Advertisement

Abstract

Heuristic search procedures that aspire to find global optimal solutions to hard combinatorial optimization problems usually require some type of diversification to overcome local optimality. One way to achieve diversification is to re-start the procedure from a new solution once a region has been explored. In this chapter we describe the best known multi-start methods for solving optimization problems. We propose classifying these methods in terms of their use of randomization, memory and degree of rebuild. We also present a computational comparison of these methods on solving the linear ordering problem in terms of solution quality and diversification power.

Keywords

Optimization Heuristic Search Re-Starting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D.H. (1987) An empirical study of bit vector function optimization. In: Davis (ed.), Genetic Algorithms and simulated annealing. Morgan Kaufmann Publishers.Google Scholar
  2. Baluja, S. (1995) An Empirical Comparison of 7 iterative evolutionary function optimization heuristics. School of Computer Science, Carnegie Mellon University.Google Scholar
  3. Binato, S., Faria Jr. Haroldo and Resende, M.G.C. (2001) Greedy randomized adaptive path relinking. MIC2001 conference proceedings.Google Scholar
  4. Boese, K.D., Kahng, A.B. and Muddu, S. (1994) A new adaptive multi-start technique for combinatorial global optimisation. Operations Research Letters, 16, 103–113.CrossRefMathSciNetGoogle Scholar
  5. Campos, V., Laguna, M. and Martí, R. (1999) Scatter search for the linear ordering problem. In: Corne, Dorigo and Glover (eds.), New Ideas in Optimization. Mc Graw Hill, pp. 331–341.Google Scholar
  6. Chiang, W.C. and Russell, R.A. (1995) Simulated annealing metaheuristics for the vehicle routing problems with time windows. Annals of Operations Research, 60.Google Scholar
  7. Feo, T. and Resende, M.G.C. (1989) A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67–71.CrossRefMathSciNetGoogle Scholar
  8. Feo, T. and Resende, M.G.C. (1995) Greedy randomized adaptive search procedures. Journal of Global Optimization, 2, 1–27.Google Scholar
  9. Fleurent, C. and Glover, F. (1999) Improved constructive multi-start strategies for the Quadratic assignment problem using adaptive memory. INFORMS Journal on Computing.Google Scholar
  10. Glover, F. (1977) Heuristics for integer programming using surrogate constraints. Decision Sciences, 8, 156–166.Google Scholar
  11. Glover, F. (1990) Tabu search: a tutorial. Interfaces, 20, 74–94.Google Scholar
  12. Glover, F. (2000) Multi-start and strategic oscillation methods—principles to exploit adaptive memory. In: Laguna and Gonzalez-Velarde (eds.), Computing Tools for Modeling Optimization and Simulation. Kluwer, pp 1–25.Google Scholar
  13. Glover, F. and Laguna, M. (1993) Tabu search. In: C. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Optimization Problems. Blackwell Scientific Publishing, Oxford, pp. 70–141.Google Scholar
  14. Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer Academic Publishers, Boston.Google Scholar
  15. Glover, F., Laguna, M. and Martí, R. (2000) Scatter seach. In: A. Ghosh and S. Tsutsui (eds.), Theory and Applications of Evolutionary Computation: Recent Trends. Springer-Verlag (to appear).Google Scholar
  16. Grotschel, M., Junger, M. and Reinelt, G. (1984) A cutting plane algorithm for the linear ordering problem. Operations Research, 32(6), 1195–1220.MathSciNetGoogle Scholar
  17. Hagen, L.W. and Kahng, A.B. (1997) Combining problem reduction and adaptive multi-start: a new technique for superior iterative partitioning. IEEE Transactions on CAD, 16(7), 709–717.Google Scholar
  18. Hickernell, F.J. and Yuan, Y. (1997) A simple multistart algorithm for global optimization. OR Transactions, 1(2).Google Scholar
  19. Hu, X., Shonkwiler, R. and Spruill, M.C. (1994) Random restarts in global optimization. Georgia Institute of technology, Atlanta.Google Scholar
  20. Laguna, M., Feo, T. and Elrod, H. (1994) A greedy randomized adaptive search procedure for the 2-partition problem. Operations Research, 42(4), 677–687.Google Scholar
  21. Laguna, M. and Martí, R. (1999) GRASP and Path relinking for 2-layer straight line crossing minimization. INFORMS Journal on Computing, 11(1), 44–52.Google Scholar
  22. Lokketangen, A. and Glover, F. (1996) Probabilistic move selection in tabu search for 0/1 mixed integer programming problems. Meta-Heuristics: Theory and Practice. Kluwer, pp. 467–488.Google Scholar
  23. Martí, R., Laguna, M., Glover, F. and Campos, V. (2001) Reducing the bandwidth of a sparse matrix with tabu search. European Journal of Operational Research, 135, 450–459.CrossRefMathSciNetGoogle Scholar
  24. Mayne, D.Q. and Meewella, C.C. (1988) A non-clustering multistart algorithm for global optimization. In: Bensoussan and Lions (eds.), Analysis and Optimization of Systems, Lecture Notes in control and information sciences, Vol. 111, Springer-Verlag.Google Scholar
  25. Moreno, J.A., Mladenovic, N. and Moreno-Vega, J.M. (1995) An statistical analysis of strategies for multistart heuristic searches for p-facility location-allocation problems. Eighth Meeting of the EWG on Locational Analysis Lambrecht, Germany.Google Scholar
  26. Moscato, P. (1999) Memetic algorithms. In: Corne, Dorigo and Glover (eds.), New Ideas in Optimization. McGraw Hill, pp. 219–235.Google Scholar
  27. Osman, I.H. and Kelly, J.P. (1996) Meta-Heuristics: An Overview. Meta-Heuristics: Theory and Practice. Kluwer, pp. 1–23.Google Scholar
  28. Prais, M. and Ribeiro C.C. (2000) Reactive GRASP: an application to a matrix decomposition problem in TDMA traffic assignment. 12, 164–176.MathSciNetGoogle Scholar
  29. Rochat and Taillard (1995) Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics, 1(1), 147–167.Google Scholar
  30. Resende, M.G.C. (1998) Computing approximate solutions for the maximum covering problem using GRASP. Journal of Heuristics, 4, 161–171.CrossRefzbMATHGoogle Scholar
  31. Patterson R., Pirkul, H. and Rolland, E. (1999) Adaptive reasoning technique for the capacitated minimum spanning tree problem. Journal of Heuristics, 5, 159–180.CrossRefGoogle Scholar
  32. Rinnooy, Kan, A.H.G. and Timmer, G.T. (1989) Global optimization. In: Rinnoy Kan and Todds (eds.), Handbooks in Operations Research and Management Science, Vol. 1. North Holland, pp. 631–662.Google Scholar
  33. Russell, R.A. (1995) Hybrid heuristics for the vehicle routing problem with time windows. Transportation Science.Google Scholar
  34. Solis, F. and Wets, R. (1981) Minimization by random search techniques. Mathematics of Operations Research, 6, 19–30.MathSciNetGoogle Scholar
  35. Ulder, N.L.J., Aarts, E.H.L., Bandelt, H.J., Van Laarhoven, P.J.M. and Pesch, E. (1990) Genetic Local Search algorithms for the traveling salesman problem. In: Schwefel and Männer (eds.), Parallel Problem Solving from Nature, Springer-Verlag, pp. 109–116.Google Scholar
  36. Wattenberg, M. and Juels, A. (1994) Stochastic Hillclimbing as a baseline method for evaluationg genetic algorithms. University of California, Berkeley, CSD94-834.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Rafael Martí
    • 1
  1. 1.Dpto de Estadística e Investigación OperativaUniversitat de ValènciaBurjassot, ValenciaSpain

Personalised recommendations