, Delaruelle C. Ivory M (1998) Genetic variability in intergenic spacers of ribosomal DNA in Pisolithus isolates associated with pine, Eucalyptus and Afzelia in lowland Kenyan forests. New Phytologist 139, 341–352.

    Article  CAS  Google Scholar 

  • Martins A, Barroso J, Pais MS (1996) Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa Mill. Mycorrhiza 6, 265–270.

    Article  Google Scholar 

  • Maser C, Maser Z (1988) Interactions among squirrels, mycorrhizal fungi and coniferous forests in Oregon. Great Basin Naturalist 48, 358–369.

    Google Scholar 

  • Mason PA, Last FT, Wilson J, Deacon JW, Fleming LV, Fox FM (1987) Fruiting and succession of ectomycorrhizal fungi. In ‘Fungal infection of plants.’ (Eds GF Pegg and PG Ayres) pp. 253–268. (Cambridge University Press, Cambridge)

    Google Scholar 

  • Massicotte HB, Ackerley CA, Peterson RL (1987) The root-fungus interface as an indicator of symbiont interaction in ectomycorrhizae. Canadian Journal of Forest Research 17, 846–854.

    Google Scholar 

  • Massicotte HB, Ackerley CA, Peterson RL (1987) The root-fungus interface as an indicator of symbiont interaction in ectomycorrhizae. Canadian Journal of Forest Research 17, 846–854.

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Luoma DL (1998) Anatomical aspects of field ectomycorrhizas on Polygonum viviparum (Polygonaceae) and Kobresia bellardii (Cyperaceae). Mycorrhiza 7, 287–292.

    Article  Google Scholar 

  • Massicotte HB, Molina R, Tackaberry, Smith JE, Amaranthus MP (1999) Diversity and host specificity of ectomycorrhizal fungi retrieved from three adjacent forest sites by five host species. Canadian Journal of Botany 77, 1053–1067.

    Article  Google Scholar 

  • McAfee BJ, Fortin JA (1986) Competitive interactions of ectomycorrhizal mycobionts under field conditions. Canadian Journal of Botany 64, 848–852.

    Google Scholar 

  • McAfee BJ, Fortin JA (1989) Ectomycorrhizal colonization on black spruce and jack pine seedlings outplanted in reforestation sites. Plant and Soil 116, 9–17.

    Google Scholar 

  • McIlwee AP, Johnson CN (1998) The contribution of fungus to the diets of three mycophagous marsupials in eucalyptus forests, revealed by stable isotope analysis. Functional Ecology 12, 223–231.

    Article  Google Scholar 

  • McIlnnes A, Chilvers GA (1994) Influence of environmental factors on ectomycorrhizal infection in axenically cultured eucalypt seedlings. Australian Journal of Botany 42, 595–604.

    Google Scholar 

  • Meharg AA, Cairney JWG (2000a) Co-evolution of mycorrhizal symbionts and their hosts to metal contaminated environments. Advances in Ecological Research 30, 69–112.

    CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000b) Ectomycorrhizas — extending the capabilities of rhizosphere remediation? Soil Biology and Biochemistry 32, 1475–1484

    Article  CAS  Google Scholar 

  • Messier C (1993) Factors limiting early growth of Western Red cedar, Western hemlock and Sitka spruce seedlings on ericaceous-dominated clearcut sites in coastal British Columbia. Forest Ecology and Management 60, 181–206.

    Article  Google Scholar 

  • Meyer FH (1973) Distribution of ectomycorrhizae in native and man-made forests. In ‘Ectomycorrhizae, their ecology and physiology.’ (Eds GC Marks and TT Kozlowski) pp. 79–105. (Academic Press: New York)

    Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115, 406–418.

    Article  Google Scholar 

  • Miller SL, Koo CD, Molina R (1991) Characterization of Red alder ectomycorrhizae: A preface to monitoring belowground ecological responses. Canadian Journal of Botany 69, 516–531.

    Google Scholar 

  • Miller SL, Torres P, McClean TM (1994) Persistence of basidiospores and sclerotia of ectomycorrhizal fungi and Morchella in soil. Mycologia 86, 89–95.

    Google Scholar 

  • Mogge B, Loferer C, Agerer R. Hutzler P, Hartmann A (2000) Bacterial community structure and colonization of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9, 271–278.

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In ‘Mycorrhizal functioning.’ (Ed MF Allen) pp. 357–423. (Chapman and Hall: London)

    Google Scholar 

  • Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Science 28, 423–458.

    Google Scholar 

  • Morgan A (1995) ‘Toads and toadstools.’ (Celestial Arts Publishing: Berkeley)

    Google Scholar 

  • Morin C, Samson J, Dessureault M (1999) Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Canadian Journal of Botany 77, 169–174.

    Article  Google Scholar 

  • Moyersoen B, Fitter AH (1998) Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8, 247–253.

    Google Scholar 

  • Moyersoen B, Fitter AH, Alexander IJ (1998) Spatial distribution of ectomycorrhizas and arbuscular mycorrhizas in Korup national park rain forest, Cameroon, in relation to edaphic parameters. New Phytologist 139, 311–320.

    Article  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392, 914–916.

    Google Scholar 

  • Newbery DM, Alexander IJ, Rother JA (1997) Phosphorus dynamics in a lowland African rain forest: the influence of ectomycorrhizal trees. Ecological Monographs 67, 367–409.

    Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Advances in Ecological Research 18, 243–270.

    Article  Google Scholar 

  • Newton AC (1992) Towards a functional classification of ectomycorrhizal fungi. Mycorrhiza 2, 75–79.

    Article  Google Scholar 

  • Newton AC Haigh JM (1998) Diversity of ectomycorrhizal fungi in Britain: a test of the species-area relationship and the role of host specificity. New Phytologist 138, 619–627.

    Article  Google Scholar 

  • Nicolotti G, Egli S (1998) Soil contamination by crude oil: impact on the mycorrhizosphere, on revegetation potential of forest tress. Environmental Pollution 99, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen P, Børja I, Knutsen H, Brean R (1998) Nitrogen and drought effects on ectomycorrhizae of Norway spruce [Picea abies (L.) Karst.]. Plant and Soil 198, 179–184.

    Article  CAS  Google Scholar 

  • Norby RJ, O’Neill EG, Hood WG, Luxmoore RJ (1987) Carbon allocation, root exudation and mycorrhizal colonisation of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiology 3, 203–210.

    PubMed  Google Scholar 

  • Nowotny I, Dähne J, Klingelhöfer D, Rothe GM (1998) Effects of artificial soil acidification and liming on growth and nutrient status of mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.). Plant and Soil 199, 29–40.

    CAS  Google Scholar 

  • Ogawa M (1985) Ecological characters of ectomycorrhizal fungi and their mycorrhizae — an introduction to the ecology of higher fungi. JARQ 18, 305–314.

    Google Scholar 

  • Oliveira VL, Schmidt VDB, Bellei MM (1997) Patterns of arbuscular-and ectomycorrhizal colonization of Eucalyptus dunnii in southern Brazil. Annales des Sciences Forestieres 54, 473–481.

    Article  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology-Ecology 29, 303–310.

    CAS  Google Scholar 

  • Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiology Ecology 27, 195–205.

    Article  CAS  Google Scholar 

  • Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU (1991) Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant and Soil 136, 131–143.

    Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Lapeyrie F (1995) In vitro weathering of phlogopite by ectomycorrhizal fungi. I. Effect of K* and Mg2+ deficiency on phyllosilicate evolution. Plant and Soil 177, 191–201.

    Article  CAS  Google Scholar 

  • Parke JL, Linderman RG, Trappe JM (1983a) Effect of root zone temperature on ectomycorrhiza and vesicular-arbuscular mycorrhiza formation in disturbed and undisturbed forest soils of southwest Oregon. Canadian Journal of Forest Research 13, 657–665.

    Google Scholar 

  • Parke JL, Linderman RG, Trappe JM (1983b) Effects of forest litter on mycorrhiza development and growth of Douglas-fir and Western Red cedar seedlings. Canadian Journal of Forest Research 13, 666–671.

    Google Scholar 

  • Parsons WFJ, Miller SL, Knight DH (1994) Root-gap dynamics in a Lodgepole pine forest: ectomycorrhizal and nonmycorrhizal fine root activity after experimental gap formation. Canadian Journal of Forest Research 24, 1531–1538.

    Google Scholar 

  • Perry DA, Amaranthus MP, Borchers JC, Borchers SL, Brainerd RE (1989a) Bootstrapperry in ecosystems. BioScience 39, 230–237.

    Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989b) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytologist 112, 501–511.

    Google Scholar 

  • Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres and reforestation: current knowledge and research needs. Canadian Journal of Forest Research 17, 929–940.

    Google Scholar 

  • Ponge JF (1991) Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant and Soil 138, 99–113.

    Article  Google Scholar 

  • Pritsch K, Boyle H, Munch JC, Buscot F (1997) Characterization and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer (ITS). New Phytologist 137, 357–369.

    Article  CAS  Google Scholar 

  • Qian XM, Kottke I, Oberwinkler F, Kreutzer K, Weiss T (1998) Influence of liming, acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst. stand. Plant and Soil 199, 99–109.

    CAS  Google Scholar 

  • Reddell P, Gordon V, Hopkins M (1999) Ectomycorrhizas in Eucalyptus tetrodonta and E miniata forest communities in tropical northern Australia and their role in the rehabilitation of these forests following mining. Australian Journal of Botany 47, 881–907.

    Article  Google Scholar 

  • Reddell P, Spain AV, Hopkins M (1997) Dispersal of spores of mycorrhizal fungi in scats of native mammals in tropical forests of northeastern Australia. Biotropica 29, 184–192.

    Google Scholar 

  • Rcddy MS, Satyanarayana T (1998) Inoculation of micropropagated plantlets of Eucalyptus tereticornis with ectomycorrhizal fungi. New forests 16, 273–279.

    Google Scholar 

  • Rey A, Jarvis PG (1997) Growth responses of young birch trees (Betula pendula Roth.) after four and a half years of CO2 exposure. Annals of Botany 80, 809–816.

    Article  Google Scholar 

  • Richter DL, Bruhn JN (1993) Mycorrhizal fungus colonization of Pinus resinosa Ait. transplanted on northern hardwood clearcuts. Soil Biology Biochemistry 25, 355–369.

    Google Scholar 

  • Robinson RK (1972) The production by roots of Calluna vulgaris of a factor inhibitory to growth of some mycorrhizal fungi. Journal of Ecology 60, 219–224.

    Google Scholar 

  • Roth DR, Fahey TJ (1998) The effects of acid precipitation and ozone on the ectomycorrhizae of Red spruce saplings. Water, Air and Soil Pollution 103, 263–276.

    Article  CAS  Google Scholar 

  • Runion GB, Mitchell RJ, Rogers HH, Prior SA, Counts TK (1997) Effects of nitrogen and water limitation and elevated atmospheric CO2 on ectomycorrhiza of Longleaf pine. New Phytologist 137, 681–689

    Article  Google Scholar 

  • Rygiewicz PT, Andersen CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369, 58–60.

    Article  Google Scholar 

  • Rygiewicz PT, Johnson MG, Ganio LM, Tingey DT, Storm MJ (1997) Lifetime and temporal occurrence of ectomycorrhizae on Ponderosa pine (Pinus ponderosa Laws.) seedlings grown under varied atmospheric CO2 and nitrogen levels. Plant and Soil 189, 275–287.

    Article  CAS  Google Scholar 

  • Sagara N (1995) Associations of ectomycorrhizal fungi with decomposed animal wastes in forest habitats: a cleaning symbiosis? Canadian Journal of Botany (supplement) 1, S1423–S1433.

    Google Scholar 

  • Schier GA, McQuattie CJ (1996) Response of ectomycorrhizal and nonmycorrhizal pitch pine (Pinus rigida) seedlings to nutrient supply and aluminum: growth and mineral nutrition. Canadian Journal of forest Research 26, 2145–2152.

    Google Scholar 

  • Selosse MA, Martin F, Bouchard D, Le tacon F (1999) Structure and dynamics of experimentally introduced and naturally occurring Laccaria sp. discrete genotypes in a Douglas fir plantation. Applied and Environmental Microbiology 65, 2006–2014.

    PubMed  CAS  Google Scholar 

  • Setälä H (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76, 1844–1851.

    Google Scholar 

  • Setälä H, Kulmala P, Mikola J, Markkola AM (1999) Influence of ectomycorrhiza on the structure of detrital food webs in pine rhizosphere. Oikos, 87, 113–122.

    Google Scholar 

  • Sharples JM, Cairney JWG (1997) Organic nitrogen utilization by the mycobiont isolated from mycorrhizas of Pisonia grandis R. Br. (Nyctaginaceae). Mycological Research 101, 315–318.

    Article  Google Scholar 

  • Sidhu SS, Chakravarty P (1990) Effect of selected forestry herbicides on ectomycorrhizal development and seedling growth of lodgepole pine and white spruce under controlled and field environment. European Journal of Forest Pathology 20, 77–94.

    Google Scholar 

  • Simard SW, Jones MD, Durall DM, Perry DA, Myrold DD, Molina R (1997) Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytologist 137, 529–542

    Article  CAS  Google Scholar 

  • Sims KP, Sen R, Walling R, Jeffries P (1999) Species and population structures of Pisolithus and Scleroderma identified by combined phenotypic and genomic marker analysis. Mycological Research 103, 449–458.

    Article  Google Scholar 

  • Slankis V (1974) Soil factors influencing formation of mycorrhizae. Annual Review of Phytopathology 12, 437–457.

    Article  CAS  Google Scholar 

  • Smith JE, Johnson KA, Cazares E (1998) Vesicular mycorrhizal colonization of seedlings of Pinaceae and Betulaceae after spore inoculation with Glomus intraradices. Mycorrhiza 7, 279–285.

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) ‘Mycorrhizal symbiosis’ (Academic Press: San Diego)

    Google Scholar 

  • Soulas ML, Bihan Ble, Camporota P, Jarosz C, Salerno MI, Perrin R, Le Bihan B (1997) Solarization in a forest nursery: effect on ectomycorrhizal soil infectivity and soil receptiveness to inoculation with Laccaria bicolor. Mycorrhiza 7, 95–100.

    Article  Google Scholar 

  • Stroo HF, Reich PB, Schoettle AW, Amundson RG (1988) Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. II. Mycorrhizal infection. Canadian Journal of Botany 66, 1510–1516.

    CAS  Google Scholar 

  • Summerbell RC (1989) Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Canadian Journal of Botany 67, 1085–1095.

    Google Scholar 

  • Sutherland JR, Fortin JA (1968) Effect of the nematode Aphelenchus avenae on some ectotrophic, mycorrhizal fungi and on a Red pine mycorrhizal relationship. Phytopathology 58, 519–523.

    Google Scholar 

  • Sylvia DM, Jarstfer AG (1997) Distribution of mycorrhiza on competing pines and weeds in a southern pine plantation. Soil Science Society of America Journal 61, 139–144.

    Article  CAS  Google Scholar 

  • Taylor AFS, Alexander IJ (1989) Demography and population dynamics of ectomycorrhizas of Sitka spruce fertilized with N. Agriculture, Ecosystems and Environment 28, 493–496.

    Google Scholar 

  • Taylor AFS Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) in forests along north-south transects in Europe. In ‘Carbon and nitrogen cycling in European forest ecosystems.’ (Ed. E-D Schulze) Ecological Studies Vol. 142. pp 343–365. (Springer-Verlag: Heidelberg)

    Google Scholar 

  • Taylor AFS, Read DJ (1996) A European north-south survey of ectomycorrhizal populations on spruce. In ‘Mycorrhizas in integrated systems.’ (Eds C Azcon-Aguilar and JM Barea) pp. 144–147. (European Commission: Brussels)

    Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of Sciences of the United States of America 94, 4510–4515.

    PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the’ cheating ‘orchids Corallorhiza maculata and C. mertensiana. Molecular Ecology 8, 1719–1732.

    Google Scholar 

  • Taylor JH, Peterson CA (1998) Viability and wall permeability of the extramatrical hyphae of the ectomycorrhizal fungus Hebeloma cylindrosporum. Canadian Journal of Botany 76, 893–898.

    Article  CAS  Google Scholar 

  • Termorshuizen AJ (1991) Succession of mycorrhizal fungi in stands of Pinus sylvestris in the Netherlands. Journal of Vegetation Science 2, 555–564.

    Google Scholar 

  • Termorshuizen AJ, Schaffers AP (1987) Occurrence of carpophores of ectomycorrhizal fungi in selected stands of Pinus sylvestris in the Netherlands in relation to stand vitality and air pollution. Plant and Soil 104, 209–217.

    CAS  Google Scholar 

  • Tétreault JP, Bernier B, Forlin JA (1978) Nitrogen fertilisation and mycorrhizae of balsam fir seedlings in natural stands. Naturaliste Canadien 105, 461–466.

    Google Scholar 

  • Thomson BD, Grove TS, Malajczuk N, Hardy GE St J (1996) The effect of soil pH on the ability of ectomycorrhizal fungi to increase the growth of Eucalyptus globulus Labill. Plant and Soil 178, 209–214.

    CAS  Google Scholar 

  • Tingey DT, Phillips DL, Johnson MG, Storm MJ, Ball JT (1997) Effects of elevated CO2 and N fertilisation on fine root dynamics and fungal growth in seedling Pinus ponderosa. Environmental and Experimental Botany 37, 73–83.

    Article  CAS  Google Scholar 

  • Tobiessen P, Werner MB (1980) Hardwood seedling survival under plantations of Scotch pine and Red pine in central New York. Ecology 61, 25–29.

    Google Scholar 

  • Torres P, Honrubia M (1997) Changes and effects of a natural fire on ectomycorrhizal inoculum potential of soil in a Pinus halepensis forest. Forest Ecology and Management 96, 189–196.

    Article  Google Scholar 

  • Tosh JE, Senior E, Smith JE, Watson-Craik IA (1993) The role of ectomycorrhizal inoculations in landfill site restoration programs. Letters in Applied Biology 16, 187–191.

    Google Scholar 

  • Trappe JM (1977) Selection of fungi for ectomycorrhizal inoculation in nurseries. Annual Review of Phytopathology 15, 203–222.

    Article  Google Scholar 

  • Trappe JM, Molina R (1986) Taxonomy and genetics of mycorrhizal fungi: their interactions and relevance. In ‘Physiological and genetical aspects of mycorrhizae.’ (Eds V Gianinazzi-Pearson and S Gianinazzi) pp. 133–146. (INRA: Paris)

    Google Scholar 

  • Turnbull MH, Goodall R, Stewart GR (1995) The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. Plant, Cell and Environment 18, 1386–1394.

    CAS  Google Scholar 

  • Tyler G (1992) Tree species affinity of decomposer and ectomycorrhizal macrofungi in beech (Fagus sylvatica L.), oak (Quercus robur L.) and hornbeam (Carpinus betulus L.) forests. Forest Ecology and Management 47, 269–284.

    Article  Google Scholar 

  • Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5, 301–311.

    Article  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in Jack pine stands following wildfire. New Phytologist 129, 389–401.

    Google Scholar 

  • Visser S, Maynard D, Danielson RM (1998) Response of ecto-and arbuscular-mycorrhizal fungi to clear-cutting and the application of chipped aspen wood in a mixedwood site in Alberta, Canada. Applied Soil Ecology 7, 257–269.

    Article  Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63, 370–380.

    Google Scholar 

  • Walker JF, Miller OK, Lei T, Semones S, Nilsen E, Clinton BD (1999a) Suppression of ectomycorrhizae on canopy tree seedlings in Rhododendron maximum L. (Ericaceae) thickets in the southern Appalachians. Mycorrhiza 9, 49–56.

    Article  Google Scholar 

  • Walker RF, McLaughlin SB (1997) Effects of acidic precipitation and ectomycorrhizal inoculation on growth, mineral nutrition and xylem water potential of juvenile Loblolly pine and White oak. Journal of Sustainable Forestry 5, 27–49.

    Article  Google Scholar 

  • Walker RF, Johnson DW, Geisinger DR (1999b) Growth response of juvenile ponderosa pine to elevated atmospheric CO2 and soil N with emphasis on root system development. Journal of Sustainable Forestry 8, 23–41.

    Google Scholar 

  • Yamanaka T (1999) Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor. Mycological Research 103, 811–816.

    Article  CAS  Google Scholar 

  • Yamasaki SH, Fyles JW, Egger KN, Titus BD (1998) The effect of Kalmia angustifolia on the growth, nutrition and ectomycorrhizal symbiont community of Black spruce. Forest Ecology and Management 105, 197–207.

    Article  Google Scholar 

  • Zhou MY, Sharik TL (1997) Ectomycorrhizal associations of Northern Red oak (Quercus rubra) seedlings along an environmental gradient. Canadian Journal of Forest Research 27, 1705–1713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brundrett, M.C., Cairney, J.W. (2002). Ectomycorrhizas in Plant Communities. In: Sivasithamparama, K., Dixon, K.W., Barrett, R.L. (eds) Microorganisms in Plant Conservation and Biodiversity. Springer, Dordrecht. https://doi.org/10.1007/0-306-48099-9_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48099-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0780-4

  • Online ISBN: 978-0-306-48099-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics