Skip to main content

Structure-Function Relationships in Core Light-Harvesting Complexes (LHI) As Determined by Characterization of the Structural Subunit and by Reconstitution Experiments

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard J and Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15: 209–225

    CAS  PubMed  Google Scholar 

  • Agalidis I and Reiss-Husson F (1991) Resolution of Rhodocyclus gelatinosus photoreceptor unit components by temperature-induced phase separation in the presence of decyltetraoxyethylene. Biochem Biophys Res Commun 177: 1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1992a) How does protein phosphorylation regulate photosynthesis? Trends Biochem Sci 17: 12–17

    CAS  PubMed  Google Scholar 

  • Allen JF (1992b) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    CAS  PubMed  Google Scholar 

  • Babst M, Albrecht H, Wegmann I, Brunisholz R and Zuber H (1991) Single amino acid substitutions in the B870 α and β light-harvesting polypeptides of Rhodobacter capsulatus. Eur J Biochem 202: 277–284

    Article  CAS  PubMed  Google Scholar 

  • Bélanger G and Gingras G (1988) Structure and expression of the puf operon messenger RNA in Rhodospirillum rubrum. J Biol Chem 263: 7639–7645

    PubMed  Google Scholar 

  • Bérard J, Bélanger G, Corriveau P and Gingras G (1986) Molecular cloning and sequence of the B880 holochrome gene from Rs. rubrum. J Biol Chem 261: 82–87

    PubMed  Google Scholar 

  • Berger G, Andrianambinintsoa S, Kleo J, Grison S, Dejonghe D and Breton J (1992) Dissociation and reconstitution studies by high performance liquid chromatography of the light-harvesting complex of Rhodospirillum rubrum. J Liq Chrom 15: 585–602

    CAS  Google Scholar 

  • Bolt JD, Hunter CN, Niederman RA and Sauer K (1981a) Linear and circular dichroism and fluorescence polarization of the B875 light-harvesting bacteriochlorophyll-protein complex from Rhodopseudomonas sphaeroides. Photochem Photobiol 34: 653–656

    CAS  Google Scholar 

  • Bolt JD, Sauer K, Shiozawa JA and Drews G (1981b) Linear and circular dichroism of membranes from Rhodopseudomonas capsulatus. Biochim Biophys Acta 635: 535–541

    CAS  PubMed  Google Scholar 

  • Braun P and Scherz A (1991) Polypeptides and bacteriochlorophyll organization in the light-harvesting complex B850 of Rhodobacter sphaeroides R-26.1. Biochemistry 30: 5177–5184

    Article  CAS  PubMed  Google Scholar 

  • Broglie RM, Hunter CN, Delepelaire P, Niederman RA, Chua NH and Clayton RK (1980) Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 77: 87–91

    CAS  PubMed  Google Scholar 

  • Brunisholz RA and Zuber H (1988) Primary structure analyses of bacterial antenna polypeptides: Correlation of aromatic amino acids with spectral properties. Structural similarities with reaction center polypeptides. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems: Organization and Function, pp 103–114. Walter de Gruyter and Co., New York

    Google Scholar 

  • Brunisholz RA and Zuber H (1992) Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae. J Photochem Photobiol B: Biol 15: 113–140

    CAS  Google Scholar 

  • Brunisholz RA, Cuendet PA, Theiler R and Zuber H (1981) The complete amino acid sequence of the single light harvesting protein from chromatophores of Rhodospirillum rubrum G-9+. FEBS Lett 129: 150–154

    Article  CAS  Google Scholar 

  • Brunisholz RA, Suter F and Zuber H (1984) The light-harvesting polypeptides of Rhodospirillum rubrum. I. The amino-acid sequence of the second light-harvesting polypeptide B 880-β (B 870-β) of Rhodospirillum rubrum S 1 and the carotenoidless mutant G-9+. Aspects of the molecular structure of the two light-harvesting polypeptides B880-α (B 870-α) and B 880-β (B 870-β) and of the antenna complex B 880 (B 870) from Rhodospirillum rubrum. Hoppe-Seyler’s Z Physiol Chem 365: 675–688

    CAS  PubMed  Google Scholar 

  • Brunisholz R, Jay F, Suter F and Zuber H (1985) The light-harvesting polypeptides of Rhodopseudomonas viridis: The complete amino acid sequences of B1015-α, B1015-β and B1015-γ Biol Chem Hoppe-Seyler 366: 87–98

    CAS  PubMed  Google Scholar 

  • Brunisholz RA, Bissig I, Wagner-Huber R, Frank G, Suter F, Niederer E and Zuber H (1989) The primary structures of the core antenna polypeptides from Rhodopseudomonas marina. Z Naturforsch C 44: 407–414

    CAS  PubMed  Google Scholar 

  • Bustamante PL and Loach PA (1994) Reconstitution of a functional photosynthetic receptor complex with isolated subunits of core light-harvesting complex and reaction centers. Biochemistry 33: 13329–13339

    Article  CAS  PubMed  Google Scholar 

  • Bylina EJ, Robles SJ and Youvan DC (1988) Directed mutations affecting the putative bacteriochlorophyll-binding sites in light-harvesting I antenna of Rhodobacter capsulatus. Israel J Chem 28: 73–78

    CAS  Google Scholar 

  • Chang MC, Callahan PM, Parkes-Loach PS, Cotton T and Loach PA (1990a) Spectroscopic characterization of the light-harvesting complex of Rhodospirillum rubrum and its structural subunit. Biochemistry 29: 421–429

    CAS  PubMed  Google Scholar 

  • Chang MC, Meyer L and Loach PA (1990b) Isolation and characterization of a structural subunit from the core light-harvesting complex of Rhodobacter sphaeroides 2.4.1 and puc 705-BA. Photochem Photobiol 52: 873–881

    CAS  PubMed  Google Scholar 

  • Clayton RK (1962) Primary reactions in bacterial photosynthesis-I. The nature of light-induced absorbency changes in chromatophores; evidence for a special bacteriochlorophyll component. Photochem Photobiol 1: 2-1–2-10

    Google Scholar 

  • Cogdell RJ (1985a) Carotenoid-bacteriochlorophyll interactions. Springer Ser Chem Phys 42: 62–66

    CAS  Google Scholar 

  • Cogdell RJ (1985b) Carotenoids in photosynthesis. Pure and Appl Chem 57: 723–728

    CAS  Google Scholar 

  • Cogdell RJ (1986) Light-harvesting complexes in the purple photosynthetic bacteria. Encycl Plant Physiol, New Ser 19: 252–259

    Google Scholar 

  • Cogdell RJ and Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79

    CAS  PubMed  Google Scholar 

  • Cogdell RJ and Scheer H (1985) Circular dichroism of light-harvesting complexes from purple photosynthetic bacteria. Photochem Photobiol 42: 669–678

    CAS  Google Scholar 

  • Cogdell RJ and Thornber JP (1979) The preparation and characterization of different types of light-harvesting complexes from some purple bacteria. Ciba Found Symp 61 (new series): 61–79

    CAS  Google Scholar 

  • Cogdell RJ and Thornber JP (1980) Light-harvesting pigment-protein complexes of purple photosynthetic bacteria. FEBS Lett 122: 1–8

    Article  CAS  Google Scholar 

  • Cogdell RJ, Parson WW and Kerr MA (1976) The type, amount, location and energy transfer properties of the carotenoid in reaction centres from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 460: 83–93

    Google Scholar 

  • Cogdell RJ, Lindsay G. Valentine J and Durant I (1982) A further characterization of the B890 light-harvesting pigment-protein complex from Rhodospirillum rubrum strain S1. FEBS Lett 150: 151–154

    Article  CAS  Google Scholar 

  • Cogdell RJ, Andersson PO and Gillbro T (1992) Carotenoid singlet states and their involvement in photosynthetic light-harvesting pigments. J Photochem Photobiol B: Biol 15: 105–112

    CAS  Google Scholar 

  • Coleman WJ and Youvan DC (1990) Spectroscopic analysis of genetically modified photosynthetic reaction centers. Annu Rev Biophys Biophys Chem 19: 333–367

    Article  PubMed  Google Scholar 

  • Cotton TM (1976) Spectroscopic investigations of chlorophyll a as donor and acceptor: A basis for chlorophyll a interactions in vivo. Ph.D. Thesis, Northwestern University, Evanston, Illinois, USA

    Google Scholar 

  • Cuendet PA and Zuber H (1977) Isolation and characterization of a bacteriochlorophyll-associated chromatophore protein from Rhodospirillum rubrum G-9. FEBS Lett 79: 96–100

    Article  CAS  PubMed  Google Scholar 

  • Davis CM, Bustamante PL and Loach PA (1995) Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated α-and β-polypeptides, bacteriochlorophyll and carotenoid. J Biol Chem 270: 5793–5804

    Article  CAS  PubMed  Google Scholar 

  • Davis RC, Ditson SL, Fentiman AI and Pearlstein RM (1981) Reversible wavelength shifts of chlorophyll induced by a point charge. J Am Chem Soc 102: 6823–6826

    Google Scholar 

  • Dawkins DJ, Ferguson LA and Cogdell RJ (1988) The structure of the ‘core’ of the purple bacterial photosynthetic unit. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 115–127. Walter de Gruyter and Co., New York

    Google Scholar 

  • Deinum G, Aartsma TJ, van Grondelle R and Amesz J (1989) Singlet-singlet excitation annihilation measurements on the antenna of Rhodospirillum rubrum between 300 and 4 K. Biochim Biophys Acta 976: 63–69

    CAS  Google Scholar 

  • Deisenhofer J and Michel H (1991) High resolution structures of photosynthetic reaction centers. Annu Rev Biophys Biophys Chem 20: 247–266

    Article  CAS  PubMed  Google Scholar 

  • Dörge B, Klug G, Gaďon N, Cohen SN and Drews G (1990) Effects on the formation of antenna complex B870 of Rhodobacter capsulatus by exchange of charged amino acids in the N-terminal domain of the α-and β-pigment-binding proteins. Biochemistry 29: 7754–7758

    PubMed  Google Scholar 

  • Drews G (1985) Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria. Microbiol Rev 49: 59–70

    CAS  PubMed  Google Scholar 

  • Dunker AK and Jones TC (1978) Proposed knobs-into-holes packing for several membrane proteins. Membr Biochem 2: 1–16

    CAS  PubMed  Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis. Doctoral thesis, State University of Utrecht, The Netherlands

    Google Scholar 

  • Eccles J. and Honig B (1983) Charged amino acids as Spectroscopic determinants for chlorophyll in-vivo. Proc Natl Acad Sci USA 80: 4959–4962

    CAS  Google Scholar 

  • Feher G and Okamura MY (1978) Chemical composition and properties of reaction centers. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 349–386. Plenum Press, New York

    Google Scholar 

  • Feick R and Drews G (1978) Isolation and characterization of light-harvesting bacteriochlorophyll-protein complexes from Rhodopseudomonas capsulatus. Biochim Biophys Acta 501: 49–513

    Google Scholar 

  • Fowler GJS, Visschers RW, Grief GG, van Grondelle R and Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature (London) 355: 848–850

    CAS  Google Scholar 

  • Fowler GJS, Crielaard W, Visschers RW, van Grondelle R and Hunter CN (1993) Site-directed mutagenesis of the LHII light-harvesting complex of Rhodobacter sphaeroides: Changing βLys23 to Gln results in a shift in the 850 nm absorption peak. Photochem Photobiol 57: 2–5

    CAS  Google Scholar 

  • Frank HA, Farhoosh R, Gebhard R, Lugtenburg J, Gosztola D and Wasielewski MR (1993) The dynamics of the Sl excited states of carotenoids. Chem Phys Lett 207: 88–92

    Article  CAS  Google Scholar 

  • Ghosh R, Hauser H and Bachofen R (1988a) Reversible dissociation of the B873 light-harvesting complex from Rhodospirillum rubrum G9+. Biochemistry 27: 1004–1014

    CAS  Google Scholar 

  • Ghosh R, Rosatzin T and Bachofen R (1988b) Subunit structure and reassembly of the light-harvesting complex from Rhodospirillum rubrum G9+. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 93–102. Walter de Gruyter and Co., New York

    Google Scholar 

  • Gingras G (1978) A comparative review of photochemical reaction center preparations from photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, Plenum Press, New York

    Google Scholar 

  • Goedheer JC (1959) Energy transfer between carotenoids and bacteriochlorophylls in chromatophores of purple bacteria. Biochim Biophys Acta 35: 1–8

    Article  CAS  PubMed  Google Scholar 

  • Gogel GE, Parkes PS, Loach PA, Brunisholz RA and Zuber H (1983) The primary structure of a light-harvesting bacteriochlorophyll-binding protein of wild-type Rhodospirillum rubrum. Biochim Biophys Acta 746: 32–39

    CAS  Google Scholar 

  • Gogel GE, Michalski M, March H, Coyle S and Gentile L (1986) Covalent modification of lysines of the B880 light-harvesting protein of Rs. rubrum. Biochemistry 25: 7105–7109

    Article  CAS  Google Scholar 

  • Gottstein J and Scheer H (1983) Long-wavelength-absorbing forms of bacteriochlorophyll a in solutions of Triton X-100. Proc Natl Acad Sci USA 80: 2231–2234

    CAS  Google Scholar 

  • Guidotti G (1978) Membrane proteins: Structure and arrangement in the membrane. In: Andreoli TE, Hoffman JE and Fanestil JE (eds) Physiology of Membrane Disorders, pp 49–60. Plenum Medical, New York

    Google Scholar 

  • Guthrie N, MacDermott G, Cogdell RJ, Freer AA, Isaacs NW, Hawthornthwaite AM, Halloren E and Lindsay JG (1992) Crystallization of the B800-850 Light-harvesting complex from Rhodopseudomonas acidophila strain 7750. J Mol Biol 224: 527–528

    Article  CAS  PubMed  Google Scholar 

  • Hall RM, Kung MC, Fu M, Hales BJ and Loach PA (1973) Comparison of phototrap complexes from chromatophores of Rhodospirillum rubrum, Rhodopseudomonas sphaeroides, and the R-26 mutant of Rhodopseudomonas sphaeroides. Photochem Photobiol 18: 505–520

    CAS  PubMed  Google Scholar 

  • Hara M, Namba K, Hirata Y, Majima T, Kawamura S, Asada Y and Miyake J (1990) The photoreaction unit in Rhodopseudomonas viridis. Plant Cell Physiol. 31: 951–960

    CAS  Google Scholar 

  • Hawthornthwaite AM and Cogdell RJ (1991) Bacteriochlorophyll binding proteins. In: Scheer H (ed) Chlorophylls, pp 493–528. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Heller B A (1992) Isolation and characterization of the core light-harvesting complex structural subunit of Rb. capsulatus and reconstitution of the subunit and complex using native and chemically modified polypeptides from Rb. capsulatus and Rs. rubrum. Ph.D Thesis, Northwestern University, Evanston, Illinois, USA

    Google Scholar 

  • Heller BA and Loach PA (1990) Isolation and characterization of a subunit form of the B875 light-harvesting complex from Rhodobacter capsulatus. Photochem Photobiol 51: 621–627

    CAS  PubMed  Google Scholar 

  • Hunter CN, van Grondelle R and Olsen JD (1989) Photosynthetic antenna proteins: 100 ps before photochemistry starts. Trends Biol Sci 14: 72–76

    CAS  Google Scholar 

  • Jay F, Lambillotte M, Stark W and Mühlethaler K (1984) The preparation and characterization of native photoreceptor units from the thylakoids of Rhodopseudomonas viridis. EMBO J 3: 773–776

    CAS  PubMed  Google Scholar 

  • Jensen A, Aasmundrud O and Eimhjellen KE (1964) Chlorophylls of photosynthetic bacteria. Biochim Biophys Acta 88: 466–479

    CAS  PubMed  Google Scholar 

  • Jirsakova V, and Reiss-Husson F (1993) Isolation and characterization of the core light-harvesting complex B875 and its subunit form, B820, from Rhodocyclus gelatinosus. Biochim Biophys Acta 1138: 301–308

    Google Scholar 

  • Jirsakova V and Reiss-Husson (1994) A specific carotenoid is required for reconstitution of the Rubrivivax gelatinosus B875 light harvesting complex from its subunit form B820. FEBS Lett 353: 151–154

    Article  CAS  PubMed  Google Scholar 

  • Ke B (1971) Carotenoproteins. Meth Enzymol 23: 624–636

    CAS  Google Scholar 

  • Kerfeld CA, Yeates TO and Thornber JP (1994) Biochemical and spectroscopic characterization of the reaction center-LHI complex and the carotenoid-containing B820 subunit of Chromatium purpuratum. Biochim Biophys Acta 1185: 193–202

    CAS  PubMed  Google Scholar 

  • Kiley PJ and Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52: 50–69

    CAS  PubMed  Google Scholar 

  • Kiley PJ, Donohue TJ, Havelka WA and Kaplan S (1987) DNA sequence and in vitro expression of the B875 light-harvesting polypeptides of Rb. sphaeroides. J Bacteriol 169: 742–750

    CAS  PubMed  Google Scholar 

  • Kramer HJM, Pennoyer JD, van Grondelle R, Westerhuis WHJ, Niederman RA and Amesz J (1984) Low-temperature optical properties and pigment organization of the B875 light-harvesting bacteriochlorophyll-protein complex of purple photosynthetic bacteria. Biochim Biophys Acta 767: 335–344

    CAS  Google Scholar 

  • Landon M (1977) Cleavage at aspartyl-prolyl bonds. Meth Enzymol 47: 145–149

    CAS  PubMed  Google Scholar 

  • Loach PA (1980) Bacterial reaction center (RC) and photoreceptor complex (PRC) preparations. Meth Enzymol 69: 155–172

    CAS  Google Scholar 

  • Loach PA and Sekura DL (1968) Primary photochemistry and electron transport in Rhodospirillum rubrum. Biochemistry 7: 2642–2649

    Article  CAS  PubMed  Google Scholar 

  • Loach PA, Androes GM, Maksim AF and Calvin M (1963) Variation in electron paramagnetic resonance signals of photosynthetic systems with the redox level of their environment. Photochem Photobiol 2: 443–454

    CAS  Google Scholar 

  • Loach PA, Hadsell RM, Sekura DL and Sterner A (1970a) Quantitative dissolution of the membrane and preparation of photoreceptor subunits from Rhodospirillum rubrum. Biochemistry 9: 3127–3135

    CAS  PubMed  Google Scholar 

  • Loach PA, Sekura DL, Hadsell RM and Stemer A (1970b) Quantitative dissolution of the membrane and preparation of photoreceptor subunits from Rhodopseudomonas sphaeroides. Biochemistry 9: 724–733

    CAS  PubMed  Google Scholar 

  • Loach PA, Parkes PS, Miller JF, Hinchigeri S and Callahan PM (1985) Structure-function relationships of the bacteriochlorophyll-protein light-harvesting complex of Rhodospirillum rubrum. In: Arntzen C, Bogorad L, Bonitz S and Steinbeck K (eds) Molecular Biology of the Photosynthetic Apparatus, pp 197–209. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Loach PA, Parkes-Loach PS, Chang MC, Heller BA, Bustamante PL and Michalski T (1989) Comparison of structural subunits of the core light-harvesting complexes of photosynthetic bacteria. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 235–244. Plenum Press, New York

    Google Scholar 

  • Loach PA, Parkes-Loach PS, Davis CM and Heller BA (1994) Probing protein structural requirements for formation of the core light-harvesting complex of photosynthetic bacteria using hybrid reconstitution methodology. Photosynth Res 40: 231–245

    Article  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RG and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • McElroy JD, Feher G and Mauzerall DC (1969) On the nature of the free radical formed during the primary process of bacterial photosynthesis. Biochim Biophys Acta 172: 180–183

    CAS  PubMed  Google Scholar 

  • Meadows KA, Iida K, Recchia PA, Heller BA, Antonio B, Nango M and Loach PA (1995) Enzymatic and chemical cleavage of the core light-harvesting polypeptides of photosynthetic bacteria: toward the determination of the minimal polypeptide size and structure required for subunit and light-harvesting complex formation, Biochemistry 34: 1559–1574

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, Brunisholz RA and Zuber H (1992) The light-harvesting core-complex and the B820-subunit from Rhodopseudomonas marina. Part 1. Purification and characterization. FEBS Lett 311: 128–134

    CAS  PubMed  Google Scholar 

  • Miller JF, Hinchigeri SB, Parkes-Loach PS, Callahan PM, Sprinkle JR, Riccobono JR and Loach PA (1987) Isolation and characterization of a subunit form of the light-harvesting complex of Rhodospirillum rubrum. Biochemistry 26: 5055–5062

    CAS  PubMed  Google Scholar 

  • Monger TG and Parson WW (1977) Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus. Biochim Biophys Acta 460: 393–407

    CAS  PubMed  Google Scholar 

  • Noguchi T, Hayashi H and Tasumi M (1990) Factors controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochim Biophys Acta 1017: 280–290

    CAS  Google Scholar 

  • Nunn RS, Artymiuk PJ, Baker PJ, Rice DW and CN Hunter (1992) Purification and crystallization of the light harvesting LHI complex from Rhodobacter sphaeroides. J Mol Biol 228: 1259–1262

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T and Vernon LP (1969) A fraction from Anabaena variabilis enriched in the reaction center chlorophyll P700. Biochim Biophys Acta 180: 334–346

    CAS  PubMed  Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B and Hunter CN (1994) Modification of a hydrogen bond to a bacteriochlorophyll molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 7124–7128

    CAS  PubMed  Google Scholar 

  • Papiz MZ, Hawthornthwaite AM, Cogdell RJ, Woolley KJ, Wightman PA, Ferguson LA and Lindsay JG (1989) Crystallization and characterization of two crystal forms of the B800-850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050. J Mol Biol 209: 833–835

    Article  CAS  PubMed  Google Scholar 

  • Parkes-Loach PS, Sprinkle JR and Loach PA (1988) Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately-isolated α-and β-polypeptides and bacteriochlorophyll a. Biochemistry 27: 2718–2727

    Article  CAS  PubMed  Google Scholar 

  • Parkes-Loach PS, Michalski TJ, Bass W, Smith U and Loach PA (1990) Probing the bacteriochlorophyll binding site by reconstitution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogues. Biochemistry 29: 2951–2960

    Article  CAS  PubMed  Google Scholar 

  • Parkes-Loach PS, Jones SM and Loach PA (1994) Probing the structure of the core light-harvesting complex (LHI) of Rhodopseudomonas viridis by dissociation and reconstitution methodology. Photosynth Res 40: 247–261

    Article  CAS  Google Scholar 

  • Pearlstein RM (1988) Interpretation of optical spectra of bacteriochlorophyll antenna complexes. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 555–566. Walter de Gruyter and Co., New York

    Google Scholar 

  • Picorel R and Gingras G (1988) Preparative isolation and characterization of the B875 complex from Rhodobacter sphaeroides 2.4.1. Biochem Cell Biol 66: 442–448

    CAS  Google Scholar 

  • Picorel R, Bélanger G and Gingras G (1983) Antenna holochrome B880 of Rhodospirillum rubrum S1. Pigment, phospholipid, and polypeptide composition. Biochemistry 22: 2491–2497

    Article  CAS  Google Scholar 

  • Picorel R, Lefèbvre S and Gingras G (1984) Oxido-reduction of B800-850 and B880 holochromes isolated from three species of photosynthetic bacteria as studied by electron-paramagnetic resonance and optical spectroscopy. Eur J Biochem 142: 305–311

    Article  CAS  Google Scholar 

  • Racker E (1985) Reconstitutions of Transporters, Receptors, and Pathological States. Academic Press, New York

    Google Scholar 

  • Robert B and Lutz M (1985) Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra. Biochim Biophys Acta 807: 10–23

    CAS  Google Scholar 

  • Sauer K (1978) Photosynthetic membranes. Acc Chem Res 11: 257–264

    Article  CAS  Google Scholar 

  • Sauer K and Austin LA (1978) Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria. Biochemistry 17: 2011–2019

    CAS  PubMed  Google Scholar 

  • Scherz A and Parson WW (1986) Interactions of the bacteriochlorophylls in antenna bacteriochlorophyll-protein complexes of photosynthetic bacteria. Photosynth Res 9: 21–32

    Article  CAS  Google Scholar 

  • Schneour EA (1962) Carotenoid pigment conversion in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 62: 534–540

    Google Scholar 

  • Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 729–750. Plenum Press, New York

    Google Scholar 

  • Scolnik PA and Marrs BL (1987) Genetic research with photosynthetic bacteria. Annu Rev Microbiol 41: 703–726

    Article  CAS  PubMed  Google Scholar 

  • Sebban P (1985) Transfer and trapping of the light excitation energy in purple bacteria. Physiol Vég 23: 449–462

    CAS  Google Scholar 

  • Stiehle H, Cortez N, Klug G and Drews G (1990) A negatively charged N-terminus in the α-polypeptide inhibits formation of light-harvesting complex I in Rhodobacter capsulatus. J Bacteriol 172: 7131–7137

    CAS  PubMed  Google Scholar 

  • Sturgis JN and Robert B (1994) Thermodynamics of membrane polypeptide oligomerization in light-harvesting complexes and associated structural changes. J Mol Biol 238: 445–454

    Article  CAS  PubMed  Google Scholar 

  • Sundström V and van Grondelle R (1991) Dynamics of excitation energy transfer in photosynthetic bacteria. In: Scheer H (ed) Chlorophylls, pp 1098–1124. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Tadros MH, Suter F, Seydewitz H, Witt I, Zuber H and Drews G (1984) Isolation and complete amino-acid sequence of the small polypeptide from light-harvesting pigment-protein complex I (B870) of Rhodopseudomonas capsulata. Eur J Biochem 138: 209–212

    Article  CAS  PubMed  Google Scholar 

  • Tadros MH, Frank G, Zuber H and Drews G (1985) The complete amino acid sequence of the large bacteriochlorophyll-binding polypeptide B870-a from the light-harvesting complex B870 of Rb. capsulata. FEBS Lett 190: 41–44

    Article  CAS  Google Scholar 

  • Theiler R, Suter F, Pennoyer JD, Zuber H and Niederman RA (1985) Complete amino acid sequence of the B875 light-harvesting protein of Rhodopseudomonas sphaeroides strain 2.4.1. Comparison with R26.1 carotenoidless-mutant strain. FEBS Lett 184: 231–236

    Article  CAS  PubMed  Google Scholar 

  • Thompson MA and Fajer J (1992) Calculations of bacteriochlorophyll g primary donor in photosynthetic heliobacteria. How to shift the energy of the phototrap by 2000 cm−1. J Phys Chem 96:2933–2935

    Article  CAS  Google Scholar 

  • Thompson MA, Zerner MC and Fajer J (1991) A theoretical examination of the electronic structure and excited states of the bacteriochlorophyll b dimer from Rhodopseudomonas viridis. J Phys Chem 95:5693–5700

    Article  CAS  Google Scholar 

  • Thornber JP (1971) The photochemical reaction centre of Rhödopseudomonas viridis. Meth Enzymol 23: 688–691

    CAS  Google Scholar 

  • Thornber JP (1986) Biochemical characterization and structure of pigment-proteins of photosynthetic organisms. Encycl Plant Physiol, New Ser 19: 98–142

    Google Scholar 

  • Thornber JP, Trosper TL and Strouse CE (1978) Bacteriochlorophyll in vivo: Relationship ofspectral forms to specific membrane components. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 133–160. Plenum Press, New York

    Google Scholar 

  • Thornber JP, Cogdell RJ, Pierson BK, and Seftor REB (1983) Pigment-protein complexes of purple photosynthetic bacteria: an overview. J Cell Biochem 23: 159–169

    Article  CAS  PubMed  Google Scholar 

  • Tinoco Jr. I, Sauer K and Wang JC (1985) Physical Chemistry: Principles and Applications in Biological Sciences. Prentice-Hall, Inc., Englewood Cliffs, NJ

    Google Scholar 

  • Vadeboncoeur C, Noël H, Poirier L, Cloutier Y and Gingras G (1979) Photoreaction center of photosynthetic bacteria. 1. Further chemical characterization of the photoreaction center from Rhodospirillum rubrum. Biochemistry 18: 4301–4308

    CAS  PubMed  Google Scholar 

  • van Mourik F, van der Oord CJR, Visscher KJ, Parkes-Loach PS, Loach PA, Visschers RW and van Grondelle R (1991) Exciton interactions in the light-harvesting antenna of photosynthetic bacteria studied with triplet-singlet spectroscopy and singlettriplet annihilation of the B820 subunit form of Rhodospirillum rubrum. Biochim Biophys Acta 1059: 111–119

    Google Scholar 

  • van Mourik F, Corten EPM, van Stokkum IHM, Visschers RW, Loach PA, Kraayenhof R and van Grondelle R (1992) Self assembly of the LH-1 antenna of Rhodospirillum rubrum: A time-resolved study of the aggregation state of the B820 su unit form. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 101–104. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • van Mourik F, Visscher KJ, Mulder JM and van Grondelle R (1993) Spectral inhomogeneity of the light-harvesting antenna of Rhodospirillum rubrum probed by triplet-minus-singlet spectroscopy and singlet-triplet annihilation at low temperatures. Photochem Photobiol 57: 19–23

    Google Scholar 

  • van Niel CB, Goodwin TW and Sissins ME (1956) Studies in carotenogenesis 21. The nature of the changes in carotenoid synthesis in Rhodospirillum rubrum during growth. Biochem J 63: 408–412

    Google Scholar 

  • Vasiľev BG (1991) Heterogeneity of the photoreceptor complex RC-B890 in the sulfur purple bacterium Chromatium minutissimum. Biol Membr 8: 240–248

    Google Scholar 

  • Vernon LP and Garcia AF (1967) Pigment-protein complexes derived from Rhodospirillum rubrum chromatophores by enzymatic digestion. Biochim Biophys Acta 143: 144–153

    CAS  PubMed  Google Scholar 

  • Visschers RW, Chang MC, van Mourik F, Parkes-Loach PS, Heller BA, Loach PA and van Grondelle R (1991) Fluorescence polarization and low-temperature absorption spectroscopy of a subunit form of light-harvesting complex I from purple photosynthetic bacteria. Biochemistry 30: 5734–5742

    Article  CAS  PubMed  Google Scholar 

  • Visschers RW, Nunn R, Calkoen F, van Mourik F, Hunter CN, Rice DW and van Grondelle R (1992) Spectroscopic characterization of B820 subunits from light-harvesting complex I of Rhodospirillum rubrum and Rhodobacter sphaeroides prepared with the detergent n-octyl-rac-2,3-dipropylsulfoxide. Biochim Biophys Acta 1100: 259–266

    CAS  Google Scholar 

  • Visschers RW, van Mourik F, Monshouwer R and van Grondelle R (1993a) Inhomogeneous spectral broadening of the B820 subunit form of LHI. Biochim Biophys Acta 1141: 238–244

    CAS  Google Scholar 

  • Visschers RW, van Grondelle R and Robert B (1993b) Resonance Raman spectroscopy of the B820 subunit of the core antenna from Rhodospirillum rubrum G9. Biochim Biophys Acta (Visschers RW, PhD. Thesis, pp 77–86. Free University of Amsterdam)

    Google Scholar 

  • Visschers RW, van Grondelle R and Robert B (1993c) Resonance Raman spectroscopy of the B820 subunit of the core antenna from Rhodospirillum rubrum G9. Biochim Biophys Acta 1183: 369–373

    CAS  Google Scholar 

  • Wellington CL, Bauer CE and Beatty JT (1992) Photosynthesis gene superoperons in purple nonsulfur bacteria: The tip of the iceberg? Can J Microbiol 38: 20–27

    CAS  Google Scholar 

  • Westerhuis WHJ, Vos M, van Dorssen RJ, van Grondelle R, Amesz J and Niederman RA (1989) Associations of pigment-protein complexes in phospholipid enriched bacterial photosynthetic membranes. In: Biacs PA, Gruiz K and Kremmer T (eds) Biological Role of Plant Lipids, pp 227–231. Plenum Publishing Corp., New York

    Google Scholar 

  • Wiessner C, Dunger I and Michel H (1990) Structure and transcription of the genes encoding the B1015 light-harvesting complex β and a subunits and the photosynthetic reaction center L, M, and cytochrome c subunits from Rhodopseudomonas viridis. J Bacteriol 172: 2877–2887

    CAS  PubMed  Google Scholar 

  • Yeates TO, Komiya H, Rees DC, Allen JP and Feher G (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: Membrane-protein interactions. Proc Natl Acad Sci USA 84: 6438–6442

    CAS  PubMed  Google Scholar 

  • Youvan DC, Alberti M, Begusch H, Bylina EJ and Hearst JE (1984) Reaction center and light-harvesting I genes from Rhodopseudomonas capsulatus. Proc Natl Acad Sci USA 81: 189–192

    CAS  Google Scholar 

  • Zuber H (1986) Structure of light-harvesting antenna complexes ofphotosynthetic bacteria, cyanobacteria and red algae. Trends Biol Sci 11: 414–419

    CAS  Google Scholar 

  • Zuber H and Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: Principles and variability. In: Scheer H (ed) Chlorophylls, pp 627–703. CRC Press, Boca Raton, Florida

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Loach, P.A., Parkes-Loach, P.S. (1995). Structure-Function Relationships in Core Light-Harvesting Complexes (LHI) As Determined by Characterization of the Structural Subunit and by Reconstitution Experiments. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics