Advertisement

Parallel Strategies for Meta-Heuristics

  • Teodor Gabriel Crainic
  • Michel Toulouse
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 57)

Abstract

We present a state-of-the-art survey of parallel meta-heuristic developments and results, discuss general design and implementation principles that apply to most meta-heuristic classes, instantiate these principles for the three meta-heuristic classes currently most extensively used—genetic methods, simulated annealing, and tabu search, and identify a number of trends and promising research directions.

Keywords

Parallel computation Parallelization strategies Meta-heuristics Genetic methods Simulated annealing Tabu search Co-operative search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E. and Korst, J. (2002) Selected topics in simulated annealing. In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA, pp. 1–57.Google Scholar
  2. Aarts, E.H.L, de Bont, F.M.J., Habers, J.H.A. and van Laarhoven, P.J.M. (1986) Parallel implementations of statistical cooling algorithms. Integration, The VLSI Journal, 3, 209–238.Google Scholar
  3. Aarts, E.H.L. and Korst, J.H.M. (1989) Simulated Annealing and Boltzmann Machines. John Wiley & Sons, New York, NY.Google Scholar
  4. Abramson, D. and Abela, J. (1992) A parallel genetic algorithm for solving the school timetabling problem. In: G. Gupta and C. Keen (eds.), 15th Australian Computer Science Conference. Department of Computer Science, University of Tasmania, pp. 1–11.Google Scholar
  5. Abramson, D., Mills, G. and Perkins, S. (1993) Parallelization of a genetic algorithm for the computation of efficient train schedules. In: D. Arnold, R. Christie, J. Day and P. Roe (eds.), Proceedings of the 1993 Parallel Computing and Transputers Conference. IOS Press, pp. 139–149.Google Scholar
  6. Aiex, R.M., Martins, S.L., Ribeiro, C.C. and Rodriguez, N.R. (1996) Asynchronous parallel strategies for tabu search applied to the partitioning of VLSI circuits. Monografias em ciência da computação, Pontifícia Universidade Católica de Rio de Janeiro.Google Scholar
  7. Andreatta, A. A. and Ribeiro C.C. (1994) A graph partitioning heuristic for the parallel pseudo-exhaustive logical test of VLSI combinational circuits. Annals of Operations Research, 50, 1–36.CrossRefGoogle Scholar
  8. Azencott, R. (1992) Simulated Annealing Parallelization Techniques. John Wiley & Sons, New York, NY.Google Scholar
  9. Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y. and Taillard, É.D. (1997) A parallel tabu search heuristic for the vehicle routing problem with time windows. Transportation Research C: Emerging Technologies, 5(2), 109–122.Google Scholar
  10. Baluja, S. (1993) Structure and performance of fine-grain parallelism in genetic algorithms. In: S. Forrest (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 155–162.Google Scholar
  11. Barr, R.S. and Hickman, B.L. (1993) Reporting computational experiments with parallel algorithms: issues, measures, and experts opinions. ORSA Journal on Computing, 5(1), 2–18.Google Scholar
  12. Battiti, R. and Tecchiolli, G. (1992) Parallel based search for combinatorial optimization: genetic algorithms and TABU. Microprocessors and Microsystems, 16(7), 351–367.CrossRefGoogle Scholar
  13. Bhandarkar, S.M. and Chirravuri, S. (1996) A study of massively parallel simulated annealing algorithms for chromosome reconstruction via clone ordering. Parallel Algorithms and Applications, 9, 67–89.Google Scholar
  14. Bonabeau, E., Dorigo, M. and Theraulaz, G. (eds.) (1999) Swarm Intelligence—From Natural to Artificial Systems. Oxford University Press, New York, NY.Google Scholar
  15. Cantú-Paz, E. (1995) A summary of research on parallel genetic algorithms. Report 95007, University of Illinois at Urbana-Champain.Google Scholar
  16. Cantú-Paz, E. (1998) A survey of parallel genetic algorithms. Calculateurs Parallèles, Réseaux et Systèmes répartis, 10(2), 141–170.Google Scholar
  17. Cavalcante, C.B.C., Cavalcante, V.F., Ribeiro, C.C. and de Souza, C.C. (2002) Parallel cooperative approaches for the labor constrained scheduling problem. In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA, pp. 201–225.Google Scholar
  18. Chakrapani, J. and Skorin-Kapov, J. (1992) A connectionist approach to the quadratic assignment problem. Computers & Operations Research, 19(3/4), 287–295.Google Scholar
  19. Chakrapani, J. and Skorin-Kapov, J. (1993) Massively parallel tabu search for the quadratic assignment problem. Annals of Operations Research, 41, 327–341.CrossRefGoogle Scholar
  20. Chakrapani, J. and Skorin-Kapov, J. (1993a) Connection machine implementation of a tabu search algorithm for the traveling salesman problem. Journal of Computing and Information Technology, 1(1), 29–36.Google Scholar
  21. Chakrapani, J. and Skorin-Kapov, J. (1995) Mapping tasks to processors to minimize communication time in a multiprocessor system. In: The Impact of Emerging Technologies of Computer Science and Operations Research. Kluwer Academic Publishers, Norwell, MA, pp. 45–64.Google Scholar
  22. Chen, Y.-W., Nakao, Z. and Fang, X. (1996) Parallelization of a genetic algorithm for image restoration and its performance analysis. In: IEEE International Conference on Evolutionary Computation, pp. 463–468.Google Scholar
  23. Christofides, N., Mingozzi A. and Toth, P. (1979) The vehicle routing problem. In: N. Christofides, A. Mingozzi, P. Toth and C. Sandi (eds.), Combinatorial Optimization. John Wiley, New York, pp. 315–338.Google Scholar
  24. Chu, K., Deng, Y. and Reinitz, J. (1999) Parallel simulated annealing algorithms by mixing states. Journal of Computational Physics, 148, 646–662.Google Scholar
  25. Cohoon, J., Hedge, S., Martin, W. and Richards, D. (1987) Punctuated equilibria: a parallel genetic algorithm. In: J. Grefenstette (ed.), Proceedings of the Second International Conference on Genetic Algorithms and their Applications. Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 148–154.Google Scholar
  26. Cohoon, J., Martin, W. and Richards, D. (1991a) Genetic algorithm and punctuated equilibria in VLSI. In: H.-P. Schwefel and R. Männer (eds.), Parallel Problem Solving from Nature, Lecture Notes in Computer Science 496. Springer-Verlag, Berlin, pp. 134–144.Google Scholar
  27. Cohoon, J., Martin, W. and Richards, D. (1991b) A multi-population genetic algorithm for solving the k-partition problem on hyper-cubes. In: R. Belew and L. Booker (eds.), Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 134–144.Google Scholar
  28. Colorni, A., Dorigo, M. and Maniezzo, V. (1991) Distributed optimization by ant colonies. In: Proceedings of the 1991 European Conference on Artificial Life. North-Holland, Amsterdam, pp. 134–142.Google Scholar
  29. Crainic, T.G. (2002) Parallel computation, co-operation, tabu search. In: C. Rego and B. Alidaee (eds.), Adaptive Memory and Evolution: Tabu Search and Scatter Search. Kluwer Academic Publishers, Norwell, MA (forthcoming).Google Scholar
  30. Crainic, T.G. and Gendreau, M. (1999) Towards an evolutionary method—cooperating multi-thread parallel tabu search hybrid. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.), Mela-Heuristics 98: Theory & Applications. Kluwer Academic Publishers, Norwell, MA, pp. 331–344.Google Scholar
  31. Crainic, T.G. and Gendreau, M. (2001) Cooperative parallel tabu search for capacitated network design. Journal of Heuristics (forthcoming).Google Scholar
  32. Crainic, T.G. and Toulouse, M. (1998) Parallel metaheuristics. In: T.G. Crainic and G. Laporte (eds.), Fleet Management and Logistics. Kluwer Academic Publishers, Norwell, MA, pp. 205–251.Google Scholar
  33. Crainic, T.G., Toulouse, M. and Gendreau, M. (1995a) Parallel asynchronous tabu search for multicommodity location-allocation with balancing requirements. Annals of Operations Research, 63, 277–299.Google Scholar
  34. Crainic, T.G., Toulouse, M. and Gendreau, M. (1995b) Synchronous tabu search parallelization strategies for multicommodity location-allocation with balancing requirements. OR Spektrum, 17(2/3), 113–123.Google Scholar
  35. Crainic, T.G., Toulouse, M. and Gendreau, M. (1997) Towards a taxonomy of parallel tabu search algorithms. INFORMS Journal on Computing, 9(1), 61–72.Google Scholar
  36. Cung, V.-D., Martins, S.L., Ribeiro, C.C. and Roucairol, C. (2002) Strategies for the parallel implementations of metaheuristics. In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA, pp. 263–308.Google Scholar
  37. Darema, F., Kirkpatrick, S. and Norton, V.A. (1987) Parallel algorithms for chip placement by simulated annealing. IBM Journal of Research and Development, 31, 391–102.Google Scholar
  38. De Falco, I., Del Balio, R. and Tarantino, E. (1995) Solving the mapping problem by parallel tabu search. Report, Istituto per la Ricerca sui Sistemi Informatici Paralleli-CNR.Google Scholar
  39. De Falco, I., Del Balio, R., Tarantino, E. and Vaccaro, R. (1994) Improving search by incorporating evolution principles in parallel tabu search. In: Proceedings International Conference on Machine Learning, pp. 823–828.Google Scholar
  40. Dorigo, M., Maniezzo, V. and Colorni, A. (1996) The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B, 26(1), 29–41.Google Scholar
  41. Du, Z., Li, S., Li, S., Wu, M. and Zhu, J. (1999) Massively parallel simulated annealing embedded with downhill—a SPMD algorithm for cluster computing. In: Proceedings of the 1st IEEE Computer Society International Workshop on Cluster Computing. IEEE Computer Society Press, Washington, DC.Google Scholar
  42. Durand, M.D. (1989) Parallel simulated annealing: accuracy vs. speed in placement. IEEE Design & Test of Computers, 6(3), 8–34.CrossRefGoogle Scholar
  43. Durand, M.D. (1989a) Cost function error in asynchronous parallel simulated annealing algorithms. Technical Report CUCS-423-89, University of Columbia.Google Scholar
  44. Felten, E., Karlin, S. and Otto, S. W. (1985) The traveling salesman problem on a hypercube, MIMD computer. In Proceedings 1985 of the International Conference on Parallel Processing, pp. 6–10.Google Scholar
  45. Feo, T.A. and Resende, M.G.C. (1995) Greedy randomized adaptive search procedures. Journal of Global Optimization, 6(2), 109–133.CrossRefMathSciNetGoogle Scholar
  46. Festa, P. and Resende, M.G.C. (2002) GRASP: an annotated bibliography. In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA, pp. 325–367.Google Scholar
  47. Fiechter, C.-N. (1994) A parallel tabu search algorithm for large travelling salesman problems. Discrete Applied Mathematics, 51(3), 243–267.CrossRefzbMATHMathSciNetGoogle Scholar
  48. Fogarty, T.C. and Huang, R. (1990) Implementing the genetic algorithm on transputer based parallel systems. In: H.-P. Schwefel and R. Männer (eds.), Proceedings of the 1st Workshop on Parallel Problem Solving from Nature. Springer-Verlag, Berlin, pp. 145–149.Google Scholar
  49. Fogel, D.B. (1994) Evolutionary programming: an introduction and some current directions. Statistics and Computing, 4, 113–130.CrossRefGoogle Scholar
  50. Garcia, B.L., Potvin, J.-Y. and Rousseau, J.M. (1994) A parallel implementation of the tabu search heuristic for vehicle routing problems with time window constraints. Computers & Operations Research, 21(9), 1025–1033.CrossRefGoogle Scholar
  51. Gendreau, M. (2002) Recent advances in tabu search. In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA, pp. 369–377.Google Scholar
  52. Gendreau, M., Guertin, F., Potvin, J.-Y. and Taillard, É.D. (1999) Tabu search for real-time vehicle routing and dispatching. Transportation Science, 33(4), 381–390.Google Scholar
  53. Glover, F. (1986) Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 1(3), 533–549.MathSciNetGoogle Scholar
  54. Glover, F. (1989) Tabu search—part I. ORSA Journal on Computing, 1(3), 190–206.zbMATHGoogle Scholar
  55. Glover, F. (1990) Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.zbMATHGoogle Scholar
  56. Glover, F. (1994) Genetic algorithms and scatter search: unsuspected potentials. Statistics and Computing, 4, 131–140.CrossRefGoogle Scholar
  57. Glover, F. (1996) Tabu search and adaptive memory programming—advances, applications and challenges. In: R. Barr, R. Helgason and J. Kennington (eds.), Interfaces in Computer Science and Operations Research. Kluwer Academic Publishers, Norwell, MA, pp. 1–75.Google Scholar
  58. Glover, F. and Laguna, M. (1993) Tabu search. In: C. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publications, Oxford, pp. 70–150.Google Scholar
  59. Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer Academic Publishers, Norwell, MA.Google Scholar
  60. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA.Google Scholar
  61. Graffigne, C. (1992) Parallel annealing by periodically interacting multiple searches: an experimental study. In: R. Azencott (ed.), Simulated Annealing Parallelization Techniques. John Wiley & Sons, New York, NY, pp. 47–79.Google Scholar
  62. Greening, D.R. (1990) Parallel simulated annealing techniques. Physica D, 42, 293–306.CrossRefGoogle Scholar
  63. Grefenstette, J. (1981) Parallel adaptive algorithms for function optimization. Technical Report CS-81-19, Vanderbilt University, Nashville.Google Scholar
  64. Hansen, P. and Mladenovic, N. (1997) Variable neighborhood search. Computers & Operations Research, 24, 1097–1100.MathSciNetGoogle Scholar
  65. Hansen, P. and Mladenovic, N. (1999) An introduction to variable neighborhood search. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.), Meta-Heuristics 98: Theory & Applications. Kluwer, Norwell, MA, pp. 433–458.Google Scholar
  66. Hansen, P. and Mladenovic, N. (2002) Developments of variable neighborhood search. In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA, pp. 415–439.Google Scholar
  67. Hauser, R. and Männer, R. (1994) Implementation of standard genetic algorithm on MIMD machines. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Parallel Problem Solving from Nature III, Lecture Notes in Computer Science 866. Springer-Verlag, Berlin, pp. 504–514.Google Scholar
  68. Herdy, M. (1992) Reproductive isolation as strategy parameter in hierarchical organized evolution strategies. In: R. Männer and B. Manderick (eds.), Parallel Problem Solving from Nature, 2. North-Holland, Amsterdam, pp. 207–217.Google Scholar
  69. Hillis, D.W. (1992) Co-evolving parasites improve simulated evolution as an optimization procedure. In: C.E.A. Langton (ed.), Artificial Life II. Addison-Wesley, pp. 313–324.Google Scholar
  70. Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI.Google Scholar
  71. Holmqvist, K. and Migdalas, A. and Pardalos, P.M. (1997) Parallelized heuristics for combinatorial search. In: A. Migdalas, P. Pardalos and S. Storoy (eds.), Parallel Computing in Optimization. Kluwer Academic Publishers, Norwell, MA, pp. 269–294.Google Scholar
  72. Jayaraman, R. and Darema, F. (1988) Error tolerance in parallel simulated techniques. In: Proceedings of the IEEE International Conference on Computer-Aided Design: ICCAD-88. IEEE Computer Society Press, Washington, DC, pp. 545–548.Google Scholar
  73. Kindervater, G.A.P, Lenstra, J.K. and Savelsberg, M.W.P. (1993) Sequential and parallel local search for the time constrained traveling salesman problem. Discrete Applied Mathematics, 42, 211–225.CrossRefMathSciNetGoogle Scholar
  74. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated annealing. Science, 220, 671–680.MathSciNetGoogle Scholar
  75. Kliewer, G. and Tschoke, S. (2000) A general parallel simulated annealing library and its application in airline industry. In: Proceedings of the 14th International Parallel and Distributed Processing Symposium (IPDPS 2000). Cancun, Mexico, pp. 55–61.Google Scholar
  76. Kohlmorgen, U., Schmeck, H. and Haase, K. (1999) Experiences with fine-grained parallel genetic algorithms. Annals of Operations Research, 90, 203–219.CrossRefMathSciNetGoogle Scholar
  77. Kurbel, K., Schneider, B. and Singh, K. (1995) VLSI standard cell placement by parallel hybrid simulated annealing and genetic algorithm. In: D.W. Pearson, N.C. Steele and R. F. Albrecht (eds.), Proceedings of the Second International Conference on Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, Berlin, pp. 491–494.Google Scholar
  78. Laarhoven, P. and Aarts, E.H.L. (1987) Simulated Annealing: Theory and Applications. Reidel, Dordrecht.Google Scholar
  79. Laursen, P.S. (1994) Problem-independent parallel simulated annealing using selection and migration. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Parallel Problem Solving from Nature III, Lecture Notes in Computer Science 866. Springer-Verlag, Berlin, pp. 408–417.Google Scholar
  80. Laursen, P.S. (1996) Parallel heuristic search—introductions and a new approach. In: A. Ferreira and P. Pardalos (eds.), Solving Combinatorial Optimization Problems in Parallel, Lecture Notes in Computer Science 1054. Springer-Verlag, Berlin, pp. 248–274.Google Scholar
  81. Le Bouthillier, A. and Crainic, T.G. (2001) Parallel co-operative multi-thread meta-heuristic for the vehicle routing problem with time window constraints. Publication, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.Google Scholar
  82. Lee, F.-H.A. (1995) Parallel Simulated Annealing on a Message-Passing Multi-Computer. Ph.D. thesis, Utah State University.Google Scholar
  83. Lee, K.-G. and Lee, S.-Y. (1992a) Efficient parallelization of simulated annealing using multiple markov chains: an application to graph partitioning. In: T. Mudge (ed.), Proceedings of the International Conference on Parallel Processing, volume III: Algorithms and Applications. CRC Press, pp. 177–180.Google Scholar
  84. Lee, K.-G. and Lee, S.-Y. (1995) Synchronous and asynchronous parallel simulated annealing with multiple markov chains. Lecture Notes in Computer Science 1027, pp. 396–408.Google Scholar
  85. Lin, S.-C., Punch, W. and Goodman, E. (1994) Coarse-grain parallel genetic algorithms: categorization and new approach. In: Sixth IEEE Symposium on Parallel and Distributed Processing. IEEE Computer Society Press, pp. 28–37.Google Scholar
  86. Lis, J. (1996) Parallel genetic algorithm with the dynamic control parameter. In: IEEE 1996 International Conference on Evolutionary Computation, pp. 324–328.Google Scholar
  87. Mahfoud, S.W. and Goldberg, D.E. (1995) Parallel recombinative simulated annealing: a genetic algorithm. Parallel Computing, 21, 1–28.CrossRefMathSciNetGoogle Scholar
  88. Malek, M., Guruswamy, M., Pandya, M. and Owens, H. (1989) Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem. Annals of Operations Research, 21, 59–84.CrossRefMathSciNetGoogle Scholar
  89. Maniezzo, V. and Carbonaro, A. (2002) Ant colony optimization: an overview. In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA, pp. 469–492.Google Scholar
  90. Martins, S.L., Ribeiro, C.C. and Rodriguez, N.R. (1996) Parallel programming tools for distributed memory environments. Monografias em Ciência da Computação 01/96, Pontifícia Universidade Católica de Rio de Janeiro.Google Scholar
  91. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953) Equation of state calculation by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.CrossRefGoogle Scholar
  92. Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin.Google Scholar
  93. Michalewicz, Z. and Fogel, D.B. (2000) How to Solve It: Modern Heuristics. Springer-Verlag, Berlin.Google Scholar
  94. Moscato, P. (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Publication Report 790, Caltech Concurrent Computation Program.Google Scholar
  95. Moscato, P. and Norman, M.G. (1992) A “memetic” approach for the traveling salesman problem. Implementation of a computational ecology for combinatorial optimization on message-passing systems. In: M. Valero, E. Onate, M. Jane, J. Larriba and B. Suarez (eds.), Parallel Computing and Transputer Applications. IOS Press, Amsterdam, pp. 187–194.Google Scholar
  96. Mühlenbein, H. (1991) Evolution in time and space—the parallel genetic algorithm. In: G. Rawlins (ed.), Foundations of Genetic Algorithm & Classifier Systems. Morgan Kaufman, San Mateo, CA, pp. 316–338.Google Scholar
  97. Mühlenbein, H. (1992) Parallel genetic algorithms in combinatorial optimization. In: O. Balci, R. Sharda and S. Zenios (eds.), Computer Science and Operations Research. Pergamon Press, New York, NY, pp. 441–56.Google Scholar
  98. Mühlenbein, H. (1992a) How genetic algorithms really work: mutation and hillclimbing. In: R. Manner and B. Manderick (eds.), Parallel Problem Solving from Nature, 2. North-Holland, Amsterdam, pp. 15–26.Google Scholar
  99. Muhlenbein, H., Gorges-Schleuter, M. and Krämer, O. (1987) New solutions to the mapping problem of parallel systems—the evolution approach. Parallel Computing, 6, 269–279.Google Scholar
  100. Mühlenbein, H., Gorges-Schleuter, M. and Krämer, O. (1988) Evolution algorithms in combinatorial optimization. Parallel Computing, 7(1), 65–85.CrossRefGoogle Scholar
  101. Mühlenbein, H. and Schlierkamp-Voosen, D. (1994) The science of breeding and its application to the breeder genetic algorithm BGA. Evolutionary Computation, 1(4), 335–360.Google Scholar
  102. Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F. and Deogun, J.S. (2000a) Multi-level cooperative search: application to the netlist/hypergraph partitioning problem. In: Proceedings of International Symposium on Physical Design. ACM Press, pp. 192–198.Google Scholar
  103. Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F. and Deogun, J.S. (2000b) Multilevel cooperative search for the circuit/hypergraph partitioning problem. IEEE Transactions on Computer-Aided Design, (to appear).Google Scholar
  104. Pardalos, P.M., Pitsoulis, L., Mavridou, T., and Resende, M.G.C. (1995) Parallel search for combinatorial optimization: genetic algorithms, simulated annealing, tabu search and GRASP. In: A. Ferreira and J. Rolim (eds.), Proceedings of Workshop on Parallel Algorithms for Irregularly Structured Problems, Lecture Notes in Computer Science 980. Springer-Verlag, Berlin, pp. 317–331.Google Scholar
  105. Pardalos, P.M., Pitsoulis, L. and Resende, M.G.C. (1995) A parallel GRASP implementation for the quadratic assignment problem. In: A. Ferreira and J. Rolim (eds.), Solving Irregular Problems in Parallel: State of the Art. Kluwer Academic Publishers, Norwell, MA.Google Scholar
  106. Porto, S.C.S. and Ribeiro, C.C. (1995) A tabu search approach to task scheduling on heteregenous processors under precedence constraints. International Journal of High-Speed Computing, 7, 45–71.Google Scholar
  107. Porto, S.C.S. and Ribeiro, C.C. (1996) Parallel tabu search message-passing synchronous strategies for task scheduling under precedence constraints. Journal of Heuristics, 1(2), 207–223.CrossRefGoogle Scholar
  108. Potter, M. and De Jong, K. (1994) A cooperative coevolutionary approach to function optimization. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Parallel Problem Solving from Nature III, Lecture Notes in Computer Science 866. Springer-Verlag, Berlin, pp. 249–257.Google Scholar
  109. Ram, D.J., Sreenivas, T.H. and Subramaniam, K.G. (1996) Parallel simulated annealing algorithms. Journal of Parallel and Distributed Computing, 37, 207–212.CrossRefGoogle Scholar
  110. Rego, C. and Roucairol, C. (1996) A parallel tabu search algorithm using ejection chains for the VRP. In: I. Osman and J. Kelly (eds.), Meta-Heuristics: Theory & Applications. Kluwer Academic Publishers, Norwell, MA, pp. 253–295.Google Scholar
  111. Rochat, Y. and Taillard, É.D. (1995) Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics, 1(1), 147–167.Google Scholar
  112. Schlierkamp-Voosen, D. and Mühlenbein, H. (1994) Strategy adaptation by competing subpopulations. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Parallel Problem Solving from Nature III, Lecture Notes in Computer Science 866. Springer-Verlag, Berlin, pp. 199–208.Google Scholar
  113. Schnecke, V. and Vornberger, O. (1996) An adaptive parallel genetic algorithm for VLSI-layout optimization. In: Y. Davidor, H.-P. Schwefel and R. Manner (eds.), Parallel Problem Solving from Nature III, Lecture Notes in Computer Science 866. Springer-Verlag, Berlin, pp. 859–868.Google Scholar
  114. Schulze, J. and Fahle, T. (1999) A parallel algorithm for the vehicle routing problem with time window constraints. Annals of Operations Reseach, 86, 585–607.MathSciNetGoogle Scholar
  115. Schwehm, M. (1992) Implementation of genetic algorithms on various interconnection networks. In: M. Valero, E. Onate, M. Jane, J. Larriba and B. Suarez (eds.), Parallel Computing and Transputers Applications. IOS Press, Amsterdam, pp. 195–203.Google Scholar
  116. Shonkwiler, R. (1993) Parallel genetic algorithms. In: S. Forrest (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 199–205.Google Scholar
  117. Sondergeld, L. and Voß, S. (1999) Cooperative intelligent search using adaptive memory techniques. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.), Meta-Heuristics 98: Theory & Applications. Kluwer, Norwell, MA, pp. 297–312.Google Scholar
  118. Starkweather, T., Whitley, D. and Mathias, K. (1991) Optimization using distributed genetic algorithms. In: H.-P. Schwefel and R. Männer (eds.), Parallel Problem Solving from Nature, Lecture Notes in Computer Science 496. Springer-Verlag, Berlin, pp. 176–185.Google Scholar
  119. Taillard, É.D. (1991) Robust taboo search for the quadratic assignment problem. Parallel Computing, 17, 443–455.CrossRefMathSciNetGoogle Scholar
  120. Taillard, É.D. (1993a) Parallel iterative search methods for vehicle routing problems. Networks, 23, 661–673.zbMATHGoogle Scholar
  121. Taillard, É.D. (1993b) Recherches itératives dirigées parallèles. Ph.D. thesis, École Polytechnique Fédérate de Lausanne.Google Scholar
  122. Taillard, É.D. (1994) Parallel taboo search techniques for the job shop scheduling problem. ORSA Journal on Computing, 6(2), 108–117.zbMATHGoogle Scholar
  123. Taillard, É.D., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.-Y. (1997) A tabu Search heuristic for the vehicle routing problem with soft time windows. Transportation Science, 31, 170–186.Google Scholar
  124. ten Eikelder, H.M.M., Aarts, B.J.M., Verhoeven, M.G.A. and Aarts, E.H.L. (1999) Sequential and parallel local search for job shop scheduling. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.), Meta-Heuristics 98: Theory & Applications. Kluwer, Norwell, MA, Montréal, QC, Canada, pp. 359–371.Google Scholar
  125. Toulouse, M., Crainic, T.G. and Gendreau, M. (1996) Communication issues in designing cooperative multi thread parallel searches. In: I.H. Osman and J.P. Kelly (eds.), Meta-Heuristics: Theory & Applications. Kluwer Academic Publishers, Norwell, MA, pp. 501–522.Google Scholar
  126. Toulouse, M., Crainic, T.G. and Sansó, B. (1997) Systemic behavior of cooperative search algorithms. Publication CRT-97-55, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.Google Scholar
  127. Toulouse, M., Crainic, T.G. and Sansó, B. (1999a) An experimental study of systemic behavior of cooperative search algorithms. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.), Meta-Heuristics 98: Theory & Applications. Kluwer Academic Publishers, Norwell, MA, pp. 373–392.Google Scholar
  128. Toulouse, M., Crainic, T.G., Sansó, B. and Thulasiraman, K. (1998a) Self-organization in cooperative search algorithms. In: Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics. Omnipress, pp. 2379–2385.Google Scholar
  129. Toulouse, M., Crainic, T.G. and Thulasiraman, K. (2000) Global optimization properties of parallel cooperative search algorithms: a simulation study. Parallel Computing, 26(1), 91–112.CrossRefGoogle Scholar
  130. Toulouse, M., Glover, F. and Thulasiraman, K. (1998b) A multi-scale cooperative search with an application to graph partitioning. Report, School of Computer Science, University of Oklahoma, Norman, OK.Google Scholar
  131. Toulouse, M., Thulasiraman, K. and Glover, F. (1999b) Multi-level cooperative search. In: P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé, L. Giraud and D. Ruiz (eds.), 5th International Euro-Par Parallel Processing Conference, volume 1685 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 533–542.Google Scholar
  132. Verhoeven, M.G.A. and Severens, M.M.M. (1999) Parallel local search for steiner trees in graphs. Annals of Operations Research, 90, 185–202.CrossRefMathSciNetGoogle Scholar
  133. Verhoeven, M.G.A. and Aarts, E.H.L (1995) Parallel local search. Journal of Heuristics, 1(1), 43–65.Google Scholar
  134. Voß, S. (1993) Tabu search: applications and prospects. In: D.-Z. Du and P. Pardalos (eds.), Network Optimization Problems. World Scientific Publishing Co., Singapore, pp. 333–353.Google Scholar
  135. Whitley, D. (1993) Cellular genetic algorithms. In: S. Forrest (eds.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 658–658.Google Scholar
  136. Whitley, D. and Starkweather, T. (1990a) Optimizing small neural networks using a distributed genetic algorithm. In: Proceedings of the International Conference on Neural Networks. IEEE Press, pp. 206–209.Google Scholar
  137. Whitley, D. and Starkweather, T. (1990b) GENITORII: a distributed genetic algorithm. Journal of Experimental and Theoretical Artificial Intelligence, 2(3), 189–214.Google Scholar
  138. Whitley, L.D. (1994) A genetic algorithm tutorial. Statistics and Computing, 4, 65–85.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Teodor Gabriel Crainic
    • 1
  • Michel Toulouse
    • 2
  1. 1.Département de management et technologieUniversité du Québec à Montréal and Centre de recherche sur les transports Université de MontréalSuccursale Centre-ville Montréal (QC)Canada
  2. 2.Department of computer scienceUniversity of ManitobaWinnipeg (MB)Canada

Personalised recommendations