Advertisement

Local Search and Constraint Programming

  • Filippo Focacci
  • François Laburthe
  • Andrea Lodi
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 57)

Keywords

Local Search Greedy Algorithm Travel Salesman Problem Constraint Programming Vehicle Route Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggoun, A. and Beldiceanu, N. (1992) Extending CHIP in order to solve complex scheduling and placement problems. In: Actes des Journees Francophones de Programmation et Logique. Lille, France.Google Scholar
  2. Applegate, D. and Cook, W. (1991) A computational study of thejob-shop scheduling problem. ORSA Journal on Computing, 3, 149–156.Google Scholar
  3. Beldiceanu, N., Bourreau, E., Simonis, H. and Rivrau, D. (1999) Introducing metaheuristics in CHIP. In: Proceedings of the 3rd Metaheuristics International Conference. Angra do Reis, Brazil.Google Scholar
  4. Caprara, A., Fischetti, M., Toth, P., Vigo, D. and Guida, P.-L. (1997) Algorithms for railway crew management. Mathematical Programming, 79, 125–141.CrossRefMathSciNetGoogle Scholar
  5. Caseau, Y. and Laburthe, F. (1996) Improving branch and bound for job-shop scheduling with constraint propagation. In: M. Deza, R. Euler and Y. Manoussakis, (eds.), Proceedings of Combinatorics and Computer Science, CCS’95, LNCS 1120. Springer-Verlag, Berlin Heidelberg.Google Scholar
  6. Caseau, Y. and Laburthe, F. (1999) Heuristics for large constrained routing problems. Journal of Heuristics, 5, 281–303.CrossRefGoogle Scholar
  7. Caseau, Y., Laburthe, F. and Silverstein, G. (1999) A metaheuristic factory for vehicle routing problems. In: J. Jaffar (ed.), Principle and Practice of Constraint Programming—CP’99, LNCS 1713. Springer-Verlag, Berlin Heidelberg, pp. 144–158.Google Scholar
  8. Cesta, A., Oddi, A. and Smith, S. (2000) A constraint-based method for project scheduling with time windows. Journal of Heuristics (to appear).Google Scholar
  9. De Backer, B., Furnon, V., Shaw, P., Kilby, P. and Prosser, P. (2000) Solving vehicle routing problems using constraint programming and meta-heuristics. Journal of Heuristics, 6, 481–500.CrossRefGoogle Scholar
  10. Dell’Amico, M. and Trubian, M. (1993) Applying tabu-search to the job-shop scheduling problem. Annals of Operations Research, 41, 231–252.Google Scholar
  11. Feo, T. and Resende, M. (1995) Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.CrossRefMathSciNetGoogle Scholar
  12. Focacci, F., Laborie, P. and Nuijten, W. (2000a) Solving scheduling problems with setup times and alternative resources. In: Proceedings of the Fifth International Conference on Artificial Intelligence Planning and Scheduling. AIPS’00. AAAI Press.Google Scholar
  13. Focacci, F., Lodi, A. and Milano, M. (1999a) Cost-based domain filtering. In: J. Jaffar (ed.), Principle and Practice of Constraint Programming—tCP’99, LNCS 1713. Springer-Verlag, Berlin Heidelberg, pp. 189–203.Google Scholar
  14. Focacci, F., Lodi, A. and Milano, M. (1999b) Solving TSP with time windows with constraints. In: D. De Schreye, (ed.), Logic Programming—Proceedings of the 1999 International Conference on Logic Programming. The MIT-press, Cambridge, Massachusetts, pp. 515–529.Google Scholar
  15. Focacci, F., Lodi, A., Milano, M. and Vigo, D. (2000b) An introduction to constraint programming. Ricerca Operativa, 91, 5–20.Google Scholar
  16. Gendreau, M., Hertz, A. and Laporte, G. (1992) New insertion and postoptimization procedures for the traveling salesman problem. Operations Research, 40, 1086–1094.MathSciNetGoogle Scholar
  17. Glover, F. (1995) Tabu thresholding: Improved search by nonmonotonic trajectories. ORSA Journal on Computing, 7, 426–442.zbMATHGoogle Scholar
  18. Golden, B. and Assad, A. (1988) Vehicle Routing: Methods and Studies. North-Holland, Amsterdam.Google Scholar
  19. Haralick, R. and Elliott, G. (1980) Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14, 263–313.CrossRefGoogle Scholar
  20. Harvey, W. (1995) Nonsystematic Backtracking Search. PhD thesis, Stanford University.Google Scholar
  21. Harvey, W. and Ginsberg, M. (1995) Limited discrepancy search. In: Proceedings of the 14th IJCAI. Morgan Kaufmann, pp. 607–615.Google Scholar
  22. Junker, U. (2000) Preference-based search for scheduling. In Proceedings of the Seventeenth National Conference on Artificial Intelligence—AAAI-2000, pp. 904–909.Google Scholar
  23. Kindervater, G. and Savelsbergh, M. (1997) Vehicle routing: Handling edges exchanges. In: E. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization, J. Wiley & Sons, Chichester, pp. 337–360.Google Scholar
  24. Laburthe, F. (2000) CHOCO: implementing a CP kernel. In: CP’00 Post Conference Workshop on Techniques for Implementing Constraint programming Systems—TRICS. Singapore.Google Scholar
  25. Lin, S. and Kernighan, B. (1973) An effective heuristic for the traveling salesman problem. Operations Research, 21, 498–516.MathSciNetGoogle Scholar
  26. Mackworth, A. (1977) Consistency in networks of relations. Artificial Intelligence, 8, 99–118.CrossRefzbMATHGoogle Scholar
  27. Marriott, K. and Stuckey, P. (1998) Programming with Constraints. The MIT Press.Google Scholar
  28. Mautor, T. and Michelon, P. (1997) MIMAUSA: A new hybrid method combining exact solution and local search. In: Proceedings of the 2nd International Conference on Meta-Heuristics. Sophia-Antipolis, France.Google Scholar
  29. Michel, L. and van Hentenryck, P. (1997) Localizer: A modeling language for local search. In: G. Smolka (ed.), Principle and Practice of Constraint Programming—CP’97, LNCS 1330. Berlin Heidelberg, Springer-Verlag, pp. 237–251.Google Scholar
  30. Minton, S., Johnston, M., Philips, A. and Laird, P. (1992) Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58, 161–205.CrossRefMathSciNetGoogle Scholar
  31. Mladenović, N. and Hansen, P. (1997) Variable neighborhood search. Computers & Operations Research, 24, 1097–1100.MathSciNetGoogle Scholar
  32. Nuijten, W. (1994) Time and Resource Constrainted Scheduling, a Constraint Satisfaction Approach. PhD thesis, University of Eindhoven, The Netherlands.Google Scholar
  33. Nuijten, W. and Le Pape, C. (1998) Constraint based job shop scheduling with ILOG scheduler. Journal ofHeuristics, 3, 271–286.Google Scholar
  34. Pesant, G. and Gendreau, M. (1996) A view of local search in constraint programming. In: E. Freuder, (ed.), Principle and Practice of Constraint Programming—CP’96, LNCS 1118. Springer-Verlag, Berlin Heidelberg, pp. 353–366.Google Scholar
  35. Pesant, G. and Gendreau, M. (1999) A constraint programming framework for local search methods. Journal ofHeuristics, 5, 255–279.Google Scholar
  36. Pesant, G., Gendreau, M., Potvin, J. and Rousseau, J. (1998) An exact constraint logic programming algorithm for the travelling salesman problem with lime windows. Transportation Science, 32, 12–29.Google Scholar
  37. Pesant, G., Gendreau, M. and Rousseau, J.-M. (1997) GENIUS-CP: A generic single-vehicle routing algorithm. In: G. Smolka (ed.), Principle and Practice of Constraint Programming—CP’97, LNCS 1330. Springer-Verlag, Berlin Heidelberg, pp. 420–433.Google Scholar
  38. Prais, M. and Ribeiro, C. (1998) Reactive grasp: an application to a matrix decomposition problem in TDMA traffic assignment. Technical report, Catholic University of Rio de Janeiro, Department of Computer Science.Google Scholar
  39. Prestwich, S. (2000) A hybrid search architecture applied to hard random 3-sat and low-autocorrelation binary sequences. In: R. Dechter (ed.), Principle and Practice of Constraint Programming—CP2000, LNCS 1894. Springer-Verlag, Berlin Heidelberg, pp. 337–352.Google Scholar
  40. Régin, J. (1994) A filtering algorithm for constraints of difference in CSPs. In: Proceedings of the Twelfth National Conference on Artificial Intelligence—AAAI’94, pp. 362–367.Google Scholar
  41. Reinelt, G. (1994) The Traveling Salesman: Computational Solutions for TSP Applications. Springer-Verlag.Google Scholar
  42. Russell, R. (1995) Hybrid heuristics for the vehicle routing problem with time windows. Transportation Science, 29, 156–166.zbMATHGoogle Scholar
  43. Schimpf, J., Novello, S. and Sakkout, H. (1997) IC-Parc ECLiPSe Library Manual.Google Scholar
  44. Selman, B. and Kautz, H. (1993) Domain-independent extension to GSAT: Solving large structured satisfiability problems. In: Proceedings of IJCAI-93, 13th International Joint Conference on Artificial Intelligence. Sidney, AU, pp. 290–295.Google Scholar
  45. Selman, B., Levesque, H. and Mitchell, D. (1992) A new method for solving hard satisfiability problems. In: P. Rosenbloom and P. Szolovits (eds.), Proceedings of the Tenth National Conference on Artificial Intelligence. AAAI Press, Menlo Park, California, pp. 440–446.Google Scholar
  46. Shaw, P. (1998) Using constraint programming and local search methods to solve vehicle routing problems. In: M. Maher and J.-F. Puget (eds.), Principle and Practice of Constraint Programming—CP’98, LNCS 1520. Springer-Verlag, Berlin Heidelberg, pp. 417–431.Google Scholar
  47. Shaw, P., Furnon, V. and De Backer, B. (2000) A lightweight addition to CP frameworks for improved local search. In: Proceedings of CP-AI-OR’00. Padderborn, Germany.Google Scholar
  48. Solver (2000) ILOG Solver 5.0 User’s Manual and Reference Manual. ILOG, S.A.Google Scholar
  49. Toth, P. and Vigo, D. (2002) The Vehicle Routing Problem. Monographs on Discrete Mathematics and Applications. SIAM.Google Scholar
  50. van Hentenryck, P., Saraswat, V. and Deville, Y. (1993) Evaluation of the constraint language cc(FD). Technical Report CS-93-02, Brown University.Google Scholar
  51. Walser, J. (1999) Integer Optimization by Local Search, Volume 1637 of Lecture Notes in Artificial Intelligence. Springer Verlag.Google Scholar
  52. Walsh, T. (1997). Depth-bounded discrepancy search. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence—IJCAI. Morgan Kaufmann.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Filippo Focacci
    • 1
  • François Laburthe
    • 2
  • Andrea Lodi
    • 3
  1. 1.ILOG S.A. 9GentillyFrance
  2. 2.BOUYGUES —Direction des Technologies NouvellesSt-Quentin-en-Yvelines CedexFrance
  3. 3.D.E.I.S., University of BolognaBolognaItaly

Personalised recommendations