Skip to main content

Part of the book series: Advances in Global Change Research ((AGLO,volume 3))

Abstract

Global active fire distributions have been determined for a 12 month period from daily acquired, low spatial resolution satellite imagery. These distributions have been grouped into a small number of classes based on the spatial and temporal characteristics of the data. A global climatology of monthly temperature and precipitation data was used to derive warmth and moisture indices. We show how different patterns of fire activity, as represented by the fire classes, can be related to particular climate conditions. Vegetation type is also shown to be important in determining fire activity, particularly in tropical regions. Our results support the premise that fire regimes will change under changed climate conditions and that the empirical approach to the investigation of the fire-climate relationship could provide a complementary tool to the physically-based climate change prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.R., Hardy, E.E., Roach, J.T. and Witmer, R.E., (1976) A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey, Professional paper 964, 28p.

    Google Scholar 

  • Andreae, M.O., Atlas, E., Cachier, H., Cofer III, W.R., Harris, G.W., Helas, G., Koppmann, R., Lacaux, J.-P. and Ward, D.E., (1996) Trace gas and aerosol emissions from savanna fires. In Biomass Burning and Global Change vol. 1, edited by J. Levine (MIT Press, Cambridge, Mass.), pp.278–295.

    Google Scholar 

  • Antonovsky, M.Ya., Ter-Mikhaelian, M.T. and Furyaev, V.V., (1989) A spatial model of long-term forest fire dynamics and its applications to forests in western Siberia. WP-89–109, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Barbosa, P.M., Stroppiana, D., Grégoire, J.-M., and Pereira, J.M.C., (1999) An assessment of vegetation fire in Africa (1981–1991): burned areas, burned biomass and atmospheric emissions. Global Biogeochemical Cycles (submitted).

    Google Scholar 

  • Ceccato, P. and Fiasse, S.P., (1998) Assessing vegetation fuel moisture from satellite NOAA-AVHRR data in the context of EXPRESSO experiment. Proceedings of the 24th annual conference and exhibition of the remote sensing society, The University of Greenwich, 9–11 September 1998 (Compiled by Burt, P.J.A., Power, C.H. and Zukowskyj, P.M.) pp 28–34.

    Google Scholar 

  • Cofer III, W.R., Winstead, E.L., Stocks, B.J., Overbay, L.W., Goldammer, J.G., Cahoon, D.R. and Levine, J.S., (1996) Emissions from Boreal forest fires: are the atmospheric impacts underestimated? In Biomass Burning and Global Change vol. 2, edited by J. Levine (MIT Press, Cambridge, Mass.), pp.834–839.

    Google Scholar 

  • Cramer, W.P. and Leemans, R., (1993) Assessing impacts of climate change on vegetation using climate classification systems. Vegetation dynamics and global change (eds. Solomon, A.M. & Shugart, H.H.) pp 190 – 210 (Chapman and Hall, New York).

    Chapter  Google Scholar 

  • Dwyer, E., Pinnock, S., Grégoire, J.-M. and Pereira, J.M.C., (1999a) Global spatial and temporal distribution of vegetation fire as determined from satellite observations, International Journal of Remote Sensing (in print).

    Google Scholar 

  • Dwyer, E., Pereira, J.M.C., Grégoire, J.-M. and DaCamara, C.C., (1999b) Characterization of the spatio-temporal patterns of global fire activity. Journal of Biogeography (accepted).

    Google Scholar 

  • Eva, H.D. and Lambin, E.F., (1998) Remote Sensing of Biomass burning in tropical regions: sampling issues and multisensor approach. Remote Sensing of the Environment, 64, pp. 292–315.

    Article  Google Scholar 

  • Goldammer, J.G., and Price, C., (1998) Potential impacts of climate change on fire regimes in the tropics based on MAGICC and a GISS GCM-derived lightning model. Climatic Change, 39, pp 273–296.

    Article  Google Scholar 

  • Koffi, B, Grégoire, J.-M., and Eva, H.D., (1996) Satellite monitoring of vegetation fires on a multiannual basis at continental scale in Africa. In Biomass Burning and Global Change vol. 1, edited by J. Levine (MIT Press, Cambridge, Mass.), pp.225–235.

    Google Scholar 

  • Krusel, N., Packham, D. and Tapper, N.J. (1993) Wildfire activity in the malee shrubland of Victoria, Australia. International Journal of Wildland Fire, 3 (4). pp 217–227.

    Article  Google Scholar 

  • Loveland, T.R. and Belward, A.S. (1997) The IGBP-DIS global 1km land cover data set, DISCover: first results. International Journal of Remote Sensing 18 (15), pp 3289–3296.

    Article  Google Scholar 

  • Piriol J, Terradas, J. and Lloret, F., (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Climatic Change, 38, pp 345–357.

    Article  Google Scholar 

  • Price, C. and Rind, D. (1994) The impact of a 2 × CO2 climate on lightning-caused fires. Journal of Climate, 7, pp 1484–1494.

    Article  Google Scholar 

  • Leemans, R., and Cramer, W.P., (1990) The HAS A database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid. IIASA, Laxenburg, Austria. WP-90–41, 64p.

    Google Scholar 

  • Pereira, J.M.C., Vasconcelos, M.J.P., and Sousa, A.M. (1999) A rule-based system for burnt area mapping in temperate and tropical regions using NOAA/AVHRR imagery (this publication).

    Google Scholar 

  • Stocks, B.J., Cahoon, D.R., Cofer III, W.R., and Levine, J.S. 1996. Monitoring large-scale forest-fire behaviour in northeastern Siberia using NOAA-AVHRR satellite imagery. In: Biomass burning and global change, Vol. 2, edited by J.S. Levine. MIT Press, Cambridge, Mass. 802–807.

    Google Scholar 

  • Stocks, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J.-Z., Lawrence, K., Hartley, G.R., Mason, J.A. and McKenny, D.W., (1998) Climate Change and forest fire potential in Russian and Canadian boreal forests. Climatic Change, 38, pp 1–13.

    Article  Google Scholar 

  • Stocks, B.J., (1992) The extent and impact of forest fires in northern circumpolar countries. In Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, edited by J. Levine (MIT Press, Cambridge, Mass.), pp. 197–202.

    Google Scholar 

  • Stroppiana, D., Pinnock, S. and Grégoire, J.-M., (1999) The Global Fire Product: daily fire occurrence, from April 1992 to December 1993, derived from NOAA-AVHRR data. International Journal of Remote Sensing (in print).

    Google Scholar 

  • Tapper, N.J., Garden, G., Gill, J., and Fernon, J., (1993) The climatology and meteorology of high fire danger in the northern territory. Rangeland Journal, 15 (2) pp 339–351.

    Article  Google Scholar 

  • Thornthwaite, C.W. (1948) An approach toward a rational classification of climate. The Geographical Review, 38, pp 55–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dwyer, E., Grégoire, JM., Pereira, J.M.C. (2000). Climate and Vegetation as Driving Factors in Global Fire Activity. In: Innes, J.L., Beniston, M., Verstraete, M.M. (eds) Biomass Burning and Its Inter-Relationships with the Climate System. Advances in Global Change Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47959-1_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47959-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5375-6

  • Online ISBN: 978-0-306-47959-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics