Skip to main content

Optically Detected Magnetic Resonance (ODMR) of Triplet States in Photosynthesis

  • Chapter
Biophysical Techniques in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 3))

  • 682 Accesses

Summary

The triplet state of aromatic molecules and of polyenes is a versatile probe of molecular structure and of the interactions with the environment, through the zero-field splitting (ZFS) parameters and the sublevel decay rates. These tripletproperties can be determined accurately with magnetic resonance. Optical detection of magnetic resonance (ODMR) is often advantageous because it pairs the frequency resolution of magnetic resonance with the sensitivity of optical Spectroscopy. It is preferentially carried out in zero magnetic field, where magnetic-field dependent anisotropies are absent, thus considerably enhancing the resolution and sensitivity for disordered systems.

In photosynthesis, the optical parameters used for the detection of ODMR are the fluorescence (FDMR) and the absorbance (ADMR). Especially the latter is of interest, because it can be used for samples with low fluorescence yield, and allows an optical-microwave double resonance technique, in which the wavelength of detection is scanned, keeping the microwaves at a resonant frequency. Thus, triplet-singlet absorbance difference (T-S) spectra can be recorded with superior accuracy and resolution.

In this Chapter, the physical background of ODMR is outlined, followed by a few highlights of its application to the study of photosynthetic reaction centers. Recent studies employing ADMR-recorded linear-dichroic T-S spectroscopy are emphasized. Key results are the determination of the orientation of several transition moments in reaction centers of several bacteria and of the two plant photosystems. This has allowed insight in the configuration of the various primary donors, and has aided in the interpretation of the reaction center absorbance spectrum. A further important finding is that isolated reaction centers generally exhibit a heterogeneity of the optical and magnetic resonance parameters of the primary donor, which is attributed to a distribution of conformations of the reaction center pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angerhofer A, Beese D, Hoff AJ, Lous EJ and Scheer H (1989) Linear dichroic triplet-minus-singlet absorbance difference spectra of borohydride treated reaction centres of Rhodobacter sphaeroides R26. In: Singhal G (ed) Applications of Molecular Biology in Bioenergetics of Photosynthesis, pp 197–203. Narosa Publishing House, New Delhi.

    Google Scholar 

  • Angerhofer A, Speer R, Ullrich J, von Schütz JU and Wolf HC (1991) Time resolved ADMR applied to the triplet state of the primary donor of bacterial photosynthetic reaction centers. Appl Magn Reson 2: 203–216.

    CAS  Google Scholar 

  • Angerhofer A, Bernlocher D and Robert B (1993) Absorption detected magnetic resonance of D-1/D-2 complexes from Pisum sativum. In: Steiner U (Ed) Magnetic Field and Spin Effects in Chemistry, pp 167–180. Oldenburg Verlag, München.

    Google Scholar 

  • Angerhofer A, Friso F, Giacometti GM, Carbonera D and Giacometti G (1994) Optically detected magnetic resonance study on the origin of the pheophytin triplet state in D-1/D-2 cytochrome b-559 complexes. Biochim Biophys Acta 1188: 35–45.

    CAS  Google Scholar 

  • Aust V, Angerhofer A, Parot PH, Violette CA and Frank HA (1990) Temperature-dependent ADMR on borohydride-treated reaction centers of Rhodobacter sphaeroides R26. Chem Phys Lett 173: 439–442.

    Article  CAS  Google Scholar 

  • Aust V, Angerhofer A, Ullrich J, von Schlitz JU, Wolf HC and Cogdell RJ (1991) ADMR of carotenoid triplet states in bacterial photosynthetic antenna and reaction center complexes. Chem Phys Lett 181: 213–221.

    Article  CAS  Google Scholar 

  • Beese D, Steiner R, Scheer H, Robert B, Lutz M and Angerhofer A (1988) Chemically modified photosynthetic bacterial reaction centers: Circular dichroism, Raman resonance, low temperature absorption, fluorescence and ODMR spectra and polypeptide composition of borohydride treated reaction centers from Rb. sphaeroides R26. Photochem Photobiol 47: 293–304.

    CAS  Google Scholar 

  • Carbonera D, di Valentin M, Giacometti G and Agostini G (1992) FDMR of chlorophyll triplets in integrated particles and isolated reaction centers of Photosystem II. Identification of P680 triplet. Biochim Biophys Acta 1185: 167–176.

    Google Scholar 

  • Carbonera D, Giacometti G, Agostini C, Angerhofer A and Aust V (1994a) ODMR of carotenoid and chlorophyll triplets in CP 47 complexes of spinach. Chem Phys Lett 194: 273–281.

    Google Scholar 

  • Carbonera D, Giacometti G and Agostini G (1994b) A well resolved ODMR triplet minus singlet spectrum of P680 from PS II particles. FEBS Lett 343: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Chan IY (1982) Zero-field ODMR techniques — phosphorescence detection. In: Clarke RH (ed) Triplet State ODMR Spectroscopy, pp 1–24. Wiley-Interscience, New York.

    Google Scholar 

  • Davidov AS (1981) Theory of Molecular Excitons, Plenum Press, New York.

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318: 618–624.

    Article  Google Scholar 

  • den Blanken HJ and Hoff AJ (1982) High-resolution optical absorption-difference spectra of the triplet state of the primary donor in isolated reaction centers of the photosynthetic bacteria Rhodopseudomonas sphaeroides R26 and Rhodopseudomonas viridis measured with optically detected magnetic resonance at 1.2 K. Biochim Biophys Acta 681: 365–374.

    Google Scholar 

  • den Blanken HJ and Hoff AJ (1983a) Sublevel decay kinetics of the triplet state of bacteriochlorophyll a and b in methyl-tetrahydrofuran at 1.2 K. Chem Phys Lett 96: 343–347.

    Google Scholar 

  • den Blanken HJ and Hoff AJ (1983b) High-resolution absorbance-difference spectra of the triplet state of the primary donor P700 in Photosystem I subchloroplast particles measured with absorbance-detected magnetic resonance at 1.2 K. Evidence that P700 is a dimeric chlorophyll complex. Biochim Biophys Acta 724: 52–61.

    Google Scholar 

  • den Blanken HJ and Hoff AJ (1983c) Resolution enhancement of the triplet-singlet absorbance-difference spectrum and the triplet-ESR spectrum in zero field by the selection of sites. An application to photosynthetic reaction centers. Chem Phys Lett 98: 255–262.

    Google Scholar 

  • den Blanken HJ, van der Zwet GP and Hoff AJ (1982) ESR in zero field of the photoinduced triplet state in isolated reaction centers of Rhodopseudomonas sphaeroides R26 detected by the singlet ground state absorbance. Chem Phys Lett 85: 335–338.

    Google Scholar 

  • den Blanken HJ, Hoff AJ, Jongenelis APJM and Diner BA (1983a) High-resolution triplet-minus-singlet absorbance difference spectrum of photosystem II particles. FEBS Lett 157: 21–27.

    Google Scholar 

  • den Blanken HJ, Vasmel H, Jongenelis APJM, Hoff AJ and Amesz J (1983b) The triplet state of the primary donor of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 161: 185–189.

    Google Scholar 

  • den Blanken HJ, Meiburg RF and Hoff AJ (1984) Polarized triplet-minus-singlet absorbance difference spectra measured by absorbance detected magnetic resonance. An application to photosynthetic reaction centres. Chem Phys Lett 105: 336–342.

    Google Scholar 

  • Dijkman JA, den Blanken HJ and Hoff AJ (1988) Towards a new taxonomy of photosynthetic bacteria: ADMR-monitored triplet difference spectroscopy of reaction center pigment-protein complexes. Isr J Chem 28: 141–148.

    CAS  Google Scholar 

  • Dutton PL, Leigh JS and Seibert M (1972) Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll. Biochem Biophys Res Commun 46: 406–413.

    PubMed  CAS  Google Scholar 

  • Greis JW, Angerhofer A, Norris JR, Scheer H, Struck A and von Schütz JU (1994) Spectral diffusion and 14N quadrupole splittings in absorption detected magnetic resonance hole burning spectra of photosynthetic reaction centers. J Chem Phys 100: 4820–4827.

    Article  CAS  Google Scholar 

  • Hardy WN and Whitehead LA (1981) Split-ring resonator for use in magnetic resonance from 200–2000 MHz. Rev Sci Instrum 57: 213–216.

    Google Scholar 

  • Hoff AJ (1976) Kinetics of populating and depopulating of the components of the photoinduced triplet state of the photosynthetic bacteria Rhodospirillum rubrum, Rhodopseudomonas spheroides (wild type), and its mutant R26. Biochim Biophys Acta 440: 765–771.

    PubMed  CAS  Google Scholar 

  • Hoff AJ (1982) ODMR spectroscopy in photosynthesis II. The reaction center triplet in bacterial photosynthesis. In: Clarke RH (Ed) Triplet State ODMR Spectroscopy, pp 367–425. John Wiley and Sons, New York.

    Google Scholar 

  • Hoff AJ (1985) Triplet-minus-singlet absorbance difference spectroscopy of photosynthetic reaction centers by absorbance-detected magnetic resonance. In: Michel-Beyerle ME (Ed) Antennas and Reaction Centers of Photosynthetic Bacteria. Structure Interaction and Dynamics, pp 150–163. Springer-Verlag, Berlin.

    Google Scholar 

  • Hoff AJ (1989) Optically-detected magnetic resonance of triplet states. In: Hoff AJ (Ed) Applications in Biology and Biochemistry, pp 633–684. Elsevier, Amsterdam.

    Google Scholar 

  • Hoff AJ (1990) Triplet states in photosynthesis: linear dichroic optical difference spectra via magnetic resonance. In: Linskins HF and Jackson JF (eds) Physical Methods in Plant Sciences Vol II, Modern Methods of Plant Analysis, pp 23–57. Springer-Verlag, Berlin.

    Google Scholar 

  • Hoff AJ (1993) Optically detected magnetic resonance of triplet states in proteins. In: Riordan JF and Vallee BL (eEds) Metallobiochemistry Part D Physical and Spectroscopic Methods for Probing Metal Ion Environments in Metallop-roteins. Methods in Enzymology Vol 227, pp 290–330. Academic Press, San Diego.

    Google Scholar 

  • Hoff AJ and Cornelissen B (1982) Microwave power dependence of triplet state kinetics as measured with fluorescence detected magnetic resonance in zero field. An application to the reaction centre bacteriochlorophyll triplet in bacterial photosynthesis. Mol Phys 45: 413–425

    CAS  Google Scholar 

  • Hoff AJ and de Vries HG (1978) Electron spinresonance in zero magnetic field of the reaction center triplet of photosynthetic bacteria. Biochim Biophys Acta 503: 94–106.

    PubMed  CAS  Google Scholar 

  • Hoff AJ and Proskuryakov II (1985) Triplet EPR spectra of the primary electron donor in bacterial photosynthesis at temperatures between 15 and 296 K. Chem Phys Lett 115: 303–310.

    Article  CAS  Google Scholar 

  • Hoff AJ and van der Waals JH (1976) Zero field resonance and spin alignment of the triplet state of chloroplasts at 2 K. Biochim Biophys Acta 423: 615–62

    PubMed  CAS  Google Scholar 

  • Hoff AJ, Govindjee and Romijn JC (1977) Electron spin resonance in zero magnetic field of triplet states of chloroplasts and subchloroplast particles. FEBS Lett 73: 191–196.

    CAS  PubMed  Google Scholar 

  • Hoff AJ, den Blanken HJ, Vasmel H and Meiburg RF (1985) Linear-dichroic triplet-minus-singlet absorbance difference spectra of reaction centers of the photosynthetic bacteria Chromatium vinosum, Rhodopseudomonas sphaeroides R-26 and Rhodospirillum rubrum S1. Biochim Biophys Acta 806: 389–397.

    CAS  Google Scholar 

  • Hoff AJ, Vasmel H, Lous EJ and Amesz J (1988) Triplet-minus-singlet optical difference spectroscopy of some green photosynthetic bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt, E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 119–126. Plenum Press, New York.

    Google Scholar 

  • Kasha M, Rawls HS and El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11: 371–392.

    Article  CAS  Google Scholar 

  • Knapp EW, Scherer POJ and Fischer SF (1986) Model studies of low-temperature optical transitions of photosynthetic reaction centers. A-, LD-, CD-, ADMR and LD-ADMR-spectra for Rhodopseudomonas viridis. Biochim Biophys Acta 852: 295–305.

    CAS  Google Scholar 

  • Lous EJ (1988) Interactions between Pigments in Photosynthetic Protein Complexes. An Optically-detected Magnetic Resonanceand Magnetic Field Effect Study. Doctoral Thesis, Leiden.

    Google Scholar 

  • Lous EJ and Hoff AJ (1987a) Exciton interactions in reaction centers of the photosynthetic bacterium Rhodopseudomonas viridis probed by optical triplet-minus-singlet polarization spectroscopy at 1.2 K monitored through absorbance-detected magnetic resonance. Proc Natl Acad Sci USA 84: 6147–6151.

    CAS  PubMed  Google Scholar 

  • Lous EJ and Hoff AJ (1987b) Absorbance detected electron spin echo spectroscopy of non-radiative states in zerofield. An application to the primary donor of the photosynthetic bacterium Rhodobacter sphaeroides R26. Chem Phys Lett 140: 620–625.

    Article  CAS  Google Scholar 

  • Lous EJ and Hoff AJ (1989) Isotropic and linear dichroic triplet-minus-singlet absorbance difference spectra of two carotenoid containing bacterial photosynthetic reaction centers in the temperature range 10–288 K. A model for bacteriochlorophyll-carotenoid triplet transfer. Biochim Biophys Acta 974: 88–103.

    CAS  Google Scholar 

  • Maki AH (1984) Techniques, theory, and biological applications of optically-detected magnetic resonance (ODMR). In: Berliner LJ and Reuben J (eds) Biological Magnetic Resonance Vol 6, pp 187–294. Plenum Press, New York.

    Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b 559. Proc Natl Acad Sci USA 84: 109–112.

    CAS  PubMed  Google Scholar 

  • Norris JR, Lin CP and Budil DE (1987) Magnetic resonance of ultrafast chemical reactions. Examples from photosynthesis. J Chem Soc Faraday Trans 183: 13–27.

    Google Scholar 

  • Pearlstein RM (1982) Chlorophyll singlet excitons. In: Govindjee (ed) Energy Conversion in Plants and Bacteria. Photosynthesis Vol I, pp 293–329. Academic Press, New York.

    Google Scholar 

  • Scherer POJ and Fischer SF (1987a) Model studies to low-temperature optical transitions of photosynthetic reaction centers of Rhodobacter sphaeroides and Chloroflexus aurantiacus. Biochim Biophys Acta 891: 157–164.

    CAS  Google Scholar 

  • Scherer POJ and Fischer SF (1987b) Applicationof exciton theory to optical spectra of sodium borohydride treated reaction centers from Rhodobacter sphaeroides R26. Chem Phys Lett 137: 32–36.

    Article  CAS  Google Scholar 

  • Ullrich J, Angerhofer A, von Schütz JU and Wolf HC (1987) Zero-field absorption ODMR of reaction centers of Rhodobacter sphaeroides at temperatures between 4.2 and 75 K. Chem Phys Lett 140: 416–420.

    Article  CAS  Google Scholar 

  • Ullrich J, Speer R, Greis J, von Schütz JU, Wolf HC and Cogdell RJ (1989) Carotenoid triplet states in pigment-protein complexes from photosynthetic bacteria: Absorption-detected magnetic resonance from 4.2–225 K. Chem Phys Lett 155: 363–370.

    Article  CAS  Google Scholar 

  • van der Bent SJ, de Jager PA and Schaafsma TJ (1976) Optical detection and electronic simulation of magnetic resonance in zero magnetic field of dihydroporphin free base. Rev Sci Instrum 47: 117–212.

    Google Scholar 

  • van der Vos R (1994) Antenna and Reaction Center Complexes in Photosynthesis. An Absorbance-detected Magnetic Resonance and Magnetic Field Effect Study. Doctoral Thesis, Leiden.

    Google Scholar 

  • van der Vos R and Hoff AJ (1995) Optically-detected magnetic field effects on the D1-D2 cyt b-559 complex of Photosystem II. Temperature dependence of kinetics and structure. Biochim Biophys Acta 1228: 73–85.

    Google Scholar 

  • van der Vos R, Carbonera D and Hoff AJ (1991) Microwave and optical spectroscopy of carotenoid triplets in light-harvesting complex LHCII of spinach by absorbance-detected magnetic resonance. Appl Magn Reson 2: 179–202.

    Article  Google Scholar 

  • van der Vos R, van Leeuwen PJ, Braun P and Hoff AJ (1992) Analysis of the optical absorbance spectra of D1-D2-cytochrome b-559 complexes by absorbance-detected magnetic resonance. Structural properties of P680. Biochim Biophys Acta 1140: 184–196.

    Google Scholar 

  • van Mieghem FJE, Satoh K and Rutherford AW (1991) A chlorophyll tilted 30° relative to the membrane in the Photosystem-II reaction centre. Biochim Biophys Acta 1058: 379–385.

    Google Scholar 

  • Vasmel H (1986) The Photosynthetic Membrane of Green Bacteria. Doctoral Thesis, Leiden.

    Google Scholar 

  • Vasmel H, den Blanken HJ, Dijkman JA, Hoff AJ and Amesz J (1984) Triplet-minus-singlet absorbance difference spectra of reaction centers and antenna pigments of the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 767: 200–208.

    CAS  Google Scholar 

  • Vasmel H, Meiburg RF, Amesz J and Hoff AJ (1987) Optical properties of the reaction center of Chloroflexus aurantiacus at low temperature. Analysis by exciton theory. In: Biggins J (ed) Progress in Photosynthesis Research Vol 1, pp 403–406. Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Verméglio A, Breton J, Paillotin G and Cogdell R (1978) Orientation of chromophores in reaction centers of Rhodopseudomonas sphaeroides: A photoselection study. Biochim Biophys Acta 501: 514–530.

    PubMed  Google Scholar 

  • Vrieze J, Gast P and Hoff AJ (1992) The structure of the reaction center of Photosystem I investigated with linear — dichroic absorbance-detected magnetic resonance at 1.2 K. In: Murata N (ed) Research in Photosynthesis Vol I, pp 553–556. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Vrieze J and Hoff AJ (1995a) Interactions between chromophores in reaction centers of purple bacteria. A reinterpretation of the triplet-minus-singlet spectra of Rb. sphaeroides R26 and Rps. viridis. Biochim Biophys Acta, submitted.

    Google Scholar 

  • Vrieze J and Hoff AJ (1995b) The orientation of the triplet axes with respect to the optical transition moments in (bacterio)chlorophylls. Chem Phys Lett 237: 493–501.

    Article  CAS  Google Scholar 

  • Vrieze J, Williams JC, Allen J and Hoff AJ (1995a) A LD-ADMR study on reaction centers of the LH(L131) and LH(M160) mutants of Rb. sphaeroides. Biochim Biophys Acta, submitted.

    Google Scholar 

  • Vrieze J, Schenck CC and Hoff AJ (1995b) The triplet state of the primary donor in reaction centers of the HL(L173) and HL(M202) heterodimer mutants of Rb. sphaeroides. Biochim Biophys Acta, submitted.

    Google Scholar 

  • Vrieze J, van de Meent EJ and Hoff AJ (1995c) Bacteriochlorophyll g triplet states of the primary donor and antenna in membranes of Heliobacterium chlorum. Biochemistry, submitted.

    Google Scholar 

  • Vrieze J, Gast P and Hoff AJ (1995d) The structure of the reaction center of Photosystem I of plants. An investigation with linear-dichroic absorbance-detected magnetic resonance. J Phys Chem, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hoff, A.J. (1996). Optically Detected Magnetic Resonance (ODMR) of Triplet States in Photosynthesis. In: Amesz, J., Hoff, A.J. (eds) Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47960-5_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-47960-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3642-6

  • Online ISBN: 978-0-306-47960-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics