Skip to main content

Modelling of the Climate System

  • Chapter

Part of the book series: Advances in Global Change Research ((AGLO,volume 1))

Abstract

To better understand the earth’s climate, climate models are constructed by expressing the physical laws, which govern climate mathematically, solving the resulting equations, and comparing the solutions with nature. Given the complexity of the climate, the mathematical model can only be solved under simplifying assumptions, which are a priori decisions about which physical processes are important. The objective is to obtain a mathematical model, which both reproduces the observed climate and can be used to project how the earth’s climate will respond to changes in external conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, A., Schubert, W.H. Interaction of a cumulus cloud ensemble with the large scale environment. Part I. J. Atmos. Sci., 31, 674–701, 1974.

    Article  Google Scholar 

  • Betts, A. K., Miller, M.J. A new convective adjustment scheme. Part II: single column tests using GATE, BOMEX, ATEX, and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc, 112,693–709, 1986.

    Google Scholar 

  • Bretherton, F. P., K. Bryan and J. D. Woods. Time-Dependent Greenhouse-Gas-Induced Climate Change. Climate Change: The IPCC Scientific Assessment (eds. J. T. Houghton, G. J. Jenkins, and J. J. Ephraums). Cambridge University Press, Cambridge, 173–193, 1990.

    Google Scholar 

  • Bryan, K. A numerical investigation of a nonlinear model of a wind-driven ocean. J. Atmos. Sci., 20, 594–606, 1963.

    Article  Google Scholar 

  • Budyko, M. I. The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611–619, 1969.

    Article  Google Scholar 

  • Charney, J. G., R. Fjortoft, Neumann, J. von. Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254, 1950.

    Article  Google Scholar 

  • Deardorff, J. W. Parameterization of the planetary boundary layer for use in general circulation models. Mon Wea. Rev., 100, 93–106, 1972.

    Article  Google Scholar 

  • Emanuel, K. A. A scheme for representing cumulus convection in large scale models. J. Atmos. Sci., 48, 2313–2335, 1991.

    Article  Google Scholar 

  • Gates, W. L., J. F. B. Mitchell, G. J. Boer, U. Cubasch and V. P. Meleshko. Climate Modelling, Climate Prediction and Model Validation. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment (eds. J. T. Houghton, B. A. Callander and S. K. Varney). Cambridge University Press, Cambridge, 97–134, 1992.

    Google Scholar 

  • Goody, R. M. and Y. L. Yung. Atmospheric Radiation: Theoretical Basis, 2nd ed. Oxford Univ. Press, 528 pp, 1989.

    Google Scholar 

  • Goody, R. M. and Y. L. Yung. Atmospheric Radiation: Theoretical Basis, 2nd ed. Oxford Univ. Press, 528 pp, 1989.

    Google Scholar 

  • Hays, J.D., J. Imbrie, and N.J. Shackleton. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194, 1121–1132, 1976.

    Article  Google Scholar 

  • Ingersoll, A. P. The runaway greenhouse: a history of water on Venus. J. Atmos. Sci., 26, 1191–1198, 1969.

    Article  Google Scholar 

  • IPCC. Climate Change. The IPCC Scientific Assessment. Editors: J.T. Houghton, G.J. Jenkins, J.J. Ephraums, Cambridge Univ. Press, 365 pp, 1990.

    Google Scholar 

  • Kuo, H. L. Further studies of the parameterization of the influence of cumulus convection on large scale flow. J. Atmos. Sci., 31, 1232–1240, 1974.

    Article  Google Scholar 

  • Leith, C. E. Numerical simulation of the earth’s atmosphere. In Methods in Computational Physics, 4, B. Adler, S. Ferenbach, and M. Rotenberg (eds.), Academic Press, 385 pp, 1965.

    Google Scholar 

  • Manabe, S., J. Smagorinsky, and R. F. Strickler. Simulated climatology of a general circulation model with a hydrologie cycle. Mon Wea. Rev., 93, 769–798, 1965.

    Article  Google Scholar 

  • Manabe, S. and R. J. Stouffer. Two stable equilibria of a coupled ocean-atmosphere model. J. Climate, 1,841–866, 1988.

    Article  Google Scholar 

  • Mellor, G. L. and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875, 1982.

    Article  Google Scholar 

  • Mesinger F. and A. Arakawa. Numerical Methods Used in Atmospheric Models, 1. GARP Pub. Ser., 17, WMO, Geneva, 64 pp, 1976.

    Google Scholar 

  • Mitchell, J. F. B., S. Manabe, T. Tokioka and V. Meleshko. Equilibrium Climate Change. Climate Change: The IPCC Scientific Assessment (eds. J. T. Houghton, G. J. Jenkins, and J. J. Ephraums). Cambridge University Press, Cambridge, 131–172, 1990.

    Google Scholar 

  • Miyakoda, K. and J. Sirutis. Comparative integrations of global spectral models with various parameterized processes of sub-grid scale vertical transports — descriptions of the parameterizations. Beitr. Phys. Atmos., 50, 445–487, 1977.

    Google Scholar 

  • North, G. R. Theory of energy-balance climate models. J. Atmos. Sci., 32, 2033–2043, 1975.

    Article  Google Scholar 

  • North, G. R., R. F. Cahalan and J. A. Coakley. Energy balance climate models. Rev. Geophys. Space Phys., 19, 91–121, 1981.

    Article  Google Scholar 

  • Orszag, S. A. Transform methods for calculation of vector coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890–895, 1970.

    Article  Google Scholar 

  • Peixoto, P.J. and A.H. Oort. Physics of Climate, American Institute of Physics, NY, 1992.

    Google Scholar 

  • Phillips, N. A. The general circulation of the atmosphere: a numerical experiment. Quart. J. Roy. Meteor. Soc, 82, 123–164, 1956.

    Article  Google Scholar 

  • Phillips, N. A. A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184–185, 1957.

    Article  Google Scholar 

  • Phillips, N. A. Numerical integration of the primitive equations on the hemisphere. Mon. Wea. Rev., 87, 333–345, 1959.

    Article  Google Scholar 

  • Ramanathan V. and J. A. Coakley. Climate modeling through radiative-convective models. Rev. Geophys. Space Phys., 16, 465–489, 1978.

    Article  Google Scholar 

  • Randall, D.A., Harchvardham, D.A. Dazlich, and T.G. Corsetti. Interactions among radiation, convection, and large scale dynamics in a general circulation model. J. Atmos. Sci., 46, 1943–1970, 1989.

    Article  Google Scholar 

  • Robert, A. The behavior of planetary waves in an atmosphere model based on spherical harmonics. Arctic Meteor. Research Group, McGill Univ. Pub. Meteor., 77, 59–62, 1965.

    Google Scholar 

  • Schneider, S. H. and R. E. Dickinson. Climate modeling. Rev. Geophys. 2, 447–493, 1974.

    Article  Google Scholar 

  • Sellers, W. D. A climate model based on the energy balance of the earth-atmosphere system. J. Appl Meteor., 8, 392–400, 1969.

    Article  Google Scholar 

  • Slingo, J.M. The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 13, 899–927, 1987.

    Article  Google Scholar 

  • Smagorinsky, J. On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region. Mon. Wea. Rev., 86, 457–466, 1958.

    Article  Google Scholar 

  • Smagorinsky, J. On the numerical prediction of large scale condensation by numerical models. Geophys. Monogr., 5, 71–78, 1960.

    Article  Google Scholar 

  • Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99–164, 1965.

    Article  Google Scholar 

  • Smagorinsky, J., S. Manabe, and J. L. Holloway. Numerical results from a nine-level general circulation model of the atmosphere. Mon Wea. Rev., 93, 727–768, 1965.

    Article  Google Scholar 

  • Staniforth, A.N. The application of the finite element method to meteorological simulations -a review. Int. J. Num. Methods, 4, 1–12, 1984.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Shukla, J., Kinter, J.L., Schneider, E.K., Straus, D.M. (1999). Modelling of the Climate System. In: Martens, P., Rotmans, J., Jansen, D., Vrieze, K. (eds) Climate Change: An Integrated Perspective. Advances in Global Change Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/0-306-47982-6_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47982-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5331-2

  • Online ISBN: 978-0-306-47982-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics