Skip to main content

Kinetics of Excitation Transfer and Trapping in Purple Bacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

The transfer and trapping of excitation energy in photosynthetic purple bacteria, as it appears from time-resolved and steady-state spectroscopy, are discussed. As a background to the dynamics we first briefly describe the structure and organization and spectroscopy of purple bacterial antenna pigments. The concept of spectral inhomogeneous broadening and its consequences for understanding the spectroscopy and dynamics is thoroughly discussed. We start the discussion of the dynamics by describing the overall energy equilibration and trapping processes in antenna-reaction center systems of varying complexity. These processes occur on the time scale of several picoseconds to tens of picoseconds. The most conspicuous results are that excitation energy is equilibrated very rapidly, ≤10 ps, over the entire antenna, but transfer of the energy from the antenna to the reaction center (the special pair) is a relatively slow process (30–40 ps), both at room temperature and 77 K. The reaction center is not a perfect trap for the excitation energy; at room temperature ∼25% of the energy returns to the antenna in Rhodospirillum rubrum, upon selective excitation of the reaction center pigments. At low temperatures (≤77 K) the back transfer to the antenna is negligible. With recently available subpicosecond and femtosecond laser pulses the most fundamental steps of energy transfer has been resolved. It is shown that energy transfer between a pair of bacteriochlorophyll molecules typically occur on the timescale 0.2–0.5 ps. On this extremely short timescale it becomes necessary to also take into account various intramolecular processes, like vibrational relaxation and vibrational energy redistribution. For such very fast energy transfer processes it may be necessary to question the applicability of conventional Fürster theory of electronic energy transfer. In order to test particular structural and dynamical aspects of the energy transfer and trapping, molecular biology methods are invaluable tools to introduce specific changes into the pigment-protein systems. Several examples of advanced spectroscopy on genetically modified systems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagard J and Sistrom WR (1972) Control of synthesis of reaction center and antenna bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15: 209–225

    Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987a). Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc Natl Acad Sci USA 84: 5730–5734

    CAS  PubMed  Google Scholar 

  • Allen JP, Geher G, Yeates TO, Komiya H and Rees DC (1987b). Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits. Proc Natl Acad Sci USA 84: 6162–6166

    CAS  PubMed  Google Scholar 

  • Altmann RB, Renge I, Kador L and Haarer D (1992) Dipole moment differences of nonpolar dyes in polymeric matrices: Stark effect and photochemical hole burning. I., J Chem Phys 97: 5316–5322

    Article  CAS  Google Scholar 

  • Becker M, Nagarajan V, Middendorf D, Shield MA and Parson WW (1990) Excited state properties of bacteriochlorophyll a and of bacterial photosynthetic reaction centers as revealed by picosecond absorption studies. Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 1, 101–104. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bakker JGC, Van Grondelle R and Den Hollander WTF (1983). Trapping, loss and annihilation of excitations in a photosynthetic system. II. Experiments with the purple bacteria Rhodospirillum rubrum and Rhodopseudomonos capsulata. Biochim Biophys Acta 725: 508–518

    CAS  Google Scholar 

  • Beekman LMP, Visschers RW, Visschers KJ, Althuis B, Barz W, Oesterhelt D, Sundström V and van Grondelle R (1993) Excitation energy transfer in mutants of Rb. sphaeroides: The effects of changes in the core antenna size. In Martin JL, Migus A, Mourou G and Zewail AH (eds) Ultrafast Phenomena VIII, Vol 55, pp 552–554. Springer Series in Chemical Physics Springer-Verlag, Berlin

    Google Scholar 

  • Beekman LMP, van Mourik F, Jones MR, Visser HM, Hunter CN and van Grondelle R (1994) Trapping kinetics in mutants of the photosynthetic purple bacterium Rhodobacter sphaeroides: Influence of charge separation rate and consequences for the rate-limiting stop in the light-harvesting process. Biochmeistry 33: 3143–3147

    CAS  Google Scholar 

  • Bergström H, Sundström V, van Grondelle R, Åkesson E and Gillbro T (1986) Energy transfer within the isolated light-harvesting B800–850 pigment-protein complex of Rhodobacter sphaeroides. Biochim Biophys Acta 852: 279–287

    Google Scholar 

  • Bergström H, Westerhuis WHJ, Sundström V, van Grondelle R, Niederman RA and Gillbro T (1988a) Energy transfer within the isolated B875 light-harvesting pigment-protein complex of Rhodobacter sphaeroides at 77 K studied by picosecond absorption spectroscopy. FEBS Lett 233: 12–16

    Article  Google Scholar 

  • Bergström H, Sundström V, van Grondelle R, Gillbro T and Cogdell R (1988b) Energy transfer dynamics of isolated B800–850 and B800–820 pigment-protein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila. Biochim Biophys Acta 936: 90–98

    Google Scholar 

  • Bergström H, van Grondelle R and Sundström V (1989) Characterization of excitation energy trapping in photosynthetic purple bacteria at 77 K. FEBS Lett 250: 503–508

    Article  Google Scholar 

  • Bilsel O, Milam SL, Girolami GS, Suslick KS and Holten D (1993) Ultrafast electronic deactivation and vibrational dynamics of photoexcited uranium (IV) porphyrin sandwich complexes. J Phys Chem 97: 7216–7221

    Article  CAS  Google Scholar 

  • Bittersmann E, Blankenship RE and Woodbury N (1990) Picosecond fluorescence studies of Rhodopseudomonas viridis. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 169–172. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bolt J and Sauer K (1979) Linear dichroism of light harvesting bacteriochlorophyll proteins from Rhodopseudomonas sphaeroides in stretched polyvinyl alcohol films. Biochim Biophys Acta 546: 54–63

    CAS  PubMed  Google Scholar 

  • Bolt JD and Sauer K (1981) Fluorescence properties of the light-harvesting bacteriochlorophyll protein from Rhodopseudomonas sphaeroides R-26. Biochim Biophys Acta 637: 342–347

    CAS  Google Scholar 

  • Bolt JD, Hunter CN, Niederman RA and Sauer K (1981) Linear and circular dichroism and fluorescence polarization of the B875 light-harvesting bacteriochlorophyll-protein complex from Rhodopseudomonas sphaeroides. Photochem Photobiol 34: 653–656

    CAS  Google Scholar 

  • Boonstra AF, Visschers RW, Calkoen F, van Grondelle R, van Bruggen EFJ and Boekema EJ (1993) Structural characterization of the B800–850 and B875 light-harvesting antenna complexes from Rhodobacter sphaeroides by electron microscopy. Biochim Biophys Acta 1142: 181–188

    CAS  Google Scholar 

  • Borisov AY, Gadonas R, Danielius R, Piskarskas A and Razhivin AP (1982) Minor component B-905 of light-harvesting antenna in Rhodospirillum rubrum chromatophores and the mechanism of singlet-singlet annihilation as studied by difference selective picosecond spectroscopy. FEBS Lett 138: 25–28

    Article  CAS  Google Scholar 

  • Borisov AY, Freiberg AM, Godik VI, Rebane K and Timpmann K (1985) Kinetics of picosecond bacteriochlorophyll luminescence in vivo as a function of the reaction center state. Biochim Biophys Acta 807: 221–229

    CAS  Google Scholar 

  • Braun P and Scherz A (1991) Polypeptides and bacteriochlorophyll organization in the light-harvesting complex B850 of Rhodobacter sphaeroides R-26.1. Biochemistry 30: 5177–5184

    Article  CAS  PubMed  Google Scholar 

  • Breton J (1985) Orientation of the chromophores in the reaction center of Rhodopseudomonas viridis. Comparison of low-temperature linear dichroism spectra with a model derived from X-ray crystallography. Biochim Biophys Acta 810: 235–245

    CAS  Google Scholar 

  • Breton J and Vermeglio A (1982) Orientation of photosynthetic pigments in vivo. In: Govindjee (ed) Photosynthesis: Energy conversion by Plants and Bacteria, Vol 1, 153–194. Academic Press, New York

    Google Scholar 

  • Breton J, Vermeglio A, Garrigos M and Paillotin G (1981) Orientation of the chromophores in the antenna system of Rhodopseudomonas sphaeroides. In: Akoyunoglou (ed) Photosynthesis III. Structure and Molecular Organization of the Photosynthetic Apparatus, pp 445–459. Balaban International Science Services, Philadelphia, PA

    Google Scholar 

  • Breton J, Farkas DL and Parson WW (1985) Organization of the antenna bacteriochlorophylls around the reaction center of Rhodopseudomonas viridis investigated by photoselection techniques. Biochim Biophys Acta 808: 421–427

    CAS  Google Scholar 

  • Brunisholz RA and Zuber H (1992) Structure, function and organisation of antenna polypeptides and antenna complexes from the three families of Rhodospirillanae. J Photochem Photobiol 15: 113–140

    CAS  Google Scholar 

  • Brunisholz RA, Jay F, Suter F and Zuber H (1985) The light-harvesting polypeptides of Rhodopseudomonas viridis. The complete amino-acid sequences of B1015-.alpha., B1015-.beta. and B1015-.gamma. Biol Chem Hoppe-Seyler 366: 87–98

    CAS  PubMed  Google Scholar 

  • Chachisvilis M, Pullerits T, Jones MR, Hunter CN and Sundström V (1994) Vibrational dynamics in the light-harvesting complexes of the photosynthetic bacterium Rhodobacter sphaeroides. Chem Phys Lett 224: 345–351

    Article  CAS  Google Scholar 

  • Chadwick BW, Zhang C, Cogdell RJ and Frank HA (1987) The effects of lithium dodecyl sulfate and sodium borohydride on the absorption spectrum of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila 7750. Biochim Biophys Acta 893: 444–451

    CAS  Google Scholar 

  • Chang MC, Meyer L and Loach PA (1990) Isolation and characterization of a structural subunit from the core light-harvesting complex of Rhodobacter sphaeroides 2.4.1 and puc 705-BA. Photochem Photobiol 52: 873–881

    CAS  PubMed  Google Scholar 

  • Clayton RK (1966) Relations between photochemistry and fluorescence in cells and extracts of photosynthetic bacteria. Photochem Photobiol 5: 807–827

    CAS  Google Scholar 

  • Clayton RK and Clayton BJ (1981) B850 pigment-protein complex of Rhodopseudomonas sphaeroides: Extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll. Proc Natl Acad Sci USA 78: 5583–5587

    CAS  Google Scholar 

  • Davis RC, Ditson SL, Fentiman AF and Pearlstein RM (1981) Reversible wavelength shifts of chlorophyll induced by a point charge. J Am Chem Soc 103: 6823–6826

    CAS  Google Scholar 

  • Dawkins DJ Ferguson LA and Cogdell RJ (1988) The structure of the ‘core’ of the purple bacterial photosynthetic unit. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 115–127. Walter de Gruyter, Berlin

    Google Scholar 

  • Deinum G (1991) Excitation migration in photosynthetic antenna systems. Ph.D. Thesis, State University of Leiden, The Netherlands

    Google Scholar 

  • Deinum G, Aartsma TJ, Van Grondelle R and Amesz J (1989). Singlet-singlet excitation annihilation measurements on the antenna of Rhodospirillum rubrum between 300 and 4 K. Biochim Biophys Acta 976: 63–69

    CAS  Google Scholar 

  • Deinum G, Otte CM, Gardiner AT, Aartsma TJ, Cogdell RJ and Amesz J (1991) Antenna organization of Rhodopseudomonas acidophila: A study of the excitation migration. Biochim Biophys Acta 1060: 125–131

    CAS  Google Scholar 

  • Deinum G, Aartsma TJ and Amesz J (1992a) Fluorescence yield and singlet-singlet annihilation measurements in Rhodopseudomonas viridis. In: Murata (ed) Research in Photosynthesis, Vol 1, pp 161–164. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Deinum G, Kleinherenbrink FAM, Aartsma TJ and Amesz J (1992b) The fluorescence yield of Rhodopseudomonas viridis in relation to the redox state of the primary electron donor., Biochim Biophys Acta 1099: 81–84

    CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1986) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3.Å. resolution. Nature (London) 318: 618–624

    CAS  Google Scholar 

  • Den Hollander WTF, Bakker JGC and van Grondelle R (1983) Trapping, loss and annihilation of excitations in photosynthetic systems. I. Theoretical aspects. Biochim Biophys Acta 725: 492–507

    Google Scholar 

  • Deprez J, Trissl HW and Breton J (1986) Excitation trapping and primary charge stabilization in Rhodopseudomonas viridis cells, measured electrically with picosecond resolution. Proc Natl Acad Sci USA 83: 1699–1703

    CAS  Google Scholar 

  • Duysens LNM (1979) Transfer and trapping of excitation energy in photosystem II. In: Chlorophyll Organization and Energy Transfer in Photosynthesis, CIBA Foundation Symposium 61 (new series), pp 323–340. Elsevier, Amsterdam

    Google Scholar 

  • Eccles J and Honig B (1983) Charged amino acids as spectroscopic determinants for chlorophyll in vivo. Proc Natl Acad Sci USA 80: 4959–4962

    CAS  Google Scholar 

  • Elsaesser T and Kaiser W (1991) Vibrational and vibronic relaxation of large polyatomic molecules in liquids. Ann Rev Phys Chem 42: 83–107

    Article  CAS  Google Scholar 

  • Engelhardt H, Baumeister W and Saxton WO (1983) Electron microscopy of photosynthetic membranes containing bacteriochlorophyll b. Arch Microbiol 135: 169–175

    Article  CAS  Google Scholar 

  • Evans MB, Cogdell RJ and Britton G (1988) Determination of the bacteriochlorophyll:carotenoid ratios of the B890 antenna complex of Rhodospirillum rubrum and the B800-850 complex of Rhodobacter sphaeroides. Biochim Biophys Acta 935: 292–298

    CAS  Google Scholar 

  • Fowler GJS, Visschers RW, Grief GG, van Grondelle R and Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blue-shifted absorbance bands. Nature 355: 848–850

    CAS  PubMed  Google Scholar 

  • Freiberg A and Timpmann K (1992) Picosecond fluorescence spectroscopy of light-harvesting antenna complexes from Rhodospirillum rubrum in the 300–4 K temperature range. Comparison with the data on chromatophores. J Photochem Photobiol B 15: 151–158

    Article  CAS  Google Scholar 

  • Freiberg A, Godik VI and Timpmann K (1984) Excitation energy transfer in bacterial photosynthesis studied by picosecond laser spectrochronography. In Sybesma C (ed) Progress in Photosynthesis, Vol 1, pp 45–48. Martinus Nijhoff/Dr W Junk Publishers, Dordrecht

    Google Scholar 

  • Freiberg A, Godik VI and Timpmann K (1987) Spectral dependence of the fluorescence lifetime of Rhodospirillum rubrum. Evidence for inhomogeneity of B880 absorption band. In: Biggins J (ed) Progress in Photosynthesis Research, Vol 1, pp 45–48. Marinus Nijhoff Publisher, Dordrecht

    Google Scholar 

  • Freiberg A, Godik VI, Pullerits T and Timpmann KE (1988a) Directed picosecond excitation transport in purple photosynthetic bacteria. Chem Phys 128: 227–235

    Article  CAS  Google Scholar 

  • Freiberg A, Pullerits T and Timpmann K (1988b) Picosecond excitation transport in photosynthesis: factors for optimization of light harvesting. In Yayima T, Yoshihara K, Harris CB and Shionoya S (eds) Ultrafast Phenomena, Vol VI, pp 593–595. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Freiberg A, Godik VI, Pullerits T and Timpman K (1989) Picosecond dynamics of directed excitation transfer in spectrally heterogeneous light-harvesting antenna of purple bacteria. Biochim Biophys Acta 973: 93–104

    CAS  Google Scholar 

  • Freiberg A, Godik VI, Pullerits T and Timpmann K (1990) Excitation transport and quenching in photosynthetic bacteria at normal and cryogenic temperatures. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 157–160. Kluwer Academic Publishers

    Google Scholar 

  • Garcia D, Parot P, Verméglio A and Madigan MT (1986) The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. Biochim Biophys Acta 850: 390–395

    CAS  Google Scholar 

  • Ghosh R, Hauser H and Bachofen R (1988) Reversible dissociation of the B873 light-harvesting complex from Rhodospirillum rubrum G9+. Biochemistry 27: 1004–1014

    CAS  Google Scholar 

  • Gingras G and Picorel R (1990) Supramolecular arrangement of Rhodospirillum rubrum B880 holochrome as studied by radiation inactivation and electron paramagnetic resonance. Proc Natl Acad Sci USA 87: 3405–3409

    CAS  PubMed  Google Scholar 

  • Gottfried DS, Stocker JW and Boxer SG (1991) Stark effect spectroscopy of bacteriochlorophyll in light-harvesting complexes from photosynthetic bacteria. Biochim Biophys Acta 1059: 63–75

    CAS  Google Scholar 

  • Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J Phys Chem 94: 5795–5801

    Article  CAS  Google Scholar 

  • Hawthornthwaite AM and Cogdell RJ (1991) Bacteriochlorophyll-binding proteins. In: Scheer H (ed), Chlorophylls, pp 493–528. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Hayashi H, Miyao M and Morita S (1982a) Absorption and fluorescence spectra of light-harvesting bacteriochlorophyll-protein complexes from Rhodopseudomonas palustris in the near-infrared region. J Biochem (Tokyo) 91: 1017–1027

    CAS  Google Scholar 

  • Hayashi H, Nakano M and Morita S (1982b) Comparative studies of protein properties and bacteriochlorophyll contents of bacteriochlorophyll-protein complexes from spectrally different types of Rhodopseudomonas palustris. J Biochem (Tokyo) 92: 1805–1811

    CAS  Google Scholar 

  • Hayashi H, Nozawa T, Hatano M and Morita S (1982c) Circular dichroism of bacteriochlorophyll a in light-harvesting bacteriochlorophyll-protein complexes from Rhodopseudomonas palustris. J Biochem (Tokyo) 91: 1029–1038

    CAS  Google Scholar 

  • Heller B A and Loach PA (1990) Isolation and characterization of a subunit form of the B875 light-harvesting complex from Rhodobacter capsulatus. Photochem Photobiol 51: 621–627

    CAS  PubMed  Google Scholar 

  • Hess S, Visscher K, Ulander J, Pullerits T, Jones MR, Hunter CN and Sundström V (1993a) Direct energy transfer from the peripheral LH2 antenna to the reaction center in a mutant of Rhodobacter sphaeroides that lacks the core LH1 antenna. Biochemistry 32: 10314–10322

    CAS  PubMed  Google Scholar 

  • Hess S, Feldshtein F, Babin A, Nurgaleev I, Pullerits T, Sergeev A and Sundström V (1993b) Femtosecond energy transfer within the LH2 peripheral antenna of the photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris LL. Chem Phys Lett 216: 247–257

    Article  CAS  Google Scholar 

  • Hess S, Visscher KJ, Pullerits T and Sundström V (1994) Enhanced rates of subpicosecond energy transfer in blue-shifted light harvesting LH2 mutants of Rhodobacter sphaeroides. Biochemistry 33: 8300–8305

    Article  CAS  PubMed  Google Scholar 

  • Hunter CN, Pennoyer JD, Sturgis JN, Farrelly D and Niederman RA (1988) Oligomerization states and associations of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecyl sulfatepolyacrylamide gel electrophoresis. Biochemistry 27: 3459–3467

    CAS  Google Scholar 

  • Hunter CN, van Grondelle R and Olsen JD (1989) Photosynthetic antenna proteins: 100 ps before photochemistry starts. Trends Biochem Sci (Pers Ed) 14: 72–76

    CAS  Google Scholar 

  • Hunter CN, Bergström H, van Grondelle R and Sundström V (1990) Energy-transfer dynamics in three light-harvesting mutants of Rhodobacter sphaeroides: a picosecond spectroscopy study. Biochemistry 29: 3203–3207

    Article  CAS  PubMed  Google Scholar 

  • Jiraskova V, Agalidis I and Reiss-Husson F (1992) Characterization of the core light harvesting complex B875 of Rhodocyclus gelatinosus and its B820 derivative. In: Murata M (ed) Research in Photosynthesis, Vol 1, pp 33–36. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Johnson SG and Small GJ (1989) Spectral hole burning of a strongly exciton-coupled bacteriochlorophyll a antenna complex. Chem Phys Lett 155: 371–375

    Article  CAS  Google Scholar 

  • Johnson SG and Small GJ (1991) Excited-state structure and energy-transfer dynamics of the bacteriochlorophyll a antenna complex from Prosthecochloris aestuarii. J Phys Chem 95: 471–479

    CAS  Google Scholar 

  • Kingma H, Duysens LNM and Van Grondelle R (1983) Magnetic field-stimulated luminescence and a matrix model for energy transfer. A new method for determining the redox state of the first quinone acceptor in the reaction center of whole cells of Rhodospirillum rubrum. Biochim Biophys Acta 725: 434–443

    CAS  Google Scholar 

  • Kleinherenbrink FAM, Deinum G, Otte SCM, Hoff AJ and Amesz J (1992) Energy transfer from long-wavelength absorbing antenna bacteriochlorophylls to the reaction center. Biochim Biophys Acta 1099: 175–181

    CAS  Google Scholar 

  • Kleinherenbrink FAM, Cheng P, Amesz J and Blankenship RE (1993) Lifetimes of bacteriochlorophyll fluorescence in Rhodopseudomonas viridis and Heliobacterium chlorum at low temperatures. Photochem Photobiol 57: 13–16

    CAS  PubMed  Google Scholar 

  • Kramer HJM, Van Grondelle R, Hunter CN, Westerhuis WHJ and Amesz J (1984a) Pigment organization of the B800-850 antenna complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 765: 156–165

    CAS  Google Scholar 

  • Kramer HJM, Pennoyer JD, Van Grondelle R, Westerhuis WHJ, Niederman RA and Amesz J (1984b) Low-temperature optical properties and pigment organization of the B875 light-harvesting bacteriochlorophyll-protein complex of purple photosynthetic bacteria. Biochim Biophys Acta 767: 335–344

    CAS  Google Scholar 

  • Leguijt T, Visschers RW, Crielaard W, van Grondelle R and Hellingwerf KJ (1992) Low-temperature fluorescence and absorption spectroscopy of reaction center/antenna complexes from Ectothiorhodospira mobilis, Rhodopseudomonas palustris and Rhodobacter sphaeroides. Biochim Biophys Acta 1102: 177–185

    CAS  Google Scholar 

  • Loach PA, Parkes PS, Miller JF, Hinchigeri S and Callahan PM (1985) Structure-function relationships of the bacteriochlorophyll-protein light-harvesting complex of Rhodospirillum rubrum. In: Arntzen C, Bogorad L, Bonitz S and Steinback K (eds), Molecular Biology of the Photosynthetic Apparatus, pp 197–209. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Lockhart DJ and Boxer SG (1988) Stark effect spectroscopy of Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Proc Natl Acad Sci USA 85: 107–111

    CAS  Google Scholar 

  • Lu X and Pearlstein RM (1993) Simulations of Prostechochloris bacteriochlorophyll a-protein. Optical spectra improved by parametric computer search. Photochem Photobiol 57: 86–91

    CAS  Google Scholar 

  • Meckenstock RU, Brunisholz RA and Zuber H (1992a) The light-harvesting core-complex and the B820-subunit from Rhodopseudomonas marina. Part I. Purification and characterisation. FEBS Lett 311: 128–134

    CAS  PubMed  Google Scholar 

  • Meckenstock RU, Krusche K, Brunisholz RA and Zuber H (1992b) The light-harvesting core-complex and the B820-subunit from Rhodopseudomonas marina. Part II. Electron microscopic characterisation. FEBS Lett 311: 135–138

    CAS  PubMed  Google Scholar 

  • Miller KR (1982) Three-dimensional structure of a photosynthetic membrane. Nature 300: 53–55

    Article  CAS  Google Scholar 

  • Miller JF, Hinchigeri SB, Parkes-Loach PS, Callahan PM, Sprinkle JR, Riccobono JR and Loach PA (1987) Isolation and characterization of a subunit form of the light-harvesting complex of Rhodospirillum rubrum. Biochemistry 26: 5055–5062

    CAS  PubMed  Google Scholar 

  • Monger TG and Parson WW (1977) Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. Biochim Biophys Acta 460: 393–407

    CAS  PubMed  Google Scholar 

  • Müller MG, Drews G and Holzwarth AR (1993) Excitation transfer and charge separation kinetics in purple bacteria. (1) Picosecond fluorescence of chromatophores from Rhodobacter capsulatus wild type. Biochim Biophys Acta 1142: 49–58

    Google Scholar 

  • Nuijs AM, Van Grondelle R, Joppe HLP, Van Bochove AC and Duysens LNM (1985) Singlet and triplet excited carotenoid and antenna bacteriochlorophyll of the photosynthetic purple bacterium Rhodospirillum rubrum as studied by picosecond absorbance difference spectroscopy. Biochim Biophys Acta 810: 94–105

    CAS  Google Scholar 

  • Nuijs AM, van Grondelle R, Joppe HLP, van Bochove AC and Duysens LNM (1986) A picosecond-absorption study on bacteriochlorophyll excitation, trapping and primary-charge separation in chromatophores of Rhodospirillum rubrum. Biochim Biophys Acta 850: 286–293

    CAS  Google Scholar 

  • Olson JM and Clayton RK (1966) Sensitization of photoreactions in Eimhjellen’s Rhodopseudomonas by a pigment absorbing at 830 nm. Photochem Photobiol 5: 655–660

    CAS  Google Scholar 

  • Otte SCM, Kleinherenbrink FAM and Amesz J (1993) Energy transfer between the reaction center and the antenna in purple bacteria., Biochim Biophys Acta 1143: 84–90

    CAS  Google Scholar 

  • Paillotin G, Swenberg CE, Breton J and Geacintov E (1979) Analysis of picosecond laser-induced fluorescence phenomena in photosynthetic membranes utilizing a master equation approach. Biophys J 25: 513–533

    CAS  PubMed  Google Scholar 

  • Papiz MZ, Hawthornthwaite AM, Cogdell RJ, Woolley KJ, Wightman PA, Ferguson LA and Lindsay JG (1989) Crystallization and characterization of two crystal forms of the B800-850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050. J Mol Biol 209: 833–835

    Article  CAS  PubMed  Google Scholar 

  • Parkes-Loach PS, Sprinkle JR and Loach PA (1988) Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately isolated α and β-polypeptides and bacteriochlorophyll a. Biochemistry 27: 2718–2727

    Article  CAS  PubMed  Google Scholar 

  • Pearlstein RM (1982) Chlorophyll singlet excitations. In Govindjee (ed) Photosynthesis, pp 293–330. Academic Press, New York

    Google Scholar 

  • Pearlstein RM (1992a) Kinetics of exciton trapping by monocoordinate reaction centers. J Lum 51: 139–147

    Article  CAS  Google Scholar 

  • Pearlstein RM (1992b) Theory of the optical spectra of the bacteriochlorophyll a antenna protein trimer from Prostheco-chloris aestuarii. Photosynth Res 31: 213–226

    Article  CAS  Google Scholar 

  • Picorel R, L’Ecuyer A, Potier M and Gingras G (1986) Structure of the B880 holochrome of Rhodospirillum rubrum as studied by the radiation inactivation method. J Biol Chem 261: 3020–3024

    CAS  PubMed  Google Scholar 

  • Pullerits T and Freiberg A (1992) Kinetic model of primary energy transfer and trapping in photosynthetic membranes. Biophys J 63: 879–896

    Google Scholar 

  • Pullerits T, Visscher KJ, Hess S, Sundström V, Freiberg A and van Grondelle R (1994a) Energy transfer in the inhomogeneously broadened core antenna of purple bacteria: A simultaneous fit of low intensity picosecond absorption and fluorescence kinetics. Biophys J 66: 236–248

    CAS  PubMed  Google Scholar 

  • Pullerits T, Chachisvilis M, Jones MR, Hunter CN and Sundström V (1994b) Exciton dynamics in the light-harvesting complexes of Rhodobacter sphaeroides. Chem Phys Lett 224: 355–365

    Article  CAS  Google Scholar 

  • Reddy NRS, Small GJ, Seibert M and Picorel R (1991) Energy transfer dynamics of the B800–B850 antenna complex of Rhodobacter sphaeroides: a hole burning study. Chem Phys Lett 181: 391–399

    Article  CAS  Google Scholar 

  • Reddy NRS, Picorel R and Small GJ (1992a) B896 and B870 components of the Rhodobacter sphaeroides antenna: A hole burning study. J Phys Chem 96: 6458–6464

    CAS  Google Scholar 

  • Reddy NRS, Cogdell RJ, Zhao L and Small GJ (1992b) Nonphotochemical hole-burning of the B800–B850 antenna complex of Rhodopseudomonas acidophila. Photochem Photobiol 57: 35–39

    Google Scholar 

  • Reddy NRS, Lyle PA and Small GJ (1992c) Applications of spectral hole burning spectroscopies to antenna and reaction center complex. Photosynth Res 31: 167–194

    Article  CAS  Google Scholar 

  • Rijgersberg CP, Van Grondelle R and Amesz J (1980) Energy transfer and bacteriochlorophyll fluorescence in purple bacteria at low temperature. Biochim Biophys Acta 592: 53–64

    CAS  PubMed  Google Scholar 

  • Robert B and Lutz M (1985) Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra. Biochim Biophys Acta 807: 10–23

    CAS  Google Scholar 

  • Scherz A and Parson WW (1984) Excitation interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766: 666–678

    CAS  Google Scholar 

  • Scherz A and Parson WW (1986) Interactions of Bacterio-chlorophylls in antenna Bacteriochlorophyll-protein complexes of photosynthetic bacteria. Photosynth Res 9: 21–32

    Article  CAS  Google Scholar 

  • Scherz A and Rosenbach-Belkin V (1989) Comparative study of optical absorption and circular dichroism of bacteriochlorophyll oligomers in Triton X-100, the antenna pigment B 850, and primary donor P-860 of photosynthetic bacteria indicates that all are similar dimers of bacteriochlorophyll a. Proc Natl Acad Sci USA 86: 1505–1509

    CAS  Google Scholar 

  • Scherz A, Rosenbach-Belkin V and Fisher JRE (1990) Distribution and self-organization of photosynthetic pigments in micelles: Implication for the assembly of light-harvesting complexes and reaction centers in the photosynthetic membrane. Proc Natl Acad Sci USA 87: 5430–5434

    CAS  PubMed  Google Scholar 

  • Sebban P, Robert B and Jolchine G (1985) Isolation and spectroscopic characterization of the B875 antenna complex of a mutant of Rhodopseudomonas sphaeroides. Photochem Photobiol 42: 573–578

    CAS  Google Scholar 

  • Shimada K, Mimuro M, Tamai N and Yamazaki I (1989) Excitation energy transfer in Rhodobacter sphaeroides analyzed by the time-resolved fluorescence spectroscopy. Biochim Biophys Acta 975: 72–79

    CAS  Google Scholar 

  • Shimada K, Yamazaki I, Tamai N and Mimuro M (1990) Excitation energy flow in a photosynthetic bacterium lacking B850. Fast energy transfer from B806 to B870 in Erythrobacter sp. strain OCh 114. Biochim Biophys Acta 1016: 266–271

    CAS  Google Scholar 

  • Shimada K, Hirota M, Nishimura Y, Yamazaki I and Mimuro M (1992) Excitation energy flow in Roseobacter denitrificans (Erythrobacter sp. Och 114) at low temperature. In: Murata M (ed) Research in Photosynthesis, Vol 1, pp 137–140. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shreve AP, Trautman JK, Frank HA, Owens TG and Albrecht AC (1991) Femtosecond energy-transfer processes in the B800–850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta 1058: 280–288

    CAS  PubMed  Google Scholar 

  • Stark W, Kühlbrandt W, Wildhaber I, Wehrli E and Mühlethaler K (1984) The structure of the photoreceptor unit of Rhodopseudomonas viridis. EMBO J 3: 777–783

    PubMed  Google Scholar 

  • Stark W, Jay F and Muehlethaler K (1986) Localization of reaction center and light harvesting complexes in the photosynthetic unit of Rhodopseudomonas viridis. Arch Microbiol 146: 130–133

    Article  CAS  Google Scholar 

  • Sundström V, van Grondelle R, Bergström H, Åkesson E and Gillbro T (1986) Excitation-energy transport in the bacteriochlorophyll antenna systems of Rhodospirillum rubrum and Rhodobacter sphaeroides, studied by low-intensity picosecond absorption spectroscopy. Biochim Biophys Acta 851: 431–446

    Google Scholar 

  • Theiler R and Zuber H (1984) The light-harvesting polypeptides of Rhodopseudomonas sphaeroides R-26.1. II. Conformational analyses by attenuated total reflection infrared spectroscopy and the possible molecular structure of the hydrophobic domain of the B 850 complex. Hoppe-Seyler’s Z Physiol Chem 365: 721–729

    CAS  PubMed  Google Scholar 

  • Theiler R, Suter F, Wiemken V and Zuber H (1984a) The light-harvesting polypeptides of Rhodopseudomonas sphaeroides R-26.1.I. Isolation, purification and sequence analyses. Hoppe-Seyler’s Z Physiol Chem 365: 703–719

    CAS  PubMed  Google Scholar 

  • Theiler R, Suter F, Zuber H and Cogdell RJ (1984b) A comparison of the primary structures of the two B800–850-apoproteins from wild-type Rhodopseudomonas sphaeroides strain 2.4.1. and a carotenoidless mutant strain R26.1. FEBS Lett 175: 231–237

    Article  CAS  Google Scholar 

  • Thornber JP, Cogdell RJ, Pierson BK and Seftor REB (1983) Pigment-protein complexes ofpurple photosynthetic bacteria: an overview. J Cell Biochem 23: 159–169

    Article  CAS  PubMed  Google Scholar 

  • Timpmann K, Freiberg A and Godik VI (1991) Picosecond kinetics of light excitations in photosynthetic purple bacteria in the temperature range of 300–4 K. Chem Phys Lett 182: 617–622

    Article  CAS  Google Scholar 

  • Timpmann K, Zhang FG, Freiberg A and Sundström V (1993) Detrapping of excitation energy from the reaction center in the photosynthetic purple bacterium Rhodospirillum rubrum. Biochim Biophys Acta 1183: 185–193

    CAS  Google Scholar 

  • Timpmann K, Freiberg A and Sundström V (1995) Energy trapping and detrapping in the photosynthetic bacterium Rhodopseudomonas viridis: Transfer-to-trap-limited dynamics. Chem Phys, in press

    Google Scholar 

  • Trautman JK, Shreve AP, Violette CA, Frank HA, Owens TG and Albrecht AC (1990) Femtosecond dynamics of energy transfer in B800–850 light-harvesting complexes of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 215–219

    CAS  PubMed  Google Scholar 

  • Trissl HW, Breton J, Deprez J, Dobek A and Leibl W (1990) Trapping kinetics, annihilation, and quantum yield in the photosynthetic purple bacterium Rp. viridis as revealed by electric measurement of the primary charge separation. Biochim Biophys Acta 1015: 322–333

    CAS  Google Scholar 

  • Trüper HG (1968) Ectothiorhodospira mobilis Pelsh, a photosynthetic sulphur bacterium depositing sulphur outside cells. J Bacteriol 95: 1910–1920

    PubMed  Google Scholar 

  • Valkunas L, Liuolia V and Freiberg A (1991) Picosecond processes in chromatophores at various excitation intensities. Photosynth Res 27: 83–95

    Article  CAS  Google Scholar 

  • Valkunas L, van Mourik F and van Grondelle R (1992) On the role of spectral and spatial antenna inhomogeneity in the process of excitation energy trapping in photosynthesis. J Photochem Photobiol B 15: 159–170

    Article  CAS  Google Scholar 

  • van der Laan H, Schmidt T, Visschers RW, Visscher KJ, Van Grondelle R and Volker S (1990) Energy transfer in the B800–850 antenna complex of purple bacteria Rhodobacter sphaeroides: a study by spectral hole-burning. Chem Phys Lett 170: 231–238

    Google Scholar 

  • van der Laan H, deCaro C, Schmidt TH, Visschers RW, van Grondelle R, Fowler GJS, Hunter CN and Vöker S (1993) Excited-state dynamics of mutated antenna complexes of purple bacteria studied by hole-burning. Chem Phys Lett 212: 569–581

    Google Scholar 

  • van Dorssen RJ, Hunter CN, Van Grondelle R, Korenhof AH and Amesz J (1988) Spectroscopic properties of antenna complexes of Rhodobacter sphaeroides in vivo. Biochim Biophys Acta 932: 179–188

    Google Scholar 

  • van Grondelle R, Bergström H, Sundström V and Gillbro T (1987) Energy transfer within the bacteriochlorophyll antenna of purple bacteria at 77 K studied by picosecond absorption recovery. Biochim Biophys Acta 894: 313–326

    Google Scholar 

  • van Grondelle R, Kramer HJM and Rijgersberg CP (1982) Energy transfer in the B800–850-carotenoid light-harvesting complex of various mutants of Rhodopseudomonas sphaeroides and of Rhodopseudomonas capsulata., Biochim Biophys Acta 682: 208–215

    Google Scholar 

  • van Grondelle R, Hunter CN, Bakker JGC and Kramer HJM (1983) Size and structure of antenna complexes of photosynthetic bacteria as studied by singlet-singlet quenching of the bacteriochlorophyll fluorescence yield. Biochim Biophys Acta 723: 30–36

    Google Scholar 

  • van Mourik F (1993) Spectral inhomogeneity of the bacterial light-harvesting antennae: Causes and consequences. Doctoral thesis, Free University, Amsterdam

    Google Scholar 

  • van Mourik F, van der Oord CJR, Visscher KJ, Parkes-Loach PS, Loach PA, Visschers RW and van Grondelle R (1991) Exciton interactions in the light-harvesting antenna of photosynthetic bacteria studied with triplet-singlet spectroscopy and singlet-triplet annihilation on the B820 subunit form of Rhodospirillum rubrum. Biochim Biophys Acta 1059: 111–119

    Google Scholar 

  • van Mourik F, Visschers RW and van Grondelle R (1992a) Energy transfer and aggregate size effects in the inhomogeneously broadened core light-harvesting complex of Rhodobacter sphaeroides. Chem Phys Lett 193: 1–7

    Google Scholar 

  • van Mourik F, Corten EPM, van Stokkum IHM, Visschers RW, Loach PA, Kraayenhof R and van Grondelle R (1992b) Self-assembly of the LH-1 light-harvesting antenna of Rhodospirillum rubrum: A time-resolved study of the aggregation of the B820 subunit. In: Murata M (ed) Research in Photosynthesis, Vol 1, pp 101–104. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • van Mourik F, Hawthornthwaite AM, Vonk C, Evans MB, Cogdell RJ, Sundström V and van Grondelle R (1992c) Spectroscopic characterization of the low-light B800–850 light-harvesting complex of Rhodopseudomonas palustris strain 2.1.6. Biochim Biophys Acta 1140: 85–93

    Google Scholar 

  • van Mourik F, Visschers RW, Mulder JM and van Grondelle R (1993) Spectral inhomogeneity of the light-harvesting antenna of Rhodospirillum rubrum probed by T-S spectroscopy and singlet triplet annihilation at low temperatures, Photochem Photobiol 57: 19–23

    Google Scholar 

  • Visscher KJ, Bergström H, Sundström V, Hunter CN and van Grondelle R (1989) Temperature dependence of energy transfer from the long wavelength antenna BChl-869 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177 K, studied by picosecond absorption spectroscopy. Photosynth Res 22: 211–217

    Article  CAS  Google Scholar 

  • Visscher KJ, Gulbinas V, Cogdell RJ, van Grondelle R and Sundström V (1993a) Ultrafast energy transfer within the light-harvesting antenna of photosynthetic purple bacteria. In: Martin J-L, Migus A, Mourou, GA and Zewail AH (eds) Ultrafast Phenomena VIII, Springer Series in Chemical Physics, Vol. 55, pp 559–561 Springer-Verlag. Berlin, Heidelberg

    Google Scholar 

  • Visscher KJ, Hess S, Pullerits T, Feldshtein F, Babin A, Gulbinas V, van Grondelle R and Sundström V (1994) Ultrafast energy transfer in LH2 antenna complexes of the photosynthetic purple bacteria Rhodobacter sphaeroides, Rhodopseudomonas palustris and Rhodopseudomonas acidophila. Lith J Phys 34: 79–88

    Google Scholar 

  • Visschers RW, Chang MC, van Mourik F, Parkes-Loach PS, Heller BA, Loach PA and van Grondelle R (1991) Reversible dissociation of the B873 light-harvesting complex from Rhodospirillum rubrum G9+. Biochemistry 27: 1004–1014

    Google Scholar 

  • Visschers RW, Nunn R, Calkoen F, van Mourik F, Hunter CN, Rice DW and van Grondelle R (1992) Spectroscopic characterization of B820 subunits from light-harvesting complex I of Rhodospirillum rubrum and Rhodobacter sphaeroides prepared with the detergent n-octyl-rac-2,3-dipropylsulfoxide. Biochim Biophys Acta 1100: 259–266

    CAS  Google Scholar 

  • Visschers RW, van Mourik F, Monshouwer R and van Grondelle R (1993a) Inhomogeneous spectral broadening of the B820 subunit form of LH1. Biochim Biophys Acta 1141: 238–244

    CAS  Google Scholar 

  • Visschers RW, van Grondelle R and Robert B (1993b) Resonance Raman spectroscopy of the B820 subunit of the core antenna from Rhodospirillum rubrum G9. Biochim Biophys Acta 1183: 369–373

    CAS  Google Scholar 

  • Vos M, van Grondelle R, van der Kooij FW, van de Poll D, Amesz J and Duysens LNM (1986) Singlet-singlet annihilation at low temperatures in the antenna of purple bacteria. Biochim Biophys Acta 850: 501–512

    CAS  Google Scholar 

  • Vos M, van Dorssen RJ, Amesz J, van Grondelle R and Hunter CN (1988) The organization of the photosynthetic apparatus of Rhodobacter sphaeroides: studies of antenna mutants using singlet-singlet quenching. Biochim Biophys Acta 933: 132–140

    CAS  Google Scholar 

  • Vredenberg W and Duysens LNM (1963) Transfer of energy from bacteriochlorophyll to a reaction center during bacterial photosynthesis. Nature 197: 335–357

    Google Scholar 

  • Wang RT and Clayton RK (1971) The absolute yield of bacteriochlorophyll fluorescence in vivo. Photochem Photobiol 13: 215–224

    CAS  PubMed  Google Scholar 

  • Westerhuis WHJ, Vos M, van Dorssen RJ, van Grondelle R, Amesz J and Niederman RA (1987) Supramolecular organization of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides studied by excitation energy transfer and singlet-singlet annihilation at low temperature in phospholipid-enriched membranes. In: Biggins J (ed) Progress in Photosynthesis Research, Vol 1, pp 29–32. Marinus Nijhoff Publisher, Dordrecht

    Google Scholar 

  • Westerhuis WHJ, Xiao Z and Niederman RA (1992) Oligomerization-state dependent spectroscopic properties of the B850 light-harvesting complex of Rhodobacter sphaeroides R-26.1. In: Murata M (ed) Research in Photosynthesis, Vol 1, pp 37–40. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yeates TO, Komiya H, Rees DC, Allen JP and Feher G (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: Part 3. Membrane-protein interactions. Proc Natl Acad Sci USA 84: 6438–6442

    CAS  PubMed  Google Scholar 

  • Zhang FG, Gillbro T, van Grondelle R and Sundström V (1992a) Dynamics of energy transfer and trapping in the light-harvesting antenna of Rhodopseudomonas viridis. Biophys J 61: 694–703

    CAS  PubMed  Google Scholar 

  • Zhang FG, van Grondelle Rand Sundström V (1992b) Pathways of energy flow through the light-harvesting antenna of the photosynthetic purple bacterium Rhodobacter sphaeroides. Biophys J 61: 911–920

    CAS  Google Scholar 

  • Zuber H (1985) Structure and function of light-harvesting complexes and their polypeptides. Photochem Photobiol 42: 821–844

    CAS  Google Scholar 

  • Zuber H and Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability. In: Scheer H (ed) The Chlorophylls, pp 627–703. CRC Press, Boca Raton, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sundström, V., van Grondelle, R. (1995). Kinetics of Excitation Transfer and Trapping in Purple Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics