Advertisement

Keywords

Genetic Algorithm Travel Salesman Problem Travel Salesman Problem Knapsack Problem Crossover Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    J.H. Holland (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Michigan; re-issued by MIT Press (1992).Google Scholar
  2. [2]
    I. Rechenberg (1973) Evolutions strategic: Optimierung technischer Systeme nach Prinzipen der biologischen Evolution, Frommmann-Holzboog Verlag, Stuttgart (2nd edition 1993).Google Scholar
  3. [3]
    H.-P. Schwefel (1977) Numerische Optimierung von Computer-modellen mittels der Evolutionsstrategie, Birkhäuser Verlag, Basel. (English edition: Numerical Optimization of Computer Models, John Wiley & Sons, Chichester, 1981.)Google Scholar
  4. [4]
    D.B. Fogel (1998) Evolutionary Computation: The Fossil Record, IEEE Press, Piscataway, NJ.Google Scholar
  5. [5]
    K.A. De Jong (1975) An analysis of the behavior of a class of genetic adaptive systems, Doctoral dissertation, University of Michigan, Ann Arbor, Michigan.Google Scholar
  6. [6]
    D.E. Goldberg (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, Massachusetts.Google Scholar
  7. [7]
    K.A. De Jong (1993) Genetic algorithms are NOT function optimizers. In D. Whitley (ed.), Foundations of Genetic Algorithms 2. Morgan Kaufmann, San Mateo, CA, pp. 5–18.Google Scholar
  8. [8]
    S. Lin (1965) Computer solutions of the traveling salesman problem. Bell Systems Tech. J., 44, 2245–2269.zbMATHMathSciNetGoogle Scholar
  9. [9]
    S.M. Roberts and B. Flores (1966) An engineering approach to the travelling salesman problem. Man. Sci., 13, 269–288.Google Scholar
  10. [10]
    C.E. Nugent, T.E. Vollman and J.E. Ruml (1968) An experimental comparison of techniques for the assignment of facilities to locations. Operations Research, 16, 150–173.Google Scholar
  11. [11]
    C.R. Reeves (1997) Genetic algorithms for the Operations Researcher. INFORMS Journal on Computing, 9, 231–250.zbMATHGoogle Scholar
  12. [12]
    C.R. Reeves and J.E. Rowe (2001) Genetic Algorithms: Principles and Perspectives, Kluwer, Norwell, MA.Google Scholar
  13. [13]
    C.R. Reeves and C.C. Wright (1999) Genetic algorithms and the design of experiments. In L.D. Davis, K. DeJong, M.D. Vose and L.D. Whitley (eds.), Evolutionary Algorithms: IMA Volumes in Mathematics and its Applications, Vol. 111. Springer-Verlag, New York, pp. 207–226.Google Scholar
  14. [14]
    D.H. Wolpert and W.G. Macready (1997) No free lunch theorems for optimization. IEEE Trans. Ev. Comp, 1, 67–82.Google Scholar
  15. [15]
    W.G. Macready and D.H. Wolpert (1996) On 2-armed Gaussian Bandits and Optimization. Technical Report SFI-TR-96-03-009, Santa Fe Institute, Santa Fe, New Mexico.Google Scholar
  16. [16]
    M. Mitchell, J.H. Holland and S. Forrest (1994) When will a genetic algorithm outperform hill climbing? In J.D. Cowan, G. Tesauro and J. Alspector (eds.), Advances in Neural Information Processing Systems 6. Morgan Kaufmann, San Mateo, CA.Google Scholar
  17. [17]
    M.D. Vose (1993) Modeling simple genetic algorithms. In L.D. Whitley (ed.), Foundations of Genetic Algorithms 2. Morgan Kaufmann, San Mateo, CA, 63–73.Google Scholar
  18. [18]
    D. Whitley (1993) An executable model of a simple genetic algorithm. In L.D. Whitley (ed.), Foundations of Genetic Algorithms 2. Morgan Kaufmann, San Mateo, CA, 45–62.Google Scholar
  19. [19]
    M.D. Vose (1994) A closer look at mutation in genetic algorithms. Annals of Maths and AI, 10, 423–434.zbMATHMathSciNetGoogle Scholar
  20. [20]
    M.D. Vose and A.H. Wright (1995) Stability of vertex fixed points and applications. In D. Whitley and M. Vose (eds.), Foundations of Genetic Algorithms 3. Morgan Kaufmann, San Mateo, CA, 103–113.Google Scholar
  21. [21]
    K.A. De Jong, W.M. Spears and D.F. Gordon (1995) Using Markov chains to analyze GAFOs. In D. Whitley and M. Vose (eds.), Foundations of Genetic Algorithms 3, Morgan Kaufmann, San Mateo, CA, 115–137.Google Scholar
  22. [22]
    J. Rees and G.J. Koehler (1999) An investigation of GA performance results for different cardinality alphabets. In L.D. Davis, K. DeJong, M.D. Vose and L.D. Whitley (eds.), Evolutionary Algorithms: IMA Volumes in Mathematics and its Applications, Vol. 111. Springer-Verlag, New York, 191–206.Google Scholar
  23. [23]
    J.L. Shapiro, A. Prügel-Bennett and M. Rattray (1994) A statistical mechanics formulation of the dynamics of genetic algorithms. Lecture Notes in Computer Science, Vol. 865. Springer-Verlag, Berlin, pp. 17–27.Google Scholar
  24. [24]
    C.C. Peck and A.P. Dhawan (1995) Genetic algorithms as global random search methods: An alternative perspective. Evolutionary Computation, 3, 39–80.Google Scholar
  25. [25]
    C.R. Reeves (1999) Predictive measures for problem difficulty. In: Proceedings of 1999 Congress on Evolutionary Computation, IEEE Press, pp. 736–743.Google Scholar
  26. [26]
    C.R. Reeves (1994) Genetic algorithms and neighbourhood search. In T.C. Fogarty (ed.), Evolutionary Computing: AISB Workshop, Leeds, UK, April 1994; Selected Papers. Springer-Verlag, Berlin.Google Scholar
  27. [27]
    T.C. Jones (1995) Evolutionary Algorithms, Fitness Landscapes and Search, Doctoral dissertation, University of New Mexico, Albuquerque, NM.Google Scholar
  28. [28]
    J.C. Culberson (1995) Mutation-crossover isomorphisms and the construction of discriminating functions. Evolutionary Computation, 2, 279–311.Google Scholar
  29. [29]
    P.F. Stadler and G.P. Wagner (1998) Algebraic theory of recombination spaces. Evolutionary Computation, 5, 241–275.Google Scholar
  30. [30]
    C.R. Reeves (2000) Fitness landscapes and evolutionary algorithms. In C. Fonlupt, J.-K. Hao, E. Lutton, E. Ronald and M. Schoenauer (eds.), Artificial Evolution: 4th European Conference; Selected Papers. Springer-Verlag, Berlin, pp. 3–20.Google Scholar
  31. [31]
    L. Davis (ed.) (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.Google Scholar
  32. [32]
    L. Chambers (ed.) (1995) Practical Handbook of Genetic Algorithms: Applications, Volume I, CRC Press, Boca Raton, Florida.Google Scholar
  33. [33]
    L. Chambers (ed.) (1995) Practical Handbook of Genetic Algorithms: New Frontiers, Volume II, CRC Press, Boca Raton, Florida.Google Scholar
  34. [34]
    J.T. Alander (1996) An Indexed Bibliography of Genetic Algorithms. In J.T. Alander (ed.), Proceedings of the 2nd Nordic Workshop on Genetic Algorithms and their Applications. University of Vaasa Press, Vaasa, Finland, pp. 293–350.Google Scholar
  35. [35]
    Z. Michalewicz (1996) Genetic Algorithms + Data Structures = Evolution Programs (3rd edition), Springer-Verlag, Berlin.Google Scholar
  36. [36]
    C.R. Reeves (ed.) (1993) Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications, Oxford, UK; re-issued by McGraw-Hill, London, UK (1995).Google Scholar
  37. [37]
    M. Mitchell (1996) An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA.Google Scholar
  38. [38]
    E. Falkenauer(1998) Genetic Algorithms and Grouping Problems, John Wiley & Sons, Chichester, UK.Google Scholar
  39. [39]
    Th. Bäck (1996) Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press, Oxford.Google Scholar
  40. [40]
    M.D. Vose (1999) The Simple Genetic Algorithm: Foundations and Theory, MIT Press, Cambridge, MA.Google Scholar
  41. [41]
    J.J. Grefenstette (ed.) (1985) Proc. of an International Conference on Genetic Algorithms and their applications. Lawrence Erlbaum Associates, Hillsdale, NJ.Google Scholar
  42. [42]
    J.J. Grefenstette (ed.) (1987) Proceedings of the 2nd International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale, NJ.Google Scholar
  43. [43]
    J.D. Schaffer (ed.) (1989) Proceedings of 3rd International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.Google Scholar
  44. [44]
    R.K. Belew and L.B. Booker (eds.) (1991) Proceedings of 4th International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.Google Scholar
  45. [45]
    S. Forrest (ed.) (1993) Proceedings of 5th International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.Google Scholar
  46. [46]
    L.J. Eshelman (ed.) (1995) Proceedings of 6th International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.Google Scholar
  47. [47]
    Th. Bäck (ed.) (1997) Proceedings of 7th International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA.Google Scholar
  48. [48]
    H.-P. Schwefel and R. Manner (eds.) (1991) Parallel Problem-Solving from Nature, Springer-Verlag, Berlin.Google Scholar
  49. [49]
    R. Männer and B. Manderick (eds.) (1992) Parallel Problem-Solving from Nature, 2, Elsevier Science Publishers, Amsterdam.Google Scholar
  50. [50]
    Y. Davidor, H.-P. Schwefel and R. Manner (eds.) (1994) Parallel Problem-Solving from Nature, 3, Springer-Verlag, Berlin.Google Scholar
  51. [51]
    H.-M. Voigt, W. Ebeling, I. Rechenberg and H.-P. Schwefel (eds.) (1996) Parallel Problem-Solving from Nature, 4, Springer-Verlag, Berlin.Google Scholar
  52. [52]
    A.E. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel (eds.) Parallel Problem-Solving from Nature, 5, Springer-Verlag, Berlin.Google Scholar
  53. [53]
    M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo and H.-P. Schwefel (eds.) (2000) Parallel Problem-Solving from Nature, 6, Springer-Verlag, Berlin.Google Scholar
  54. [54]
    R.F. Albrecht, C.R. Reeves and N.C. Steele (eds.) (1993) Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, Springer-Verlag, Vienna.Google Scholar
  55. [55]
    D.W. Pearson, N.C. Steele and R.F. Albrecht (eds.) (1995) Proceedings of the 2nd International Conference on Artificial Neural Networks and Genetic Algorithms, Springer-Verlag, Vienna.Google Scholar
  56. [56]
    G.D. Smith, N.C. Steele and R.F. Albrecht (eds.) (1997) Proceedings of the 3rd International Conference on Artificial Neural Networks and Genetic Algorithms, Springer-Verlag, Vienna.Google Scholar
  57. [57]
    A. Dobnikar, N.C. Steele, D.W. Pearson and R.F. Albrecht (eds.) (1999) Proceedings of the 4th International Conference on Artificial Neural Networks and Genetic Algorithms, Springer-Verlag, Vienna.Google Scholar
  58. [58]
    G.J.E. Rawlins (ed.) (1991) Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.Google Scholar
  59. [59]
    L.D. Whitley (ed.) (1993) Foundations of Genetic Algorithms 2, Morgan Kaufmann, San Mateo, CA.Google Scholar
  60. [60]
    D. Whitley and M. Vose (eds.) (1995) Foundations of Genetic Algorithms 3, Morgan Kaufmann, San Mateo, CA.Google Scholar
  61. [61]
    R.K. Belew and M.D. Vose (eds.) (1997) Foundations of Genetic Algorithms 4, Morgan Kaufmann, San Francisco, CA.Google Scholar
  62. [62]
    W. Banzhaf and C.R. Reeves (eds.) (1999) Foundations of Genetic Algorithms 5, Morgan Kaufmann, San Francisco, CA.Google Scholar
  63. [63]
    W. Martin and W. Spears (eds.) (2001) Foundations of Genetic Algorithms 6, Morgan Kaufmann, San Francisco, CA.Google Scholar
  64. [64]
    D.E. Goldberg (1985) Optimal initial population size for binary-coded genetic algorithms. TCGA Report 85001, University of Alabama, Tuscaloosa.Google Scholar
  65. [65]
    D.E. Goldberg (1989) Sizing populations for serial and parallel genetic algorithms. In [43], 70–79.Google Scholar
  66. [66]
    J.J. Grefenstette (1986) Optimization of control parameters for genetic algorithms. IEEE-SMC, SMC-16, 122–128.Google Scholar
  67. [67]
    J.D. Schaffer, R.A. Caruana, L.J. Eshelman and R. Das (1989) A study of control parameters affecting online performance of genetic algorithms for function optimization. In J.D. Schaffer (ed.), Proceedings of 3rd International Conference on Genetic Algorithms, Morgan Kaufmann, Los Altos, CA, pp. 51–60.Google Scholar
  68. [68]
    C.R. Reeves (1993) Using genetic algorithms with small populations. In S. Forrest (ed.) Proceedings of 5th International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 92–99.Google Scholar
  69. [69]
    C.R. Reeves (1995) A genetic algorithm forflowshop sequencing. Computers & Operations Research, 22, 5–13.CrossRefzbMATHGoogle Scholar
  70. [70]
    R.K. Ahuja and J.B. Orlin (1997) Developing fitter GAs. INFORMS Journal on Computing, 9, 251–253.Google Scholar
  71. [71]
    A. Kapsalis, G.D. Smith and V.J. Rayward-Smith (1993) Solving the graphical steiner tree problem using genetic algorithms. Journal of Operational Research Society, 44, 397–106.Google Scholar
  72. [72]
    D. Levine (1997) GAs: A practitioner’s view. INFORMS Journal on Computing, 9, 256–257.Google Scholar
  73. [73]
    J.E. Baker (1987) Reducing bias and inefficiency in the selection algorithm. In J.J. Grefenstette (ed.), Proceedings of the 2nd International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 14–21.Google Scholar
  74. [74]
    S.L. Lohr (1999) Sampling: Design and Analysis, Duxbury Press, Pacific Grove, CA.Google Scholar
  75. [75]
    P.J.B. Hancock (1994) An empirical comparison of selection methods in evolutionary algorithms. In T.C. Fogarty (ed.), Evolutionary Computing: AISB Workshop, Leeds, UK, April 1994; Selected Papers. Springer-Verlag, Berlin, pp. 80–94.Google Scholar
  76. [76]
    D. Whitley (1989) The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In J.D. Schaffer (ed.), Proceedings of 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, Los Altos, CA, pp. 116–121.Google Scholar
  77. [77]
    E. Saliby (1990) Descriptive sampling: A better approach to Monte Carlo simulation. Journal of Operational Research Society, 41, 1133–1142.Google Scholar
  78. [78]
    A. Nijenhuis and H.S. Wilf (1978) Combinatorial Algorithms for Computers and Calculators. Academic Press, New York.Google Scholar
  79. [79]
    S.S. Skiena (2000) The Stony Brook Algorithm Repository, http://www.es.sunysb.edu/algorith/index.html
  80. [80]
    L.J. Eshelman, R.A. Caruana and J.D. Schaffer (1989) Biases in the crossover landscape. In [43], 10–19.Google Scholar
  81. [81]
    G. Syswerda (1989) Uniform crossover in genetic algorithms. In [43], 2–9.Google Scholar
  82. [82]
    K. A. De Jong and W.M. Spears (1992) A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of Maths. andAI, 5, 1–26.Google Scholar
  83. [83]
    L.B. Booker (1987) Improving search in genetic algorithms. In L. Davis (ed.), Genetic Algorithms and Simulated Annealing, Morgan Kauffmann, Los Altos, CA, pp. 61–73.Google Scholar
  84. [84]
    D.E. Goldberg and R. Lingle (1985) Alleles, loci and the traveling salesman problem. In J.J. Grefenstette (ed.), Proceedings of an International Conference on Genetic Algorithms and Their Applications. Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 154–159.Google Scholar
  85. [85]
    H.J. Bremermann, J. Rogson and S. Salaff (1964) Global properties of evolution processes. In H.H. Pattee (ed.), Natural Automata and Useful Simulations, pp. 3–42.Google Scholar
  86. [86]
    D.B. Fogel (1999) An overview of evolutionary programming. In L.D. Davis, K. DeJong, M.D. Vose and L.D. Whitley (eds.), Evolutionary Algorithms: IMA Volumes in Mathematics and its Applications, Vol. 111. Springer-Verlag, New York, pp. 89–109.Google Scholar
  87. [87]
    T.C. Fogarty (1989) Varying the probability of mutation in the genetic algorithm. In J.D. Schaffer (ed.), Proceedings of 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, Los Altos, CA, 104–109.Google Scholar
  88. [88]
    D.E. Goldberg and K. Deb (1991) A comparative analysis of selection schemes used in genetic algorithms. In G.J.E. Rawlins (ed.), Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.Google Scholar
  89. [89]
    N.J. Radcliffe and F.A.W. George (1993) A study in set recombination. In S. Forrest (ed.), Proceedings of 5th International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 23–30.Google Scholar
  90. [90]
    S. McKee and M.B. Reed (1987) An algorithm for the alignment of gas turbine components in aircraft. IMA J Mathematics in Management, 1, 133–144.Google Scholar
  91. [91]
    N.J. Radcliffe and P. Surry (1995) Formae and the variance of fittness. In D. Whitley and M. Vose (eds.), Foundations of Genetic Algorithms 3. Morgan Kaufmann, San Mateo, CA, pp. 51–72.Google Scholar
  92. [92]
    B.R. Fox and M.B. McMahon (1991) Genetic operators for sequencing problems. In G.J.E. Rawlins (ed.), Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 284–300.Google Scholar
  93. [93]
    P.W. Poon and J.N. Carter (1995) Genetic algorithm crossover operators for ordering applications. Computers & Operations Research, 22, 135–147.CrossRefGoogle Scholar
  94. [94]
    C.R. Reeves and T. Yamada (1998) Genetic algorithms, path relinking and the flowshop sequencing problem. Evolutionary Computation, 6, 45–60.Google Scholar
  95. [95]
    P. Ross (1997) srandom() anomaly. Genetic Algorithms Digest, http://www.aic.nrl.navy.mil/galist/11:23.
  96. [96]
    W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992) Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Colin Reeves
    • 1
  1. 1.School of Mathematical and Information SciencesCoventry UniversityCoventry

Personalised recommendations