Skip to main content

Ecology of Phototrophic Sulfur Bacteria

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Phototrophic sulfur bacteria often form mass developments in aquatic environments, either planktonic or benthic, where anoxic layers containing reduced sulfur compounds are exposed to light. This chapter summarizes a number of reports from the literature, collecting the information on the abundance of these bacteria as well as on their contribution to primary production. From the point of view of population dynamics, the abundance of these organisms is the consequence of a certain balance between growth and losses. Both specific growth rates, and specific rates of loss through several processes are analyzed in several environments, in an attempt to generalize on the growth status of blooms of phototrophic sulfur bacteria. The information available indicates the existence of an upper limit for the production of these bacteria in nature, and seems to suggest the existence of an upper limit for biomass based in the balance between growth and losses.

The chapter also reviews the main variables affecting growth of phototrophic sulfur bacteria in nature, paying attention both to the in situ status of these variables and to the functional response of the organisms to each of them. All of this information is integrated in a section in which several case-studies are described, and which emphasizes the role fluctuations play on competition and coexistence between different phototrophic sulfur bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abellè CA, Montesinos E and Turet J (1985) Colonization and dynamics of phototrophic bacteria in a recently formed lagoon in Banyoles karstic area (Girona, Spain). Scient Gerund 10: 33–49

    Google Scholar 

  • Aizenshtat Z, Stoler A, Cohen Y and Nielsen H (1983) The geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar Lake. In: Bjoroy M, Albrecht P, Cornford C, de Groot K, Eglington G, Galimov E Leythaeuser D, Pelet R, Rullkotter J and Speers G (eds) Advances in Organic Geochemistry, pp 279–288. Wiley, Chicester

    Google Scholar 

  • Anagnostidis K and Overbeck J (1966) Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur okölogischen Biocönotik der Gewässermikroorganismen. Ber Dtsch Bot Ges 79: 163–174

    CAS  Google Scholar 

  • Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 1–21. Alan R. Liss Inc., New York

    Google Scholar 

  • Baker AL, Kromer Baker K and Tyler PA (1985) Fine-layer depth relationships of lakewater chemistry, planktonic algae and photosynthetic bacteria in meromictic Lake Fidler, Tasmania. Freshwater Biol 15: 735–747

    CAS  Google Scholar 

  • Banens RJ (1990) Occurrence of hypolimnetic blooms of the purple sulfur bacterium, Thiopedia rosea, and the green sulfur bacterium, Chlorobium limicola, in an Australian Reservoir. Aust J Mar Freshwater Res 41: 223–235

    Article  CAS  Google Scholar 

  • Beeftink HH and Van Gemerden H (1979) Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch Microbiol 121: 161–167

    Article  CAS  Google Scholar 

  • Bergstein T, Henis Y and Cavari BZ (1979) Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Ca. J Microbiol 25: 999–1007

    CAS  Google Scholar 

  • Beudeker RF, Gottschal JC and Kuenen JG (1982) Reactivity versus flexibility in thiobacilli. Antonie van Leeuwenhoek 48: 39–51

    Article  CAS  PubMed  Google Scholar 

  • Biebl H and Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117: 9–16

    Article  CAS  Google Scholar 

  • Bogorov LV (1974) About the properties of Thiocapsa roseopersicina strain BBS, isolated from the estuary of the White Sea. Microbiology (Transl) 43: 275–280

    Google Scholar 

  • Broch-Due M, Ormerod JG and Fjerdingen BS (1978) Effect of light intensity on vesicle formation in Chlorobium. Arch Microbiol 116: 269–274

    Article  CAS  PubMed  Google Scholar 

  • Caldwell DE and Tiedje JM (1975) The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can J Microbiol 21: 377–385

    CAS  PubMed  Google Scholar 

  • Castenholz RW (1984) Composition of hot spring microbial mats: a summary. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 101–119. Alan R. Liss Inc., New York

    Google Scholar 

  • Castenholz RW (1988) The green sulfur and nonsulfur bacteria of hot springs. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 243–255. Plenum Press, New York

    Google Scholar 

  • Caumette P (1984) Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast). Can J Microbiol 30: 273–284

    CAS  Google Scholar 

  • Caumette P (1989) Ecology and general physiology of anoxygenic phototrophic bacteria in benthic environments. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 283–304. ASM, Washington DC

    Google Scholar 

  • Caumette P, Pagano M and Saint-Jean L (1983) Répartition verticale du phytoplancton, des bactéries et du zooplancton dans un milieu stratifié en baie du Biétrie (lagune Ebrié, Cote ďIvoire). Hydrobiologia 106: 135–148

    Article  Google Scholar 

  • Clarke KJ, Finlay BJ, Vicente E, Lloréns H and Miracle MR (1993) The complex life-cycle of a polymorphic prokaryote epibiont of the photosynthetic bacterium Chromatium weissei. Arch Microbiol 159: 498–505

    Article  CAS  Google Scholar 

  • Cloern JE, Cole BE and Oremland RS (1983a) Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, USA). Hydrobiologia 105:, 195–206

    Article  CAS  Google Scholar 

  • Cloern JE, Cole BE and Oremland RS (1983b) Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol Oceanogr 28: 1049–1061

    CAS  Google Scholar 

  • Cohen Y, Krumbein WE and Shilo M (1977) Solar Lake (Sinai). 3. Bacterial distribution and production. Limnol Oceanogr 22: 621–634

    CAS  Google Scholar 

  • Cohen-Bazire G (1963) Some observations on the organization of the photosynthetic apparatus in purple and green bacteria. In: Gest H, San Pietro A and Vernon LP (eds) Bacterial Photosynthesis, pp 89–110. The Antioch Press, Yellow Springs, Ohio

    Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cellular Comp Physiol 49: 25–68

    CAS  Google Scholar 

  • Croome RL (1986) Biological studies of meromictic lakes. In: De Deckker P and Williams WD (eds) Limnology in Australia, pp 113–130. CSIRO, Melbourne

    Google Scholar 

  • Culver DA and Brunskill GJ (1969) Fayetteville Green Lake, New York. V. Studies ofprimary production and zooplankton in a meromictic marl lake. Limnol Oceanogr 14: 862–873

    CAS  Google Scholar 

  • Czeczuga B (1965) Chlorobium limicola Nads. (Chlorobiaceae) and the distribution of chlorophyll in some lakes of the Mazur lake district. Hydrobiologia 25: 412–423

    Article  Google Scholar 

  • Czeczuga B (1966) An attempt to determine the primary production of the green sulphur bacteria, Chlorobium limicola Nads, (Chlorobacteriaceae). Hydrobiologia 31: 317–333

    Google Scholar 

  • Czeczuga B (1968) Primary production of the green hydrosulfuric bacteria Chlorobium limicola Nads. (Chlorobiaceae). Photosynthetica (Prague) 2: 11–15

    Google Scholar 

  • Chen KY and Gupta K (1972) Kinetics of oxidation of aqueous sulfide by O2 Environ Sci Tech 6: 529–537

    CAS  Google Scholar 

  • D’Amelio ED, Cohen Y and Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological ecology of benthic microbial communities, pp 97–113. ASM, Washington DC

    Google Scholar 

  • De Wit R (1989) Interactions between phototrophic bacteria in marine sediments. Ph.D. Thesis, University of Groningen, The Netherlands

    Google Scholar 

  • De Wit R and Van Gemerden H (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45: 117–126

    Google Scholar 

  • De Wit R and Van Gemerden H (1990) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154: 459–464

    Article  Google Scholar 

  • De Wit R and Van Gemerden H (1990) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73: 69–76

    Google Scholar 

  • De Wit R, Jonkers HM, Van den Ende FP and Van Gemerden H (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth J Sea Res 23: 271–281

    Google Scholar 

  • Dickman M and Artuz I (1978) Mass mortality of photosynthetic bacteria as a mechanism for dark lamina formation in sediments of the Black Sea Nature 275:, 191–195

    Article  Google Scholar 

  • Drews G and Imhoff JF (1991) Phototrophic sulfur bacteria. In: Shively JM and Barton LL (eds) Variations in Autotrophic Life, pp 51–97. Academic Press, London

    Google Scholar 

  • Dubinina GA and Kuznetsov SI (1976) The ecological and morphological characteristics of microorganisms in Lesnaya Lamba (Karelia). Int Revue ges Hydrobiol 61: 1–19

    Google Scholar 

  • Dubinina GA, Gorlenko VM and Suleimanov YI (1973) A study of microorganisms involved in the circulation of manganese, iron, and sulfur in meromictic Lake Gek-Gel. Mikrobiologiya 42: 918–924

    CAS  Google Scholar 

  • Dubinsky Z and Berman T (1979) Seasonal changes in the spectral composition of downwelling irradiance in Lake Kinneret (Israel). Limnol Oceanogr 24: 652–663

    CAS  Google Scholar 

  • Dutton PL and Prince RC (1978) Reaction-center-driven cytochrome interactions in electron and proton translocation and energy coupling. In: Clayton RK and Systrom WR (eds) The photosynthetic bacteria, pp 525–570. Plenum Press, New York

    Google Scholar 

  • Dyer BD, Gaju N, Pedrós-Alió C, Esteve I and Guerrero R (1986) Ciliates from a freshwater sulfuretum. Bio Systems, 19: 127–135

    CAS  PubMed  Google Scholar 

  • Eisenthal R and Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139: 715–720

    CAS  PubMed  Google Scholar 

  • Eloranta P (1985) Hypolimnetic chlorophyll maximum by algae and sulphur bacteria in one eutrophic pond. Arch Hydrobiol Suppl 71: 459–169

    Google Scholar 

  • Esteve I, Guerrero R, Montesinos I and Abellè C (1983) Electron microscopy study of the interaction of epibiontic bacteria with Chromalium minus in natural habitats. Microbial Ecol 9: 57–64

    Article  Google Scholar 

  • Esteve I, Gaju N, Mir J and Guerrero R (1992) Comparison of techniques to determine the abundance of predatory bacteria attacking Chromatiaceae. FEMS Microbiol Ecol 86: 205–211

    Article  Google Scholar 

  • Finlay BJ, Clarke KJ, Vicente E and Miracle MR (1991) Anaerobic ciliates from a sulphide-rich solution lake in Spain. Europ J Protistol 27: 148–159

    Google Scholar 

  • Folt CL, Wevers MJ, Yoder-Williams MP and Howmiller RP (1989) Field study comparing growth and viability of phototrophic bacteria. Appl Environ Microbiol 55: 78–85

    CAS  PubMed  Google Scholar 

  • Fry B (1986) Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York state. Limnol Oceanogr 31: 79–88

    CAS  PubMed  Google Scholar 

  • Fuller RC (1978) Photosynthetic carbon metabolism in the green and purple bacteria. In: Clayton RK and Systrom WR (eds) The photosynthetic bacteria, pp 691–705. Plenum Press, New York

    Google Scholar 

  • García-Cantizano J (1992) Analisis funcional de la comunidad microbiana en ecosistemas planctónicos. PhD Thesis. Autonomous University of Barcelona. Spain

    Google Scholar 

  • Garcia-Gil LJ and Abellà CA (1992a) Population dynamics of phototrophic bacteria in three basins of Lake Banyoles (Spain). Hydrobiologia 243/244: 87–94

    Article  Google Scholar 

  • García-Gil LJ and Abellà CA (1992b) Microbial ecology of planktonic filamentous phototrophic bacteria in holomictic freshwater lakes. Hydrobiologia 243/244: 79–86

    Google Scholar 

  • Gasol JM, Guerrero R and Pedrós-Alió C (1991) Seasonal variations in size structure and procaryotic dominance in sulfurous Lake Cisó. Limnol Oceanogr 36: 860–872

    Google Scholar 

  • Gübel F (1978) Quantum efficiencies of growth. In: Clayton RK and Systrom WR (eds) The Photosynthetic Bacteria, pp 907–925. Plenum Press, New York

    Google Scholar 

  • Goehle KH and Storr JF (1978) Biological layering resulting from extreme meromictic stability, Devil’s Hole, Abaco Island, Bahamas. Verh Internat Verein Limnol 20: 550–555

    Google Scholar 

  • Gorlenko VM (1974) The oxidation of thiosulfate by Amoebobacter roseus in the dark under microaerophilic conditions. Microbiology (Transl) 43: 624–625

    Google Scholar 

  • Gorlenko VM and Kusnezow SI (1972) Über die photosynthesierenden bakterien des Kononjer-Sees. Arch Hydrobiol 70: 1–13

    Google Scholar 

  • Gorlenko VM, Chebotarev EN and Kachalkin VI (1973) Microbiological processes of oxidation of hydrogen sulfide in the Repnoe Lake (Slavonic lakes). Mikrobiologiya 42: 723–728

    CAS  Google Scholar 

  • Gorlenko VM, Chebotarev EN and Kachalkin VI (1974a) Participation of microorganisms in the circulation of sulfur in Pomyaretskoe Lake. Mikrobiologiya: 908–914

    Google Scholar 

  • Gorlenko VM, Chebotarev EN and Kachalkin VI (1974b) Microbial oxidation of hydrogen sulfide in Lake Veisovo (Slavyansk Lake). Mikrobiologiya 43: 530–534

    CAS  Google Scholar 

  • Gorlenko VM, Vainstein MB and Kachalkin VI (1978) Microbiological characteristic of Lake Mogilnoye. Arch Hydrobiol 81: 475–492

    CAS  Google Scholar 

  • Gorlenko VM, Dubinina GA and Kuznetsov SI (1983) The ecology of aquatic micro-organisms E. Schweizeizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Gottschal JC (1986) Mixed substrate utilization by mixed cultures. In: Leadbetter ER and Poindexter JS (eds) Bacteria in Nature, Vol 2, pp 261–292. Plenum Press, New York

    Google Scholar 

  • Guerrero R, Montesinos E, Pedrós-Alió C, Esteve I, Mas J, Van Gemerden H, Hofman PAG and Bakker JF (1985) Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol Oceanogr 30: 919–931

    CAS  Google Scholar 

  • Guerrero R, Pedrós-Alió C, Esteve I, Mas J, Chase D and Margulis L (1986) Predatory prokaryotes: Predation and primary consumption evolved in bacteria. Proc Natl Acad Sci USA 83: 2138–2142

    CAS  PubMed  Google Scholar 

  • Guhl BE and Finlay BG (1993) Anaerobic predatory ciliates track seasonal migrations of planktonic photosynthetic bacteria. FEMS Microbiol Lett 107: 313–316

    Google Scholar 

  • Hall KJ and Northcote TG (1990) Production and decomposition processes in a saline meromictic lake. Hydrobiologia, 197: 115–128

    Article  CAS  Google Scholar 

  • Hansen TA (1974) Sulfide als electrondonor voor Rhodo-spirillaceae. PhD Thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Hansen TA and Van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86: 49–56

    Article  CAS  PubMed  Google Scholar 

  • Healey FP (1980) Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb Ecol 5: 287–293

    Article  Google Scholar 

  • Hurlbert RE (1967) Effect of oxygen on viability and substrate utilization in Chromatium. J Bacteriol 93: 1346–1352

    CAS  PubMed  Google Scholar 

  • Hurlbert RE and Lascelles J (1963) Ribulose diphosphate carboxylase in Thiorhodaceae. J Gen Microbiol 33: 445–458

    CAS  PubMed  Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology. I. Geography, physics and chemistry of lakes. Wiley, New York

    Google Scholar 

  • Iwakuma T and Yasuno M (1983) A comparison of several mathematical equations describing photosynthesis-light curve for natural phytoplankton populations. Arch Hydrobiol 97: 208–226

    Google Scholar 

  • Jassby AD and Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21: 540–547

    CAS  Google Scholar 

  • Javor BJ and Castenholz RW (1981) Laminated microbial mats Laguna Guerrero Negro, Mexico. Geomicrobiol J 2: 237–274

    CAS  Google Scholar 

  • Javor BJ and Castenholz RW (1984) Productivity studies of microbial mats Laguna Guerrero-Negro Mexico. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 149–170. Alan R. Liss Inc., New York

    Google Scholar 

  • Jørgensen BB (1977) The sulphur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22: 814–832

    Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to the anoxic-oxic interface. Phil Trans R Soc London. 298: 543–561

    Google Scholar 

  • Jørgensen BB and Des Marais DJ (1986a) A simple fiber-optic microprobe for high resolution light measurements: applications in marine sediments. Limnol Oceanogr 31: 1374–1381

    Google Scholar 

  • Jørgensen BB and Des Marais DJ (1986b) Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol Ecol. 38: 179–186

    Article  PubMed  Google Scholar 

  • Jørgensen BB and Des Marais DJ (1988) Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol Oceanogr 33: 99–113

    PubMed  Google Scholar 

  • Jørgensen BB, Kuenen J G and Cohen Y (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24: 799–822

    Google Scholar 

  • Jørgensen BB, Revsbech NP and Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28: 1075–1093

    Google Scholar 

  • Jørgensen BB, Fossing H, Wirsen CO and Jannasch HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Research 38: 1083–1103

    Google Scholar 

  • Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135

    Google Scholar 

  • Kämpf C and Pfennig N (1986a) Chemoautotrophic growth of Thiocystis violacea, Chromatium gracile and C. vinosum in the dark at various O2-concentrations. J Basic Microbiol 26: 517–531

    Google Scholar 

  • Kämpf C and Pfennig N (1986b) Isolation and characterization of some Chemoautotrophic Chromatiaceae. J Basic Microbiol 26: 507–515

    Google Scholar 

  • Keller MD, Bellows WK and Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman ES and Cooper WJ (eds) Biogenic Sulfur in the Environment, pp 167–182. American Chemical Society Symp. Ser. 393, Washington DC

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil Trans R Soc London 298: 499–528

    CAS  Google Scholar 

  • Kiene RP and Taylor BF (1988a) Biotransformations of organosulfur compounds in sediments via 3-mercapto-propionate. Nature 332: 148–150

    Article  CAS  Google Scholar 

  • Kiene RP and Taylor BF (1988b) Demethylation of dimethyl-sulfoniopropionate and production of thiols in anoxic marine sediments. Appl Environ Microbiol 54: 2208–2212

    CAS  PubMed  Google Scholar 

  • Kiene RP and Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dymethyl-sulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol 53: 2426–2434

    CAS  PubMed  Google Scholar 

  • Kiene RP, Malloy KD and Taylor BF (1990) Sulfur-containing amino acids as precursors of thiols in anoxic coastal sediments. Appl Environ Microbiol 56: 156–161

    CAS  PubMed  Google Scholar 

  • Kohler H-P, Ahring G, Abella C, Ingvorsen K, Keweloh H, Laczko E, Stupperich E and Tomei F (1984) Bacteriological studies on the sulfur cycle in the anaerobic part of the hypolimnion and in the surface sediments of Rotsee in Switzerland. FEMS Microbiol Lett 21: 279–289

    CAS  Google Scholar 

  • Kondratieva EN (1979) Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Quayle JR (ed) Microbial Biochemistry (Int. Rev. of Biochemistry, Vol. 21, pp 117–175). Univ. Park Press, Baltimore

    Google Scholar 

  • Kondratieva EN, Zhukov, Ivanovsky RN, Petushkova YP and Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292

    Article  CAS  PubMed  Google Scholar 

  • Kuenen GJ (1989) Comparative ecophysiology of the nonphototrophic sulfide-oxidizing bacteria. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 349–365. ASM, Washington DC

    Google Scholar 

  • Kuznetsov SI (1970) The microflora of lakes and its geochemical activities. University of Texas Press, Austin

    Google Scholar 

  • Lassen C, Ploug H and Jørgensen BB (1992) A fibre-optic scalar irradiance microsensor: Application for spectral light measurements in sediments. FEMS Microbiol Ecol 86: 247–254

    Article  Google Scholar 

  • Lawrence JR, Haynes RC and Hammer UT (1978) Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Verh Internat Verein Limnol 20: 201–207

    Google Scholar 

  • Lindholm T, Weppling K and Jensen HS (1985) Stratification and primary production in a small brackish lake studied by close-interval siphon sampling. Verh Internat Verein Limnol 22: 2190–2194

    CAS  Google Scholar 

  • Lippert KD and Pfennig (1969) Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum Wachstum and CO2-Fixierung. Arch Mikrobiol 65: 29–47

    Article  CAS  PubMed  Google Scholar 

  • Lord III CJ and Church TM (1983) The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization. Geochim Cosmochim Acta 47: 1381–1391

    Article  CAS  Google Scholar 

  • Luther III GW and Church TM (1988) Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Mar Chem 23: 295–309

    Article  CAS  Google Scholar 

  • Luther III FW, Church TM, Scudlark JR and Cosman M (1986) Inorganic and organic sulfur cycling in salt-marxh pore waters. Science 232: 746–749

    CAS  Google Scholar 

  • Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225: 313–315

    Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms, pp 39–111. Wiley-Liss, New York

    Google Scholar 

  • Mas J, Pedrós-Alió C and Guerrero R (1990) In situ specific loss and growth rates of purple sulfur bacteria in Lake Cisó. FEMS Microbiol Ecol 73: 271–281

    Article  Google Scholar 

  • Mas J and Van Gemerden H (1992) Phosphate-limited growth of Chromatium vinosum in continuous culture. Arch Microbiol 157: 135–140

    CAS  Google Scholar 

  • Massana R, Gasol JM, Jürgens K and Pedrós-Alió C. submitted. Impact of Daphnia pulex on a metalimnetic microbial community. J Plankton Res 16: 1379–1399

    Google Scholar 

  • Matheron R (1976) Contribution à ľétude écologique systématique et physiologique des Chromatiaceae et des Chlorobiaceae isolées des sédiments marins. Ph.D. Thesis. University Aix-Marseille III, France

    Google Scholar 

  • Matsuyama M (1978) Limnological aspects of meromictic Lake Suigetsu: its environmental conditions and biological metabolism. Bull Fac Fish Nagasaki Univ. 44: 1–65

    CAS  Google Scholar 

  • Matsuyama M (1981) Comparative aspects of a small coastal lake, Kaiike, on Kamikoshiki Island, Southern Kyushu, Japan. Verh Internat Verein Limnol 21: 979–986

    CAS  Google Scholar 

  • Matsuyama M (1987) A large phototrophic bacterium densely populating the O2−H2S interface of Lake Kaiike on Kamikoshiki Island, Southwest Japan Acta Acad Aboensis 47: 29–43

    Google Scholar 

  • Matsuyama M and Shirouzu E (1978) Importance of photosynthetic sulfur bacteria, Chromatium sp. as an organic matter producer in Lake Haiike. Jap J Limnol 39: 103–111

    Google Scholar 

  • Mazumder A and Dickman MD (1989) Factors affecting the spatial and temporal distribution of phototrophic sulfur bacteria. Arch Hydrobiol 116: 209–226

    Google Scholar 

  • Millero FJ (1991) The oxidation of sulfide in Black Sea waters. Deep Sea Res 38: 1139–1150

    Google Scholar 

  • Mir J, Martínez-Alonso M, Esteve I and Guerrero R (1991) Vertical stratification and microbial assemblage of a microbial mat in the Ebro Delta (Spain). FEMS Microbiol Ecol 86: 59–68

    Article  Google Scholar 

  • Miracle MR and Vicente E (1985) Phytoplankton and photosynthetic sulphur bacteria production in the meromictic coastal lagoon of Cullera (Valencia, Spain). Verh Internat Verein Limnol 22: 2214–2220

    CAS  Google Scholar 

  • Mitchell JG, Martínez-Alonso M, Lalucat J, Esteve I and Brown S (1991) Velocity changes, long runs and reversals in the Chromatium minus swimming response. J Bacteriol 173: 997–1003

    CAS  PubMed  Google Scholar 

  • Montesinos E (1982) Ecofisiología de la fotosíntesis bacteriana. Ph.D. thesis. Autonomous University of Barcelona, Spain

    Google Scholar 

  • Montesinos E (1987) Change in size of Chromatium minus cells in relation to growth rate, sulfur content, and photosynthetic activity: A comparison of pure cultures and field populations. Appl Environ Microbiol 53: 864–871

    CAS  PubMed  Google Scholar 

  • Montesinos E and Esteve I (1984) Effect of algal shading on the net growth and production of phototrophic sulfur bacteria in lakes of the Banyoles karstic area. Verh Int Verein Limnol 22: 1102–1105

    Google Scholar 

  • Montesinos E and Van Gemerden H (1986) The distribution and metabolism of planktonic phototrophic bacteria. In: Megusar F and Gantar M (eds) Perspectives in Microbial Ecology, pp 344–359. Slovene Society for Microbiology, Ljubljana

    Google Scholar 

  • Montesinos E, Guerrero R, Abellà C and Esteve I (1983) Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl Environ Microbiol 46: 1007–1016

    PubMed  Google Scholar 

  • Nicholson JAM, Stolz JF and Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364

    Article  Google Scholar 

  • Ormerod JG and Sirevág R (1983) Essential aspects of carbon metabolism. In: Ormerod JG (ed) The Phototrophic Bacteria: Anaerobic Life in the Light, pp 100–119. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Overmann J and Pfennig N (1992) Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations. Arch Microbiol 158: 59–67

    Article  CAS  Google Scholar 

  • Overmann J and Tilzer MM (1989) Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany. Aquatic Sciences 51: 262–278

    Article  Google Scholar 

  • Overmann J, Beatty JT, Hall KJ, Pfennig N and Northcote TO (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36: 846–859

    CAS  Google Scholar 

  • Overmann J, Cypionka H and Pfennig N (1992) An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37: 150–155

    CAS  Google Scholar 

  • Parker RD and Hammer UT (1983) A study of the Chromatiaceae in a saline meromictic lake in Saskatchewan, Canada. Int Revue ges Hydrobiol. 68: 839–851

    CAS  Google Scholar 

  • Parker RD, Lawrence JR and Hammer UT (1983) A comparison of phototrophic bacteria in two adjacent saline meromictic lakes. Hydrobiologia 105: 53–61

    Article  CAS  Google Scholar 

  • Parkin TB and Brock TD (1980a) Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol Oceanogr 25: 711–718

    Google Scholar 

  • Parkin TB and Brock TD (1980b) The effects of light quality on the growth of phototrophic bacteria in lakes. Arch Microbiol 125: 19–27

    Article  CAS  Google Scholar 

  • Parkin TB and Brock TBD (1981) Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Arch Hydrobiol 91: 366–382

    CAS  Google Scholar 

  • Pedrós-Alió C and Guerrero R (1993) Microbial ecology in Lake Cisó. Adv. Microb Ecol 13: 155–209

    Google Scholar 

  • Pedrós-Alió C and Sala MM (1990) Microdistribution and diel vertical migration of flagellated vs. gas-vacuolate purple sulfur bacteria in a stratified water body. Limnol Oceanogr 35: 1637–1644

    Google Scholar 

  • Pedrós-Alió C, Mas J, Gasol J M and Guerrero R (1989) Sinking speeds of free-living phototrophic bacteria determined with covered and uncovered traps. J Plankton Res 11: 887–905

    Google Scholar 

  • Pfennig N (1965) Anreicherungskulturen für rote and grüne Schwefelbakterien. Zentr Bakteriol Parasitenk Abt I, Suppl I: 179–189

    Google Scholar 

  • Pfennig N (1970) Dark growth of phototrophic bacteria under microaerophilic conditions. J Gen Microbiol 61: i

    Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RK and Systrom WR (eds) The photosynthetic Bacteria, pp 3–18. Plenum Press, New York

    Google Scholar 

  • Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG and Bowien B. Autotrophic bacteria. Springer Verlag, New York pp 97–116

    Google Scholar 

  • Pfennig N and Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55: 245–256

    Article  CAS  Google Scholar 

  • Pfennig N and Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes (2nd ed), pp 3200–3231. Springer Verlag, New York

    Google Scholar 

  • Pierson BK, Oesterle A and Murphy GL (1987) Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 45: 365–376

    Article  CAS  Google Scholar 

  • Reed RH (1983) Measurement and osmotic significance of β-dimethylsulfoniopropionate in marine microalgae. Mar Biol Lett 4: 173–178

    CAS  Google Scholar 

  • Repeta DJ, Simpson DJ, Jørgensen BB and Jannasch HW (1989) Evidence for the existence of anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342: 69–72

    Article  CAS  PubMed  Google Scholar 

  • Revsbech NP and Ward DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48: 270–275

    CAS  PubMed  Google Scholar 

  • Revsbech NP, Christensen PB and Nielsen LP (1989) Microelectrode analysis of photosynthetic and respiratory processes in microbial mats. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 153–162. ASM, Washington DC

    Google Scholar 

  • Roelofsen PA (1935) On the metabolism of the purple sulphur bacteria. Kon Ned Acad Wet 37: 660–669

    Google Scholar 

  • Romanenko VI, Peres Eiris M, Kudryavtsev VM and Pubienes MA (1976) Microbiological processes in meromictic Lake Vae de San Juan, Cuba. Mikrobiologiya 45: 539–546

    CAS  Google Scholar 

  • Sahl HG and Trüper HG (1970) Enzymes of CO2 fixation in Chromatiaceae. FEMS Microbiol Lett 2: 129–132

    Google Scholar 

  • Schaub BEM and Van Gemerden H (1993) Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 13: 185–196

    Google Scholar 

  • Schedel M (1978) Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum and Chlorobium limicola. PhD Thesis, University of Bonn, Germany

    Google Scholar 

  • Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230. Arch Microbiol 124: 21–31

    Article  CAS  Google Scholar 

  • Smith NA and Kelly DP (1988) Isolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy. J Gen Microbiol 134: 1407–1417

    CAS  Google Scholar 

  • Sorokin YI (1964) On the primary production and bacterial activities in the Black Sea. Journal du Conseil 29: 41–60

    CAS  Google Scholar 

  • Sorokin YI (1972) The bacterial population and the processes of hydrogen sulphide oxidation in the Black Sea. Journal du Conseil 34: 423–454

    CAS  Google Scholar 

  • Sorokin YI (1970) Interrelations between sulfur and carbon turnover in leromictic lakes. Arch Hydrobiol 66: 391–446

    Google Scholar 

  • Sorokin YI and Donato N (1975) On the carbon and sulfur metabolism in the meromictic Lake Faro (Sicily) Italy. Hydrobiologia 47: 241–252

    CAS  Google Scholar 

  • Stal LJ, Van Gemerden H and Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2: 295–306

    Article  CAS  Google Scholar 

  • Steenbergen CLM (1982) Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten. Hydrobiologia 95: 59–64

    Google Scholar 

  • Steenbergen CLM and Korthals HJ (1982) Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnol Oceanogr 27: 883–895

    CAS  Google Scholar 

  • Steenbergen CLM, Korthals HJ and Van Nes M (1987) Ecological observations on phototrophic sulfur bacteria and the role of these bacteria in the sulfur cycle of monomictic Lake Vechten (The Netherlands). Acta Acad Aboensis 47: 97–115

    Google Scholar 

  • Steenbergen CLM, Korthals HJ, Baker AL and Watras CJ (1989) Microscale vertical distribution of algal and bacterial plankton in Lake Vechten (The Netherlands). FEMS Microbiol Ecol 62: 209–220

    Article  Google Scholar 

  • Stefels J and Van Boekel WHM (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar Ecol Progr Ser. 97: 11–18

    CAS  Google Scholar 

  • Steudel R (1989) On the nature of the ‘elemental sulfur’ (S0) produced by sulfur-oxidizing bacteria — A model for S0 globules. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 289–303. Springer Verlag, New York

    Google Scholar 

  • Steudel R, Holdt G, Visscher PT and Van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153: 432–437

    Article  CAS  Google Scholar 

  • Stolz JF (1983) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: I. Methods of in situ study of the laminated sediments. Precambrian Res. 20: 479–492

    Article  Google Scholar 

  • Stolz JF (1990) Distribution of phototrophic microbes in the flat microbial mat at Laguna Figueroa, Baja California, Mexico. Biosystems 23: 345–358

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M and Ichimura S (1968) Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol Oceanogr 13: 644–655

    Google Scholar 

  • Takahashi M and Ichimura S (1970) Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol Oceanogr 15: 929–944

    CAS  Google Scholar 

  • Takahashi M, Shiokawa R and Ichimura S (1972) Photosynthetic characteristics of a purple sulfur bacterium grown under different light intensities. Can J Microbiol 18: 1825–1828

    CAS  PubMed  Google Scholar 

  • Taylor PA and Williams PJ LeB (1975) Theoretical studies on the coexistence of competing species under controlled flow conditions. Can J Microbiol 21: 90–98

    CAS  PubMed  Google Scholar 

  • Tiedje JM, Sexstone AG, Myrold DM and Robinson JA (1982) Denitriflcation: ecological niches, competition and survival. Antonie van Leeuwenhoek 48: 569–583

    CAS  PubMed  Google Scholar 

  • Tilzer MM (1984) Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J Plankton Res 6: 309–324

    Google Scholar 

  • Trüper HG (1981) Versatility of carbon metabolism in the phototrophic bacteria. In: Dalton H (ed) Microbial Growth on C1 Compounds, pp 116–121. Heyden and Son, London

    Google Scholar 

  • Trüper HG (1984) Phototrophic bacteria and their sulfur metabolism. In: Müller A and Krebs B (eds) Studies in Inorganic Chemistry, Vol 5, Sulfur, Its Significance for the Geo-, Bio-and Cosmosphere and Technology, pp 367–382. Elsevier, Amsterdam

    Google Scholar 

  • Trüper HG and Pfennig N (1966) Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulfate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek 32: 261–276

    Article  PubMed  Google Scholar 

  • Van den Ende FP and Van Gemerden H (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol Ecol 13: 69–78

    Google Scholar 

  • Van Gemerden H (1968) Growth measurements of Chromatium cultures. Arch Mikrobiol 64: 103–110

    PubMed  Google Scholar 

  • Van Gemerden H (1974) Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microb Ecol 1: 104–119

    Google Scholar 

  • Van Gemerden H (1980) Survival of Chromatium vinosum at low light intensities. Arch Microbiol 125: 115–121

    Article  Google Scholar 

  • Van Gemerden H (1983) Physiological ecology of purple and green bacteria. Ann Microbiol (Inst. Pasteur) 134: 73–92

    Google Scholar 

  • Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139: 289–294

    Article  Google Scholar 

  • Van Gemerden H (1986) Production of elemental sulfur by green and purple sulfur bacteria. Arch Microbiol 146: 52–56

    Article  Google Scholar 

  • Van Gemerden H (1987) Competition between purple sulfur bacteria and green sulfur bacteria: Role of sulfide, sulfur and polysulfides. Acta Acad Aboensis 47: 13–27

    Google Scholar 

  • Van Gemerden H (1990) Immobilized anoxygenic phototrophic bacteria in tidal areas. J de Bont, J Visser and J Tramper (eds) Physiology of immobilized cells. Elsevier, Amsterdam pp 37–48

    Google Scholar 

  • Van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113: 3–25

    Google Scholar 

  • Van Gemerden H and Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119: 135–143

    Article  Google Scholar 

  • Van Gemerden H and Beeftink HH (1981) Coexistence of Chlorobium and Chromatium in a sulfide-limited continuous culture. Arch Microbiol 129: 32–34

    Google Scholar 

  • Van Gemerden H and Beeftink HH (1983) Ecology of phototrophic bacteria. In: Ormerod JG (ed) The Phototrophic Bacteria: Anaerobic Life in the Light, pp 146–185. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Van Gemerden H and Jannasch HW (1971) Continuous culture of Thiorhodaceae. Arch Mikrobiol 79: 345–353

    Article  PubMed  Google Scholar 

  • Van Gemerden H, Montesinos E, Mas J and Guerrero R (1985) Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain). Limnol Oceanogr 30: 932–943

    Google Scholar 

  • Van Gemerden H, De Wit R, Tughan CS and Herbert RA (1989a) Development of mass blooms of Thiocapsa roseopersicina on sheltered beaches on the Orkney Islands. FEMS Microbiol Ecol 62: 111–118

    Google Scholar 

  • Van Gemerden H, Tughan CS, De Wit R and Herbert RA (1989b) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62: 87–102

    Google Scholar 

  • Van Niel CB (1931) On the morphology and physiology of the purple and green sulfur bacteria. Arch Mikrobiol 3: 1–112

    Google Scholar 

  • Van Niel CB (1955) Natural selection in the microbial world. J Gen Microbiol 13: 201–217

    Google Scholar 

  • Veldhuis MJW and Van Gemerden H (1986) Competition between purple and brown phototrophic bacteria in stratified lakes: sulfide, acetate, and light as limiting factors. FEMS Microbiol Ecol 38: 31–38

    Article  CAS  Google Scholar 

  • Vicente E and Miracle MR (1988) Physicochemical and microbial stratification in a meromictic karstic lake of Spain. Verb Internat Verein Limnol 23: 522–529

    Google Scholar 

  • Vicente E, Rodrigo MA, Camacho A and Miracle MR (1991) Phototrophic prokaryotes in a karstic sulphate lake. Verh Internat Verein Limnol 24: 998–1004

    CAS  Google Scholar 

  • Visscher PT and Van Gemerden H (1988) Growth of Chlorobium limicola f. thiosulfatophilum on polysulfides. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 287–294. Plenum Press, New York

    Google Scholar 

  • Visscher PT and Van Gemerden H (1991a) Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol 57: 3237–3242

    CAS  PubMed  Google Scholar 

  • Visscher PT and Van Gemerden H (1991b) Photo-autotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol Lett. 81: 247–250

    Article  CAS  Google Scholar 

  • Visscher PT and Van Gemerden H (1993) Sulfur cycling in laminated marine microbial ecosystems. In: Oremland RS (ed) Biogeochemistry of Global Change: Radiatively Active Trace Gases, pp 672–690. Chapman and Hall, New York

    Google Scholar 

  • Visscher PT, Nijburg JW and Van Gemerden H (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155: 75–81

    Article  CAS  Google Scholar 

  • Visscher PT, Quist P and Van Gemerden H (1991) Methylated sulfur compounds in microbial mats: In situ concentrations and metabolism by a colorless sulfur bacterium. Appl Environ Microbiol 57: 1758–1763

    CAS  PubMed  Google Scholar 

  • Visscher PT, Van den Ende FP, Schaub BEM and Van Gemerden H (1992) Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiol Ecol 101: 51–58

    Article  CAS  Google Scholar 

  • Wetzel RG (1973) Productivity investigations of interconnected marl lakes (I). The eight lakes of the Oliver and Walters chains, northeastern Indiana. Hydrobiol Stud 3: 91–143

    Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B and Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836

    Article  CAS  Google Scholar 

  • Yoon H, Klinzing G and Blanch HW (1977) Competition for mixed substrates by microbial populations. Biotechnol Bioeng, 19: 1193–1210

    Article  CAS  PubMed  Google Scholar 

  • Zevenboom W (1980) Growth and nutrient uptake kinetics of Oscillatoria agardhii. PhD Thesis, University of Amsterdam, The Netherlands

    Google Scholar 

  • Zeyer J, Eicher P, Wakeham SG and Schwarzenbach RP (1987) Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic sulfur bacteria. Appl Environ Microbiol 53: 2026–2032

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Van Gemerden, H., Mas, J. (1995). Ecology of Phototrophic Sulfur Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics