Skip to main content

Proton-Translocating Transhydrogenase and NADH Dehydrogenase in Anoxygenic Photosynthetic Bacteria

  • Chapter
  • 2438 Accesses

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Some species of anoxygenic photosynthetic bacteria possess transhydrogenase and NADH dehydrogenase enzymes that are closely related to equivalent enzymes from animal mitochondria. Both are membrane proteins which couple redox reactions of the nicotinamide nucleotides to the translocation of hydrogen ions. Transhydrogenase catalyses the reversible transfer of reducing equivalents between NAD(H) and NADP(H); it has a low proton pumping stoichiometry. Probably under most conditions NADH dehydrogenase serves to transfer reducing equivalents from NADH to ubiquinone; it has a high proton pumping stoichiometry. Both enzymes are very active in chromatophore membranes isolated from cells of Rhodobacter and Rhodospirillum species grown anaerobically in the light, but their physiological function during phototrophic growth is not clear. Transhydrogenase may be involved in the transfer of reducing power between the cytoplasmic NAD(H) and NADP(H) pools, governed by the transmembrane proton electrochemical gradient (Δp), and in response to the metabolic needs of the cell. It might have a lesser role in the generation or regulation of Δp. During aerobic growth in the dark, NADH dehydrogenase undoubtedly serves as a major generator of Δp; during phototrophic growth it might be essential for the oxidation of highly reduced carbon substrates by auxiliary oxidants such as nitrate or dimethylsulfoxide, or it might be expressed in ‘readiness’ for the return to dark aerobic growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad S, Glavas NA and Bragg PD (1992) A mutation at Gly 314 of the beta subunit of the Escherichia coli pyridine nucleotide transhydrogenase abolishes activity and affects the NADP(H)-induced conformational change. Eur J Biochem 207:733–739

    Article  CAS  PubMed  Google Scholar 

  • Andersen AB, Andersen P and Ljungqvist L (1992) Structure and function of a 40000-molecular weight protein antigen of Mycobacterium tuberculosis. Infect Immun 60: 2317–2323

    CAS  PubMed  Google Scholar 

  • Anderson WM and Fisher RR (1981) The subunit structure of bovine heart mitochondrial transhydrogenase. Biochim Biophys Acta 635: 194–199

    CAS  PubMed  Google Scholar 

  • Arizmendi JM, Skehel JM, Runswick MJ, Fearnley IM and Walker JE (1992) Complementary DNA sequences of two 14.4 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett 313: 80–84

    Article  CAS  PubMed  Google Scholar 

  • Baccarini-Melandri A, Casadio R and Melandri BA (1977) Thermodynamics and kinetics of photophosphorylation in bacterial chromatophores and their relation with the transmembrane electrochemical potential difference of protons. Eur J Biochem 78: 389–402

    CAS  PubMed  Google Scholar 

  • Beatty JT and Gest H (1981) Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata. J Bacteriol 148: 584–593

    CAS  PubMed  Google Scholar 

  • Beinert H and Albracht SPJ (1982) New insights, ideas and unanswered questions concerning iron-sulphur clusters in mitochondria. Biochim Biophys Acta 683: 245–277

    CAS  PubMed  Google Scholar 

  • Berks BB and Ferguson SJ (1991) Simplicity and complexity of electron transfer between NADH and c-type cytochromes in bacteria. Biochem Soc Trans 19: 581–588

    CAS  PubMed  Google Scholar 

  • Bizouarn T and Jackson JB (1993) The ratio of protons translocated per hydride ion equivalent transferred by nicotinamide nucleotide transhydrogenase in chromatophores from Rhodospirillum rubrum. Eur J Biochem 217: 763–770

    Article  CAS  PubMed  Google Scholar 

  • Burbaev DSH, Moroz IA, Kotlyar AB, Sled VD and Vinogradov AD (1989) Ubisemiquinone in the NADH-ubiquinone reductas region of the mitochondrial respiratory chain. FEBS Lett 254: 47–51

    Article  CAS  Google Scholar 

  • Clarke DM and Bragg PD (1985) Purification and properties of reconstitutively active nicotinamide nucleotide transhydrogenase of Escherichia coli. Eur J Biochem 149: 517–523

    CAS  PubMed  Google Scholar 

  • Clarke DM, Loo T W, Gillam S and Bragg PD (1986) Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. Eur J Biochem 158:647–653

    Article  CAS  PubMed  Google Scholar 

  • Cotton NPJ, Myatt JF and Jackson JB (1987) The dependence of the rate of transhydrogenase on the value of the protonmotive force in chromatophores from photosynthetic bacteria. FEBS Lett 219: 88–92

    Article  CAS  Google Scholar 

  • Cotton NPJ, Lever TM, Nore BF, Jones MR and Jackson JB (1989) The coupling between protonmotive force and the NAD(P) transhydrogenase in chromatophores from photosynthetic bacteria. Eur J Biochem 182: 593–603

    Article  CAS  PubMed  Google Scholar 

  • Cunningham IJ, Baker JA and Jackson JB (1992a) Reaction between the soluble and membrane-associated proteins of the transhydrogenase of Rhodospirillum rubrum. Biochim Biophys Acta 1101: 345–352

    CAS  Google Scholar 

  • Cunningham IJ, Williams R, Palmer T, Thomas CM and Jackson JB (1992b) The relation between the soluble factor associated with H+-transhydrogenase of Rhodospirillum rubrum and the enzyme from mitochondria and Escherichia coli. Biochim Biophys Acta 1100: 332–338

    CAS  PubMed  Google Scholar 

  • Dupuis A (1992) Identification of two genes of Rhodobacter capsulatus coding for proteins homologous to the ND1 and 23 kDa subunits of the mitochondrial complex 1. FEBS Lett 301: 215–218

    Article  CAS  PubMed  Google Scholar 

  • Earle SR and Fisher RR (1980) A direct demonstration of proton translocation coupled to transhydrogenation in reconstituted vesicles. J Biol Chem 255: 827–830

    CAS  PubMed  Google Scholar 

  • Eidels L and Preiss J (1970) Carbohydrate metabolism in Rhodopseudomonas capsulata: Enzyme titers, glucose metabolism and polyglucose polymer synthesis. Arch Biochem Biophys 140: 75–89

    CAS  PubMed  Google Scholar 

  • Enander K and Rydstrom J (1982) Energy-linked nicotinamide nucleotide transhydrogenase-Kinetics and regulation of purified and reconstituted transhydrogenase from beef heart mitochondria. J Biol Chem 257: 14760–14766

    CAS  PubMed  Google Scholar 

  • Fearnley IM and Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140: 105–134

    CAS  PubMed  Google Scholar 

  • Ferguson SJ, Jackson JB and McEwan AG (1987) Anaerobic respiration in the Rhodospirillaceae: Characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Revs 46: 117–143

    CAS  Google Scholar 

  • Finel M, Skehel JM, Albracht SPJ, Fearnley IM and Walker JE (1992) Resolution of NADH: ubiquinone oxidoreductase from bovine mitochondria into two subcomplexes one of which contains the redox centers of the enzyme. Biochemistry 31: 11425–11434

    Article  CAS  PubMed  Google Scholar 

  • Fisher RR and Earle SR (1982) Membrane-bound pyridine dinucleotide transhydrogenases. In: Everse J, Anderson BM, You KS (eds) The Pyridine Nucleotide Coenzymes, pp 279–324. Academic Press, New York

    Google Scholar 

  • Fisher RR and Guillory RJ (1969a) A soluble factor related to the energy-linked transhydrogenase reaction of Rhodospirillum rubrum chromatophores. J Biol Chem 244: 1078–1079

    CAS  PubMed  Google Scholar 

  • Fisher RR and Guillory RJ (1969b) Partial resolution of energylinked reactions in Rhodospirillum rubrum chromatophores. FEBS Letters 3: 27–30

    Article  CAS  PubMed  Google Scholar 

  • Fisher RR and Guillory RJ (1971a) Resolution of enzymes catalyzing energy-linked transhydrogenation—Interaction of transhydrogenase factor with the Rhodospirillum rubrum chromatophore membrane. J Biol Chem 246: 4679–4686

    CAS  PubMed  Google Scholar 

  • Fisher RR and Guillory RJ (1971b) Resolution of enzymes catalyzing energy-linked transhydrogenation—Preparation and properties of Rhodospirillum rubrum transhydrogenase factor. J Biol Chem 246: 4687–4693

    CAS  PubMed  Google Scholar 

  • Fisher RR, Rampey SA, Sadighi A and Fisher K (1975) Resolution and reconstitution of Rhodospirillum rubrum pyridine dinucleotide transhydrogenase—Proteolytic and thermal inactivation of the membrane component. J Biol Chem 250: 819–825

    CAS  PubMed  Google Scholar 

  • Friedrich T, Hofhaus G, Ise W, Nehls U, Schmitz B and Weiss H (1989) A small isoform of NADH:ubiquinone oxidoreductase (complex I) without mitochondrially-synthesised subunits is made in chloramphenicol-treated Neurospora crassa. Eur J Biochem 180: 173–180

    Article  CAS  PubMed  Google Scholar 

  • George CL and Ferguson SJ (1984) Immunochemical identification of a two subunit NADH-ubiquinone oxidoreductase from Paracoccus denitrificans. Eur J Biochem 143: 567–573

    Article  CAS  PubMed  Google Scholar 

  • Golby P, Carver M and Jackson JB (1990) Membrane ionic currents in Rhodobacter capsulatus—Evidence for electrophoretic transport of K+, Rb+ and NH4+. Eur J Biochem 187: 589–597

    Article  CAS  PubMed  Google Scholar 

  • Griffiths DE and Robertson AM (1966) Energy-linked reactions in mitochondria: Studies on the mechanism of the energylinked transhydrogenase reaction. Biochim Biophys Acta 118: 453–464

    CAS  PubMed  Google Scholar 

  • Hanson RL (1979) Kinetic mechanism of pyridine nucleotide transhydrogenase from Escherichia coli. J Biol Chem 254: 888–893

    CAS  PubMed  Google Scholar 

  • Hanson RL and Rose C (1980) Effects of an insertion mutation in a locus affecting pyridine nucleotide transhydrogenase (pnt::Tn5) on the growth of Escherichia coli. J Bacteriol 141: 401–04

    CAS  PubMed  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Ann Rev Biochem 54:1676–1680

    Google Scholar 

  • Hatefi Y and Yamaguchi M (1992) Energy-transducing nicotinamide nucleotide transhydrogenase. In: Ernster L, (ed) Molecular Mechanisms in Bioenergetics, pp 265–281. Elsevier, Amsterdam

    Google Scholar 

  • Hillmer P and Gest H (1977) Hydrogen metabolism in the photosynthetic bacterium Rhodopseudomonas capsulatus; production and utilisation of hydrogen by resting cells. J Bacteriol 124: 732–739

    Google Scholar 

  • Hofhaus G, Weiss H and Leonard K (1991) Electron microscopic analysis of the peripheral and membrane parts of NADH dehydrogenase (complex I) J Mol Biol 221: 1027–1043

    Article  CAS  PubMed  Google Scholar 

  • Homyk M and Bragg PD (1979) Steady-state kinetics and the inactivation by 2,3-butandione of the energy independent transhydrogenase of Escherichia coli cell membranes. Biochim Biophys Acta 571: 201–217

    CAS  PubMed  Google Scholar 

  • Hou C, Potier M and Bragg PD (1990) Crosslinking and radiation inactivation analysis of the subunit structure of the pyridine nucleotide transhydrogenase of Escherichia coli. Biochim Biophys Acta 1018: 61–66

    CAS  PubMed  Google Scholar 

  • Hu PS, Persson B, Hoog JO, Jornvall H, Hartog AF, Berden JA, Holmberg E and Rydstrom J (1992) Energy-linked trans-hydrogenase. Characterisation of a nucleotide-binding sequence in nicotinamide nucleotide transhydrogenase from beef heart. Biochim Biophys Acta 1102: 19–29

    CAS  PubMed  Google Scholar 

  • Hutton M, Day JM, Bizouarn T and Jackson JB (1994) Kinetic resolution of the reaction catalysed by proton-translocating transhydrogenase from Escherichia coli as revealed by experiments with analogues of the nucleotide substrates. Eur J Biochem 219: 1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Ingledew WJ and Ohnishi T (1980) An analysis of some thermodynamic properties of iron-sulphur centers in site I of mitochondria. Biochem J 186: 111–117

    CAS  PubMed  Google Scholar 

  • Jackson JB (1991) The Proton-Translocating Nicotinamide Adenine Dinucleotide Transhydrogenase. J Bioenerget Biomembranes 23: 715–741

    CAS  Google Scholar 

  • Jackson JB and McEwan AG (1993) NAD(P)H transhydrogenase and NADH dehydrogenase in photosynthetic membranes. In: Barber J (ed) Molecular Processes in Photosynthesis, Jai Press, Greenwich

    Google Scholar 

  • Jackson JB, Cotton NPJ, Lever TM, Cunningham IJ, Palmer T and Jones MR (1990) Nicotinamide Nucleotide Transhydrogenase in Photosynthetic Bacteria. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 415–424. Plenum Press, New York

    Google Scholar 

  • Jackson JB, Lever TM, Rydstrom J, Persson B and Carlenor E (1991) Proton-translocating transhydrogenase from photosynthetic bacteria. Biochem Soc Trans 19: 573–575

    CAS  PubMed  Google Scholar 

  • Jacobs E and Fisher RR (1979) Resolution and reconstitution of Rhodospirillum rubrum pyridine nucleotide transhydrogenase. Modification with N-ethyl maleimide and 2,4-pentanedione. Biochemistry 18: 4315–4322

    CAS  PubMed  Google Scholar 

  • Jacobs E, Heriot K and Fisher RR (1977) Resolution and reconstitution of Rhodospirillum rubrum pyridine nucleotide transhydrogenase II solubilisation of the membrane-bound component. Arch Microbiol 115: 151–156

    Article  CAS  PubMed  Google Scholar 

  • Jones MR and Jackson JB (1989) Proton release by the quinol oxidase site of the cytochrome b/c1 complex following single turnover flash excitation of intact cells of Rhodobacter capsulatus. Biochim Biophys Acta 975: 34–43

    CAS  Google Scholar 

  • Kawasaki T, Satoh K and Kaplan NO (1964) The involvement of pyridine nucleotide transhydrogenase in ATP-linked TPN reduction by DNPH. Biochem Biophys Res Commun 17: 648–654

    Article  Google Scholar 

  • Keister DL and Yike NJ (1966) Studies on an energy-linked pyridine nucleotide transhydrogenase in photosynthetic bacteria I—Demonstration of the reaction in Rhodospirillum rubrum. Biochem Biophys Res Commun 24: 519–525

    Article  CAS  PubMed  Google Scholar 

  • Keister DL and Yike NJ (1967a) Energy-linked reactions in photosynthetic bacteria I. Succinate-linked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores. Arch Biochim Biophys 121: 415–422

    CAS  Google Scholar 

  • Keister DL and Yike NJ (1967b) Energy-linked reactions in photosynthetic bacteria II-The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by reduced nicotinamide-adenine dinucleotide in chromatophores of Rhodospirillum rubrum. Biochemistry 6: 3847–3857

    Article  CAS  PubMed  Google Scholar 

  • Klemme JH (1969) Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata. Z Naturforsch 24b: 67–76

    Google Scholar 

  • Konings AWT and Guillory RJ (1972) Specificity of the transhydrogenase factor for chromatophores of Rhodopseudomonas spheroides and Rhodospirillum rubrum. Biochim Biophys Acta 283: 334–338

    CAS  PubMed  Google Scholar 

  • Kuroda S, Tanizawa K, Sakamoto Y, Tanaka H and Soda K (1990) Alanine dehydrogenases from two Bacillus species with distinct thermostabilities: Molecular cloning, DNA and protein sequence determination and structural comparison with other NAD(P)-dependent dehydrogenases. Biochemistry 29: 1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Lascelles J (1960) The formation of ribulose l:5-diphosphate carboxylase by growing cultures of Athiorhodaceae. J Gen Microbiol 23: 499–510

    CAS  PubMed  Google Scholar 

  • Lee CP, Simard-Duquesne N, Ernster L and Hoberman HD (1965) Stereochemistry of hydrogen transfer in the energy-linked transhydrogenase and related reactions. Biochim Biophys Acta 105: 397–09

    CAS  PubMed  Google Scholar 

  • Lever TM, Palmer T, Cunningham IJ, Cotton NPJ and Jackson JB (1991) Purification and properties of the H+-nicotinamide nucleotide transhydrogenase from Rhodobacter capsulatus. Eur J Biochem 197: 247–255

    Article  CAS  PubMed  Google Scholar 

  • Leyland ML and Kelly DJ (1991) Purification and characterisation of a monomeric isocitrate dehydrogenase with dual coenzyme specificity from the photosynthetic bacterium Rhodomicrobium vannielii. Eur J Biochem 202: 85–93

    Article  CAS  PubMed  Google Scholar 

  • Lilley KS, Baker PJ, Britton KL, Stillman TJ, Brown PE, Moir AJG, Engel PC, Rice DW, Bell JE and Bell E (1991) The partial amino acid sequence of the NAD-dependent glutamate dehydrogenase of Chlostridium symbiosum: Implications for the evolution and structural basis of coenzyme specificity. Biochim Biophys Acta 1080: 191–197

    CAS  PubMed  Google Scholar 

  • Madigan MT and Gest H (1979) Growth of photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness and H2 as the energy source. J Bacteriol 137: 524–530

    CAS  PubMed  Google Scholar 

  • Marrs B and Gest H (1973) Genetic mutations affecting the respiratory electron transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 114: 1045–1051

    CAS  PubMed  Google Scholar 

  • McEwan AG, Cotton NPJ, Ferguson SJ and Jackson JB (1985) The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria. Biochim Biophys Acta 810: 140–147

    CAS  Google Scholar 

  • McFadden BJ and Fisher RR (1978) Resolution and reconstitution of Rhodospirillum rubrum pyridine dinucleotide transhydrogenase: Localisation of substrate binding sites. Arch Biochem Biophys 190: 820–828

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt SW, Matsushita K, Kaback HR and Ohnishi T (1989) EPR characterisation of the iron-sulphur-containing NADH-ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. Biochemistry 28: 2153–2160

    Article  CAS  PubMed  Google Scholar 

  • Melandri BA, Baccarini-Melandri A and Fabbri E (1972) Energy transduction in photosynthetic bacteria. IV Light-dependent ATPase in photosynthetic membranes from Rhodopseudomonas capsulata. Biochim Biophys Acta 275: 383–394

    CAS  PubMed  Google Scholar 

  • Mitchell P (1969) Chemiosmotic coupling and energy transduction. Theoret Exp Biophys 2: 159–215

    CAS  Google Scholar 

  • Ohshima T and Drews G (1981) Isolation and partial characterisation of the membrane-bound NADH dehydrogenase from the phototrophic bacterium Rhodopseudomonas capsulata. Z Naturforsch 36c: 400–406

    CAS  Google Scholar 

  • Orlando JA, Sabo A and Curnym C (1966) Photoreduction of pyridine nucleotide by subcellular preparations from Rhodopseudomonas sphaeroides. Plant Physiol 41: 937–945

    CAS  Google Scholar 

  • Ormerod JG and Gest H (1962) Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bact Revs 26: 51–66

    CAS  Google Scholar 

  • Palmer T and Jackson JB (1990) A rapid burst preceding the steady-state rate of H+-transhydrogenase during illumination of chromatophores of Rhodobacter capsulatus: Implications for the mechanism of interaction between protonmotive force and enzyme. FEBS Letters 277: 45–18

    Article  CAS  PubMed  Google Scholar 

  • Palmer T and Jackson JB (1992) Nicotinamide nucleotide transhydrogenase from Rhodobacter capsulatus; the H+/H-ratio and the activation state of the enzyme during reduction of acetyl pyridine adenine dinucleotide. Biochim Biophys Acta 1099: 157–162

    CAS  PubMed  Google Scholar 

  • Palmer T, Cotton NPJ and Jackson JB (1991) H+-transhydrogenase in chromatophores from Rhodobacter capsulatus after periods of continuous illumination and short flash excitation. Biochim Biophys Acta 1098: 21–26

    CAS  Google Scholar 

  • Palmer T, Williams R, Cotton NPJ, Thomas CM and Jackson JB (1993) Inhibition of proton-translocating transhydrogenase from photosynthetic bacteria by N,N-dicyclohexylcarbodiimide. Eur J Biochem 211: 663–669

    Article  CAS  PubMed  Google Scholar 

  • Persson B, Ahnstrom G and Rydstrom J (1987) Energy-linked nicotinamide transhydrogenase: Hydrodynamic properties and active form of purified and membrane bound mitochondrial transhydrogenase from beef heart. Arch Biochem Biophys 259: 341–349

    Article  CAS  PubMed  Google Scholar 

  • Phelps DC and Hatefi Y (1984) Interaction of purified nicotinamidenucleotide transhydrogenase with dicyclohexylcarbodiimide. Biochemistry 23: 4475–4480

    CAS  PubMed  Google Scholar 

  • Phelps DC and Hatefi Y (1985) Mitochondrial nicotinamide nucleotide transhydrogenase: Active site modification by S’-(p-(fluorosulfonyl)benzoyl)adenosine. Biochemistry 24: 3503–3507

    Article  CAS  PubMed  Google Scholar 

  • Pilkington SJ, Skehel JM, Gennis RB and Walker JE (1991) Relationship between mitochondrial NADH-ubiquinone reductase and a NAD+reducing dehydrogenase. Biochemistry 30: 2166–2175

    CAS  PubMed  Google Scholar 

  • Ragan CI (1987) The structure of NADH-ubiquinone reductase (complex I) Curr Topics Bioenergetics 15: 1–36

    CAS  Google Scholar 

  • Richardson RJ, King GF, Kelly DJ, McEwan AG, Ferguson SJ and Jackson JB (1988) The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus. Arch Microbiol 150: 131–137

    CAS  Google Scholar 

  • Richardson RJ, Bell LC, McEwan AG, Jackson JB and Ferguson SJ (1991) Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Eur J Biochem 199: 677–683

    Article  CAS  PubMed  Google Scholar 

  • Rydstrom J (1979) Energy linked nicotinamide nucleotide transhydrogenase—Properties of proton translocating and ATP driven transhydrogenase reconstituted from synthetic phospholipids and purified transhydrogenase from beef heart mitochondria. J Biol Chem 254: 8611–8619

    CAS  PubMed  Google Scholar 

  • Rydstrom J, Lee CP and Ernster L (1981) Energy-linked nicotinamide nucleotide transhydrogenase. In: Skulachev VP and Hinkle PC (eds) Chemiosmotic Proton Circuits in Biological Membranes, pp 483–503 Addison-Wesley, Reading

    Google Scholar 

  • Rydstrom J, Persson B and Carlenor E (1987) Transhydrogenase linked to pyridine nucleotides. In: Dolphin D, Poulson R and Avramovic O (eds) Pyridine Nucleotide Coenzymes: Chemical, Biochemical, and Medical Aspects, Vol. 2B, pp 433–460 John Wiley and Sons, New York

    Google Scholar 

  • Schmidt M, Friedrich T, Wallrath J, Ohnishi T and Weiss H (1992) Accumulation of the pre-assembled membrane arm of NADH:ubiquinone oxidoreductase in mitochondria of manganese-limited grown Neurospora crassa. FEBS Lett 313: 8–11

    Article  CAS  PubMed  Google Scholar 

  • Schulz JE and Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149: 181–190

    Google Scholar 

  • Tayeh MA and Madigan MT (1987) Malate dehydrogenase in phototrophic purple bacteria: Purification, molecular weight and quaternary structure. J Bacteriol 169: 4196–4202

    CAS  PubMed  Google Scholar 

  • Tempest DW and Neijssel OM (1984) The status of YATP and maintenance energy as biologically interpretable phenomena. Ann Rev Microbiol 38: 459–486

    CAS  Google Scholar 

  • Tong RCW, Glavas NA and Bragg PD (1991) Topological analysis of the pyridine nucleotide transhydrogenase of E. coli using proteolytic enzymes. Biochim Biophys Acta 1080: 19–28

    CAS  PubMed  Google Scholar 

  • Venturoli G and Melandri BA (1982) The localised coupling of bacterial photophosphorylation: Effect of antimycin A and dicyclohexylcarbodiimide in chromatophores from Rhodopseudomonas sphaeroides studied by single turnover analysis. Biochim Biophys Acta 680: 8–16

    CAS  Google Scholar 

  • Venturoli G, Fenandez-Velasco JG, Crofts AR and Melandri BA (1986) Demonstration of a collisional interaction of ubiquinol with the ubiquinol-cytochrome c2 oxidoreductase complex in chromatophores from Rhodobacter sphaeroides. Biochim Biophys Acta 851: 340–352

    CAS  PubMed  Google Scholar 

  • Wakabayashi S and Hatefi Y (1987a) Amino acid sequence of the NAD(H)-binding region of the mitochondrial nicotinamide nucleotide transhydrogenase modified by N,N’-dicyclohexyl-carbodiimide. Biochem Internal 15: 667–675

    CAS  Google Scholar 

  • Wakabayashi S and Hatefi Y (1987b) Characterization of the substrate-binding sites of the mitochondrial nicotinamide nucleotide transhydrogenase. Biochem Internal 15: 915–924

    CAS  Google Scholar 

  • Walker JE (1992) The NADH: ubiquinone oxidoreductase (complex I) of respiratory chains. Quart Rev Biophys 25: 253–324

    CAS  Google Scholar 

  • Wang DC, Meinhardt SW, Sackmann U, Weiss H and Ohnishi T (1991) The iron-sulphur clusters in the two related forms of mitochondrial NADH: ubiquinone oxidoreductase made by Neurospora crassa. Eur J Biochem 197: 257–264

    Article  CAS  PubMed  Google Scholar 

  • Weiss H and Friedrich T (1991) Redox-linked proton translocation by NADH-ubiquinone reductase (complex I) J Bioenerget Biomembranes 23: 743–754

    CAS  Google Scholar 

  • Weiss H, Freidrich T, Hofhaus G and Preis D (1991) The respiratory chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 197: 563–576

    Article  CAS  PubMed  Google Scholar 

  • Williams R, Cotton NPJ, Thomas CM and Jackson JB (1994) Cloning and sequencing of the genes for the proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum and the implications for the domain structure of the enzyme. Microbiology 140: 1595–1604

    CAS  PubMed  Google Scholar 

  • Yagi T (1986) Purification and characterisation of NADH dehydrogenase complex from Paracoccus denitrificans. Arch Biochem Biophys 250: 302–311

    Article  CAS  PubMed  Google Scholar 

  • Yagi Y (1993) The bacterial energy-transducing N ADH-quinone oxidoreductase. Biochim Biophys Acta 141: 1–17

    Google Scholar 

  • Yamaguchi M and Hatefi Y (1989) Mitochondrial nicotinamide nucleotide transhydrogenase: NADPH binding increases and NADP binding decreases the acidity and susceptibility to modification of cysteine-893. Biochemistry 28: 6050–6056

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M and Hatefi Y (1991) Mitochondrial energy linked nicotinamide nucleotide transhydrogenase. Membrane topography of the bovine enzyme. J Biol Chem 266: 5728–5735

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Hatefi Y, Trach K and Hoch JA (1988) The primary structure of the mitochondrial energy-linked nicotinamide nucleotide transhydrogenase deduced from the sequence of cDNA clones. J Biol Chem 263: 2761–2767

    CAS  PubMed  Google Scholar 

  • Yen HC and Marrs B (1977) Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulphoxide. Arch Biochem Biophys 181: 411–418

    Article  CAS  PubMed  Google Scholar 

  • Zannoni D and Ingledew WJ (1983) Rhodopseudomonas capsulata respiratory dehydrogenase mutants: An electron paramagnetic resonance study. FEMS Microbiol Lett 17: 331–334

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jackson, J.B. (1995). Proton-Translocating Transhydrogenase and NADH Dehydrogenase in Anoxygenic Photosynthetic Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_38

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics