Skip to main content
  • 899 Accesses

Abstract

The last stage in a transmitter path is the power amplifier (PA). No more signal processing takes place after the PA, thus putting stringent demands on the PA. Furthermore, efficient RF PAs are highly desirable in battery-operated systems, since PAs typically dominate the power consumption of the system. This chapter focuses on the design of bipolar and MOS PAs and discusses principles to improve the linearity of a PA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. Hagen, Radio-Frequency Electronics, Circuits and Applications, Cambridge University Press, New York, 1996.

    Google Scholar 

  2. H. Krauss et al., Solid State Radio Engineering, Wiley, New York, 1980.

    Google Scholar 

  3. F. Raab, “High Efficiency Amplification Techniques,” IEEE Circuit Syst. (Newsletter), no. 12, pp. 3–11, Dec. 1985.

    Google Scholar 

  4. F. Sechi, “Linearized Class-B Transistor Amplifier,” IEEE Journal of. Solid-State Circuits, vol. 11,no. 4, pp. 264–270, Apr. 1975.

    Google Scholar 

  5. S.L. Wong and S. Luo, “A 2.7–5.5V, 0.2–1 W BiCMOS RF Driver Amplifier IC with Closed Loop Power Control and Biasing Functions,” IEEE. Journal of Solid-State Circuits, vol. 33,no. 12, pp. 2259–2264, Dec. 1998.

    Article  Google Scholar 

  6. N.O. Sokal and A.D. Sokal, “Class E — A New class of high Efficiency Tuned Single-ended Switching Power Amplifiers,” IEEE Journal of Solid-State Circuits, vol. 10,no. 6, pp. 168–176, June 1975.

    Google Scholar 

  7. M. Kazimierczuk, “Class E Tuned Power Amplifier with Shunt Inductor,” IEEE Journal of Solid-State Circuits, vol. 16,no. 2, pp. 2–7, Feb. 1981.

    Google Scholar 

  8. T. Sowlati et al., “Low Voltage High Efficiency GaAs Class E Power Amplifier for Wireless Trasnmitters,” IEEE Journal of Solid-State Circuits, vol. 30,no. 10, pp. 1074–1080, Oct. 1995.

    Article  Google Scholar 

  9. W. Simburger et al., “A monolithic Transformer Coupled 5-W Silicon Power Amplifier with 59% at 0.9GHz,” IEEE Journal of Solid-State. Circuits, vol. 31,no. 12, pp. 1881–1892, Dec. 1999.

    Google Scholar 

  10. X. Zhang et al., “A SiGe HBT Power Amplifier with 40% PAE for PCS CDMA Applications,” in proc. of 2000 IEEE MTT-S Digest, 2000, pp. 857–860.

    Google Scholar 

  11. S. Luo and T. Sowlati, “A monolithic Si PCS-CDMA Power Amplifier with an Impedance-Controllable Biasing Scheme,” in proc. of 2000 IEEE. MTT-S Digest, 2001.

    Google Scholar 

  12. T. Sowlati and S. Luo, “Bias Boosting Technique for a 1.9GHz Class AB RF Amplifier,” Proc. Int. Symp. on Low Power Electronics and Design. (Italy), July 2000.

    Google Scholar 

  13. V. Vathulya et al., “Class 1 Bluetooth Power Amplifier with 24dBm Output Power and 48% PAE at 2.4 GHz in 0.25 um CMOS,” in European. Solid-State Circuits Conf. (ESSCIRC), 2001.

    Google Scholar 

  14. E. Takeda and N. Suzuki, “An Empirical Model for device Degradation due to Hot Carrier Injection,” IEEE Electron Device Letters, vol. 34,no. EDL-4, pp. 111–, June 1983.

    Google Scholar 

  15. J. Choi et al., “Hot Carrier-Induced MOSFET Degradation: AC versus DC Stressing,” in VLSI Technology Symposium Digest, 1987, pp. 45–47.

    Google Scholar 

  16. W. Weber et al., “Lifetimes and Substrate Currents in Static and Dynamic Hot-Carrier Degradation,” in IEDM Technical Digest, 1986, pp. 390.

    Google Scholar 

  17. S. Stapleton and F. Costescu, “An Adaptive Predistorter for a Power Amplifier based on Adjacent Channel Emissions,” IEEE Trans. on Vehicular. Technology, vol. 41,no. 2, pp. 49–57, Feb. 1992.

    Google Scholar 

  18. T. Sowlati et al., “Phase-Correcting Feedback System for Class E Power Amplifier,” IEEE Journal of Solid-State Circuits, vol. 32,no. 4, pp. 544–549, Apr. 1997.

    Article  Google Scholar 

  19. L. Kahn, “Single-sideband transmission by envelope elimination and restoration,” proc. IRE, pp. 803–806, July 1952.

    Google Scholar 

  20. L. Kahn, “Comparison of linear single-sideband transmission with envelope elimination and restoration single-sideband transmitters,” proc. IRE, pp. 1706–1712, Dec. 1956.

    Google Scholar 

  21. D.K. Su and W.J. McFarland, “An IC for Linearizing RF Power Amplifiers using Envelope Elimination and Restoration,” IEEE Journal of Solid-State. Circuits, vol. 33,no. 12, pp. 2252–2258, Dec. 1998.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). RF power amplifiers. In: Circuit Design For RF Transceivers. Springer, Boston, MA. https://doi.org/10.1007/0-306-47978-8_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47978-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7551-7

  • Online ISBN: 978-0-306-47978-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics