Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alia Prasad K.V.S.K., Pardha Saradhi P. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 1995; 39:45–47

    Google Scholar 

  • Ashraf M., Yasmin N. Responses of 4 arid zone grass species from varying habitats to drought stress. Biol Plantarum 1995; 37:567–575

    Google Scholar 

  • Aspinall D., Paleg L.G. “Proline Accumulation: Physiological Aspects.” In The Physiology and Biochemistry of Drought Resistance in Plants. L.G. Paleg, D. Aspinal, eds. New York, USA: Academic Press, 1981

    Google Scholar 

  • Bandurska H. In vivo and in vitro effect of proline on nitrate reductase activity under osmotic stress in barley. Acta Physiol Plantarum 1993; 15:83–88

    CAS  Google Scholar 

  • Bates L., Waldren R.P., Teare I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973; 39:205–207

    Article  CAS  Google Scholar 

  • Bellinger Y., Bensaoud A., Larher F. “Physiological Significance of Proline Accumulation, a Trait of Use to breeding for Stress Tolerance.” In Physiology-Breeding of Winter Cereals for Stressed Mediterranean Environments. Paris: INRA Les Colloques 55, 1991

    Google Scholar 

  • Bhaskaran S., Smith R.H., Newton R.J. Physiological changes in cultured sorghum cells in response to induced water stress. I. Free proline. Plant Physiol 1985; 79:266–269

    CAS  PubMed  Google Scholar 

  • Bray E.A., Bailey-Serres J., Weretilnyk E. “Responses to Abiotic Stresses.” In Biochemistry and Molecular Biology of Plants. B.B. Buchanan, W. Gruissem, R.L. Jones, eds. Maryland: American Society of Plant Physiologists, 2000

    Google Scholar 

  • Chiang H.H., Dandekar A.M. Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to dessication. Plant Cell Environ 1995; 18:1280–1290

    CAS  Google Scholar 

  • Chu T.M., Aspinall D., Paleg F.J. Stress metabolism. VI. Temperature stress and the accumulation of proline in barley and radish. Aust J Plant Physiol 1974; 1:87–97

    Article  CAS  Google Scholar 

  • Chu T.M., Aspinall D., Paleg F.J. Stress metabolism. VII. Salinity and proline accumulation in barley. Aust J Plant Physiol 1976; 3:219–228

    CAS  Google Scholar 

  • Delauney A.J., Verma D.P.S. A soybean gene encoding Δ’-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol Gen Genet 1990; 221:299–305

    Article  PubMed  CAS  Google Scholar 

  • Dörffling K., Dörffling H., Lesselich G., Luck E., Zimmermman C., Melz G. Heritable improvement of frost tolerance in winter wheat by in vitro-selection of hydroxyproline resistant proline overproducing mutants. Euphytica 1997; 93:1–10

    Google Scholar 

  • Dutta Gupta S., Auge R.M., Denchev P.O., Conger B.V. Growth, proline accumulation and water relations of NaCl-selected and non-selected callus lines of Dactylis glomerata L. Environ Exp Bot 1995; 35:83–92

    Google Scholar 

  • Elthon T.E., Stewart C.R. Proline oxidation in corn mitochondria. Plant Physiol 1982; 70:567–572

    CAS  PubMed  Google Scholar 

  • Erskine P.D., Stewart G.R., Schmidt S., Turnbull M.H., Unkovich M., Pate J.S. Water availability — a physiological constraint on nitrate utilization in plants of Australian semiarid mulga woodlands. Plant Cell Environ 1996; 19:1149–1159

    CAS  Google Scholar 

  • García A.B., de Almeida E.J., Iyer S., Gerats T., Van Montagu M., Caplan A.B. Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 1997; 115:159–169

    PubMed  Google Scholar 

  • Gibon Y., Ronan S., Larher F. Proline accumulation in canola leaf discs subjected to osmotic stress is related to the loss of chlorophylls and to the decrease of mitochondrial activity. Physiol Plantarum 2000; 110:469–476

    CAS  Google Scholar 

  • Hanson A.D., Hitz W.D. Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol Plant Mol Biol 1982; 33:163–203

    CAS  Google Scholar 

  • Hanson A.D., Nelsen C.E., Pedersen A.R., Everson E.H. Capacity for proline accumulation during water stress in barley and its implications for breeding for drought tolerance. Crop Sci 1979; 19:489–493

    CAS  Google Scholar 

  • Hanson A.D., Rathinasabapathi B., Rivoal J., Burnet M., Dillon M.O., Gage D.A. Osmoprotective compounds from the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 1994; 91:306–310

    PubMed  CAS  Google Scholar 

  • Hare P.D., Cress W.A. Tissue-specific accumulation of transcript encoding Delta(l)-pyrroline-5-carboxylate reductase in Arabidopsis thaliana. Plant Growth Regul 1996; 19:249–256

    Article  CAS  Google Scholar 

  • Hasegawa P.M., Bressan R.A., Zhu J-K., Bohnert H.J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 2000; 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Heyser J.W., Chacon M.J., Warren R.C. Characterization of L-[5- 13 c]-proline biosynthesis in halophytic and nonhalophytic suspension cultures by 13 C NMR. J Plant Physiol 1989; 135:459–466

    CAS  Google Scholar 

  • Hsiao T. C. Plant responses to water stress. Annu Rev Plant Phys 1973; 24:519–570

    CAS  Google Scholar 

  • Hua X.J., Van de Cotte B., Vann Montagu M., Verbruggen N. Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis. Plant Physiol 1997; 114:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Ibarra-Caballero J., Villanueva-Verduzco C., Molina-Galán J., Sánchez-De Giménez E. Proline accumulation as a sympton of drought stress in maize: a tissue differentiation requirement. J Exp Bot 1988; 39:889–897

    CAS  Google Scholar 

  • Jäger H., Meyer H.R. Effect of water stress on growth and proline metabolism of Phaseolus vulgaris L. Oecologia 1977; 30:83–86

    Google Scholar 

  • Kiyouse T., Yoshiba Y., Yamaguchi-Shinozaki K., Shinozaki K. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 1996; 8:1323–1335

    Google Scholar 

  • Lutts S., Kinet J.M., Bouharmont J. Changes in plant responses to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 1995; 46:1843–1852

    CAS  Google Scholar 

  • Lutts S., Kinet J.M., Bouharmont J. Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. J Plant Physiol 1996; 149:186–195

    CAS  Google Scholar 

  • Lutts S., Majerus V., Kinet J.-M. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol Plantarum 1999; 105:450–458

    CAS  Google Scholar 

  • Magné C., Larher F. High sugar content interferes with colorimetric determination of amino acids and free proline. Anal Biochem 1992; 200:115–118

    PubMed  Google Scholar 

  • Maler H.R., Cordes E.H. Química Biológica. Barcelona: Omega, 1971

    Google Scholar 

  • McNeil S.D., Nuccio M.L., Hanson A.D. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 1999; 120:945–949

    Article  PubMed  CAS  Google Scholar 

  • Moftah A.E., Michel B.E. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol 1987; 83:238–240

    Article  CAS  PubMed  Google Scholar 

  • Nanjo T., Yoshiba Y., Sanada Y., Wada K., Tsukaya H., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. Roles of proline in osmotic stress tolerance and morphogenesis of Arabidopsis thaliana. Plant Cell Physiol Supp 1998; 39:104

    Google Scholar 

  • Pearson J., Stewart G.R. “Aspects of Nitrogen Metabolism in Barley in Relation to Drought Stress.” In Drought Resistance in Plants: Physiological and Genetic Aspects. Report EUR 10700, L. Monti, E. Porceddu, eds. Brussels: Commission of the European Communities, 1987

    Google Scholar 

  • Pearson J., Stewart G.R. Free proline and prolamin protein in the grain of three barley varieties to a gradient of water supply. J Exp Bot 1990; 226:515–519

    Google Scholar 

  • Pedrol N., Ramos P., Reigosa M.J. “Ecophysiology of perennial grasses under water deficits and competition.” In Photosynthesis: Mechanisms and Effects. Proceedings of the XIth International Congress on Photosynthesis Vol. V, G. Garab, ed. Dordrecht, The Netherlands, Kluwer Academic Publishers, 1999

    Google Scholar 

  • Pedrol N., Ramos P., Reigosa M.J. Phenotypic plasticity and acclimation to water deficits in velvet-grass: a long-term greenhouse experiment. Changes in leaf morphology, photosynthesis and stress-induced metabolites. J Plant Physiol 2000; 157:383–393

    CAS  Google Scholar 

  • Pérez-Alfocea F., Santa-Cruz A., Guerrier G., Bolarin M.C. NaCl stress-induced organic solute changes on leaves and calli of Lycopersicon esculentum L. pennelli and their interspecific hybrid. J Plant Physiol 1994; 143:106–111

    Google Scholar 

  • Rapayani P.J., Stewart C.R. Solubilization of a proline dehydrogenase from maize (Zea mays L.) mitochondria. Plant Physiol 1991; 95:787–791

    Google Scholar 

  • Rentsch D., Hirner B., Schmelzer E., Frommer W.B. Salt stress-induced proline transporters and salt stress-repressed broad-specificity amino-acid permeases identified by suppresion of a yeast amino-acid permease-targeting mutant. Plant Cell 1996; 8:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D., Hanson A.D. Quaternary ammonium and tertiary sulphonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 1993; 44:357–384

    Article  CAS  Google Scholar 

  • Samaras Y., Bressan R.A., Csonka L.N., García-Ríos M.G., Paino D’urzo M, Rhodes D. “Proline Accumulation during Drought and Salinity.” In Environment and Plant Metabolism: Flexibility and Acclimation. N. Smirnof, ed. Oxford: Bios Scientific, 1995

    Google Scholar 

  • Sánchez-Moreiras A.M. Efecto de compuestos fenólicos en Lactuca sativa L. Tesis de Licenciatura. Vigo, Spain: University of Vigo, 1996

    Google Scholar 

  • Singh T.N., Aspinall D., Paleg L.G. Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nat New Biol 1972; 236:188–190

    PubMed  CAS  Google Scholar 

  • Slocum R.D., Weinstein L.H. “Stress-induced Putrescine Accumulation as a Mechanism of Ammonia Detoxification in Cereal Leaves.” In Polyamines and Ethylene: Biochemistry, Physiology, and Interactions. H.E. Flores, R.N. Arteca, J.C. Shannon, eds. Maryland: American Society of Plant Physiologists, 1990

    Google Scholar 

  • Smirnoff N., Cumbes Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989; 28:1057–1060

    Article  CAS  Google Scholar 

  • Solomon A., Beer S., Waisel Y., Jones G.P., Paleg L.G. Effects of NaCl on the carboxylating activity of Rubisco from Tamaxis jordanis in the presence and absence of proline-related compatible solutes. Physiol Plantarum 1994; 90:198–204

    CAS  Google Scholar 

  • Stewart G.R. “Proline Accumulation: Biochemical Aspects.” In The Physiology and Biochemistry of Drought Resistance in Plants. L.G. Paleg, D. Aspinal, eds. Sydney: Academic Press, 1981

    Google Scholar 

  • Sundaresan S., Sudhakaran P.R. Water stress induced alterations in the proline metabolism of drought-susceptible and drought-tolerant cassava (Manihot esculenta) cultivars. Physiol Plantarum 1995; 94:635–642

    CAS  Google Scholar 

  • Taji T., Seki M., Yamaguchi-Shinozaki K., Kamada H., Giraudat J., Shinozaki K. Mapping of 25 drought-inducible genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiol 1999; 40:119–123

    PubMed  CAS  Google Scholar 

  • Taylor C.B. Proline and water deficit. Ups, downs, ins and outs. Plant Cell 1996; 8:1221–1224

    CAS  Google Scholar 

  • Troll W., Lindlsey J. A photometric method for determination of proline. J Biol Chem 1955; 215:655–660

    PubMed  CAS  Google Scholar 

  • Trotel-Aziz P., Niogret M.-F., Larher F. Proline level is partly under the control of abscisic acid in canola leaf discs during recovery from hyper-osmotic stress. Physiol Plantarum 2000; 110:376–383

    CAS  Google Scholar 

  • Van Rensburg L., Krüger G.H., Krüger. H. Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J Plant Physiol 1993; 141:188–194

    Google Scholar 

  • Venekamp J.H. Regulation of cytosol acidity in plants under conditions of drought. Physiol Plantarum 1989; 76:112–117

    CAS  Google Scholar 

  • Verbruggen N., Villarrole R., Van Montagu M. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 1993; 103:771–781

    Article  PubMed  CAS  Google Scholar 

  • Verslues P.E., Sharp R.E. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiol 1999; 119:1349–1360

    Article  PubMed  CAS  Google Scholar 

  • Wen J.Q., Tan B.C., Liang H.G. Changes in protein and amino acid levels during growth and senescence of Nicotiana rustica callus. J Plant Physiol 1996; 148:707–710

    CAS  Google Scholar 

  • Yancey P.H. “Compatible and counteracting solutes”. In Cellular and molecular physiology of cell volume regulation. K Strange, ed. Boca Raton, Florida, USA, CRC Press, 1994

    Google Scholar 

  • Yoshiba Y., Kiyouse T., Katagiri T., Udea H., Mizoguchi T., Yamaguchi-Shinozaki K., Wada K., Harada Y., Shinozaki K. Correlation between the induction of a gene for Δ’-pyrroline-5-carboxylase synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 1995; 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Zhang C.S., Lu Q., Verma D.P.S. Removal of feedback inhibition of Delta(1)-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem 1995; 270:20491–20496

    PubMed  CAS  Google Scholar 

General References

  • Aspinall D., Paleg L.G. “Proline Accumulation: Physiological Aspects.” In The Physiology and Biochemistry of Drought Resistance in Plants. L.G. Paleg, D. Aspinal, eds. New York, USA: Academic Press, 1981

    Google Scholar 

  • Bray E.A., Bailey-Serres J., Weretilnyk E. “Responses to Abiotic Stresses.” In Biochemistry and Molecular Biology of Plants. B.B. Buchanan, W. Gruissem, R.L. Jones, eds. Maryland: American Society of Plant Physiologists, 2000

    Google Scholar 

  • Samaras Y., Bressan R.A., Csonka L.N., García-Ríos M.G., Paino D’urzo M., Rhodes D. “Proline Accumulation during Drought and Salinity.” In Environment and Plant Metabolism: Flexibility and Acclimation. N. Smimof, ed. Oxford: Bios Scientific, 1995

    Google Scholar 

  • Stewart G.R. “Proline Accumulation: Biochemical Aspects.” In The Physiology and Biochemistry of Drought Resistance in Plants. L.G. Paleg, D. Aspinal, eds. Sydney: Academic Press, 1981

    Google Scholar 

  • Taylor C.B. Proline and water deficit. Ups, downs, ins and outs. Plant Cell 1996; 8:1221–1224

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel J. Reigosa Roger

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tamayo, P.R., Bonjoch, N.P. (2001). Free Proline Quantification. In: Reigosa Roger, M.J. (eds) Handbook of Plant Ecophysiology Techniques. Springer, Dordrecht. https://doi.org/10.1007/0-306-48057-3_22

Download citation

  • DOI: https://doi.org/10.1007/0-306-48057-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7053-6

  • Online ISBN: 978-0-306-48057-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics