Skip to main content

Anoxygenic Phototrophic Bacteria: Model Organisms for Studies on Cell Wall Macromolecules

  • Chapter
  • 2437 Accesses

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

The purple bacteria — being spread in the different subdivisions of the Proteobacteria — have a Gram-negative cell wall organization. Satisfactory matching of lipopolysaccharide composition, in particular of the conservative lipid A but also of the core-regions, with genetic studies confirms in many cases the phylogenetic relationship between distinct species of purple bacteria and their nonphototrophic relatives. The deep phylogenetical separation between the green sulfur bacteria (Chlorobiaceae) and the green non-sulfur bacteria (Chloroflexaceae) finds also a remarkable confirmation in the analyses of cell wall composition: The cell wall of Chlorobiaceae is typically Gram-negative with A1 γ-typ peptidoglycan and lipopolysaccharide, whereas that of Chloroflexus aurantiacus has characteristic properties in common with the Gram-positive cell wall type.

The different lipid A types (lipidAGlcN, lipidAHyb, lipidADAG) found in purple bacteria have proven to be either highly toxic (Rubrivivax gelatinosus) or to exhibit little (Rhodocyclus tenuis) or no toxicity (Rhodobacter capsulatus, Rhodobacter sphaeroides, Rhodopseudomonas viridis). A comparison of their structure-endotoxic activity relationships may contribute to the knowledge of the structural requirements for exhibiting endotoxic activity as well as of the fate and site of action of endotoxin in the higher organism.

The complete three-dimensional structure of the porin of Rhodobacter capsulatus 37b4 (and recently also that of Rhodopseudomonas blastica DSM 2131) has been identified at atomic resolution by X-ray diffraction of crystals. The functional complex is a trimer built up by three identical subunits each forming a pore. Each subunit consists of an antiparallel 16-stranded β-barrel twisted in the usual right-handed manner. The strands are connected mainly by short loops. Among the longer loops, the largest one runs into the inside of the barrel and narrows the channel, defining the pore size. A strong charge-gradient exists within the pore. The porin of Rhodobacter capsulatus is assumingly a paradigm for the hydrophilic pores presently considered as nonspecific of the outer membrane of Proteobacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahamed NM, Mayer H, Biebl H and Weckesser J (1982) Lipopolysaccharide with 2,3-diamino-2,3-dideoxyglucose containing lipid A in Rhodopseudomonas sulfoviridis. FEMS Microbiol Lett 14: 27–30

    Article  CAS  Google Scholar 

  • Arata S, Shiga T, Mizutami T, Mashimo J, Kasai N and Zabo L (1992) Structure of a new type of lipid A from Pseudomonas vesicularis. Second Conference of the International Endotoxin Society, Aug. 17–20, 1992, Vienna, Austria

    Google Scholar 

  • Baumgardner D, Deal C and Kaplan S (1980) Protein composition of Rhodopseudomonas sphaeroides outer membrane. J Bacteriol 143: 265–273

    CAS  PubMed  Google Scholar 

  • Beck H, Hegemann GD and White D (1990) Fatty acid and lipopolysaccharide analyses of three Heliobacterium spp. FEMS Microbiol Lett 69: 229–232

    Article  CAS  Google Scholar 

  • Beer-Romero P, Favinger JL and Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49: 451–454

    Article  CAS  Google Scholar 

  • Benz R, Woitzik D, Flammann HT and Weckesser J (1987) Pore forming activity of the major outer membrane protein of Rhodobacter capsulatus in lipid bilayer membranes. Arch Microbiol 148: 226–230

    Article  CAS  Google Scholar 

  • Beveridge TJ and Graham LL (1991) Surface layers of bacteria. Microbiol Rev 55: 684–705

    CAS  PubMed  Google Scholar 

  • Bhat UR, Carlson RW, Busch M and Mayer H (1991) Distribution and phylogenetic significance of 27-hydroxy-octacosanoic acid in lipopolysaccharides from bacteria belonging to the alpha-2 subgroup of Proteobacteria. Int J Syst Bacteriol 41: 213–217

    CAS  PubMed  Google Scholar 

  • Bollivar DW and Bauer CE (1992) Association of tetrapyrrole intermediates in the bacteriochlorophyll a biosynthetic pathway with the major outer-membrane porin protein of Rhodobacter capsulatus. Biochem J 282: 471–476

    CAS  PubMed  Google Scholar 

  • Bowman JP, Skerratt JH, Nichols PD and Sly LI (1991) Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiol Ecol 85: 15–22

    Article  CAS  Google Scholar 

  • Bräutigam E, Fiedler F, Woitzik D, Flammann HT and Weckesser J (1988) Capsule polysaccharide-protein-peptidoglycan complex in the cell envelope of Rhodobacter capsulatus. Arch Microbiol 150: 567–573

    Article  Google Scholar 

  • Brandenburg K, Mayer H, Koch MHJ, Weckesser J, Rietschel ET and Seydel U (1993) Influence of the supramolecular structure of free lipid A on its biological activity. Eur J Biochem 218: 555–563

    Article  CAS  PubMed  Google Scholar 

  • Butz S, Benz R, Wacker T, Welte W, Lustig A, Plapp R and Weckesser J (1993) Biochemical characterization and crystallization of porin from Rhodopseudomonas blastica. Arch Microbiol 159: 301–307

    Article  CAS  Google Scholar 

  • Carfield AP and Schauer R (1982) Occurrence of sialic acids. In: Schauer R (ed) Sialic Acids, pp 5–39. Cell Biol Monogr 10, Springer, Wien

    Google Scholar 

  • Carpati CM, Astiz ME, Saha DC and Rackow EC (1993) Diphosphoryl lipid A from Rhodopseudomonas sphaeroides induces tolerance to endotoxin-shock in the rat. Critical Care Medicine 21: 753–758

    CAS  PubMed  Google Scholar 

  • Cowan SW, Schirmer T, Rummel G, Steiert M, Gosh R, Pauptit RA, Jansonius JN and Rosenbusch JP (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358: 727–733

    Article  CAS  PubMed  Google Scholar 

  • Deal CD and Kaplan S (1983a) Solubilization, isolation, and immunochemical characterization of the major outer membrane protein from Rhodopseudomonas sphaeroides. J Biol Chem 258: 6524–6529

    CAS  PubMed  Google Scholar 

  • Deal CD and Kaplan S (1983b) Physical and chemical characterization of the major outer membrane protein of Rhodopseudomonas sphaeroides. J Biol Chem 258: 6530–6536

    CAS  PubMed  Google Scholar 

  • Deal CD and Kaplan S (1983c) Immunochemical relationship of the major outer membrane protein of Rhodopseudomonas sphaeroides 2.4.1 to proteins of other photosynthetic bacteria. J Bacteriol 154, 1015–1020

    CAS  PubMed  Google Scholar 

  • Drews G, Weckesser J and Mayer H (1978) Cell envelopes. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 61–77. Plenum Publishing Corporation, New York

    Google Scholar 

  • Evers D, Weckesser J and Drews G (1984) Protein on the cell surface of the moderately halophilic phototrophic bacterium Rhodospirillum salexigens. J Bacteriol 160: 107–111

    CAS  PubMed  Google Scholar 

  • Evers D, Weckesser J and Jürgens UJ (1986) Chemical analyses on cell envelope polymers of the halophilic, phototrophic Rhodospirillum salexigens. Arch Microbiol 45: 245–258

    Google Scholar 

  • Flammann HT and Weckesser J (1984) Porin isolated from the cell envelope of Rhodopseudomonas capsulata. J Bacteriol 159: 410–412

    CAS  PubMed  Google Scholar 

  • Framberg K, Mayer H, Weckesser J and Drews G (1974) Serologische Untersuchungen an isolierten Lipopoly-sacchariden aus Rhodopseudomonas palustris Stämmen. Arch Microbiol 98: 239–250

    Article  Google Scholar 

  • Galanos C, Roppel J, Weckesser J, Rietschel ET and Mayer H (1977) Biological activities of lipopolysaccharides and lipid A from Rhodospirillaceae. Infect Immun 16: 407–412

    CAS  PubMed  Google Scholar 

  • Gazzano-Santoro H, Parent JB, Grinna L, Horwitz A, Parsons T, Theofan G, Elsbach P, Weiss J and Conlon PJ (1992) High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun 60: 4754–4761

    CAS  PubMed  Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E and Woese CR (1985) The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus. Syst Appl Microbiol 6: 152–156

    CAS  Google Scholar 

  • Golecki JR and Drews G (1980) Cellular organization of the halophilic phototrophic bacterium strain WS 68. Eur J Cell Biol 22: 654–660

    CAS  PubMed  Google Scholar 

  • Golenbock DT, Hampton RY, Qureshi N, Takayama K and Raetz CRI (1991) Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 266: 19490–19498

    CAS  PubMed  Google Scholar 

  • Hancock RFW (1991) Bacterial outer membranes: Evolving concepts. ASM-News 57: 175–182

    Google Scholar 

  • Hollingsworth RI and Carlson RW (1989) 27-Hydroxy-octacosanoic acid is a major structural fatty acyl component of the lipopolysaccharide of Rhizobium trifolii ANU 843. J Biol Chem 264: 9300–9303

    CAS  PubMed  Google Scholar 

  • Holst O, Borowiak D, Weckesser J and Mayer H (1983) Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100. Eur J Biochem 137: 325–332

    Article  CAS  PubMed  Google Scholar 

  • Holst O and Brade M (1992) Chemical structure of the core region of lipopolysaccharides. In: Morrison DC and Ryan JL (eds) Bacterial Endotoxic Lipopolysaccharides, Vol I, Molecular Biochemistry and Cellular Biology, pp 132–204. CRC Press, Boca Raton

    Google Scholar 

  • Hurlbert RE, Hurlbert IM (1977) Biological and physicochemical properties of the lipopolysaccharide of Chromatium vinosum. Infect Immun 16: 983–994

    CAS  PubMed  Google Scholar 

  • Hurlbert RE, Weckesser J, Mayer H and Fromme I (1976) Isolation and characterization of the lipopolysaccharide of Chromatium vinosum. Eur J Biochem 68: 365–371

    Article  CAS  PubMed  Google Scholar 

  • Jürgens UJ and Weckesser J (1990) The cell envelope of cyanobacteria. In: Kumar HD (ed) Phycotalk, Vol 2, pp 37–57. Rastogi and Co, Meerut, India

    Google Scholar 

  • Jürgens UJ, Meissner J, Fischer U, König WA and Weckesser J (1987) Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum. Arch Microbiol 148: 72–76

    Article  Google Scholar 

  • Jürgens UJ, Meissner J, Reichenbach H and Weckesser J (1989) L-Ornithine containing peptidoglycan-polysaccharide complex from the cell wall of the gliding bacterium Herpetosiphon aurantiacus. FEMS Microbiol Lett 60: 247–250

    Google Scholar 

  • Kasai N, Arata S, Mashima JI, Akiyama Y, Tanaka C, Egawa K and Tanaka S (1987) Pseudomonas diminuta LPS with a new endotoxic lipid A structure. Biochem Biophys Res Commun 142: 972–978

    Article  CAS  PubMed  Google Scholar 

  • Kirkland TN, Qureshi N and Takayama K (1991) Diphosphoryl lipid A derived from lipopolysaccharide (LPS) of Rhodo-pseudomonas sphaeroides inhibits activation of 70Z/3 cells by LPS. Infect Immun 59: 131–136

    CAS  PubMed  Google Scholar 

  • Kompanseva EI and Gorlenko VM (1985) A new species of the moderately halophilic purple bacterium Rhodospirillum mediosalinum sp. nov. Microbiology 53: 775–781

    Google Scholar 

  • Krauss JH, Weckesser J and Mayer H (1988a) Electrophoretic analysis of lipopolysaccharides of purple nonsulfur bacteria. Int J Syst Bacteriol 38: 157–163

    CAS  Google Scholar 

  • Krauss JH, Reuter G, Schauer R, Weckesser J and Mayer H (1988b) Sialic acid-containing lipopolysaccharides in purple nonsulfur bacteria. Arch Microbiol 50: 584–589

    Google Scholar 

  • Krauss J, Seydel U, Weckesser J and Mayer H (1989) Structural analysis of the nontoxic lipid A of Rhodobacter capsulatus 37b4. Eur J Biochem 180: 519–526

    Article  CAS  PubMed  Google Scholar 

  • Krauss JH, Himmelspach K, Reuter G, Schauer R and Mayer H (1992) Structural analysis of a novel sialic-acid-containing trisaccharide from Rhodobacter capsulatus 37b4 lipo-polysaccharide. Eur J Biochem 204: 217–223

    Article  CAS  PubMed  Google Scholar 

  • Kreusch A, Weiss MS, Welte W, Weckesser J and Schulz GE (1991) Crystals of an integral membrane protein diffracting to 1.8 A resolution. J Mol Biol 217: 9–10

    Article  CAS  PubMed  Google Scholar 

  • Kreusch A, Neubüser A, Schiltz E, Weckesser J and Schulz ER (1994) The structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å. J Protein Science 3: 58–63

    CAS  Google Scholar 

  • Kuhn HM, Brade I, Appelmelk BJ, Kusomoto S, Rietschel TTh and Brade H (1992) Characterization of the epitope specificity of murine monoclonal antibodies directed against lipid A. Infect Immun 60: 2201–2210

    CAS  PubMed  Google Scholar 

  • Lane BC, Hurlbert RE (1980a) Characterization of the cell wall and the cell wall proteins of Chromatium vinosum. J Bacteriol 141: 1386–1398

    CAS  PubMed  Google Scholar 

  • Lane BC, Hurlbert RE (1980b) Isolation and partial characterization of the major outer membrane protein of Chromatium vinosum. J Bacteriol 143: 349–354

    CAS  PubMed  Google Scholar 

  • Loppnow H, Libby P, Freudenberg M, Krauss JH, Weckesser J and Mayer H (1990) Cytokine induction by lipopoly-saccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect Immun 58: 3743–3750

    CAS  PubMed  Google Scholar 

  • Loppnow H, Rietschel ET, Brade H, Schönbeck U, Libby P, Wang MH, Heine H, Feist W, Dürrbaum-Landmann I, Ernst M, Brandt E, Grage-Griebenow E, Ulmer AJ, Campos-Portuguez S, Schade U, Kirikae T, Kusumoto S, Krauss J, Mayer H, Flad HD (1993) Lipid A precursor Ia (compound 406) and Rhodobacter capsulatus lipopolysaccharide: Potent endotoxin antagonists in the human system in vitro. In: Levin J, Alving CR, Munford RS, Stütz PL (eds) Bacterial Endotoxin: Recognition and Effector Mechanisms, pp 337–348. Excerpta Medica, Amsterdam

    Google Scholar 

  • Lynn WA and Golenbock DT (1992) Lipopolysaccharide antagonists, Immunology Today 13: 271–276

    Article  CAS  PubMed  Google Scholar 

  • Lynn WA, Raetz CRH, Qureshi N and Golenbock (1991) Lipopolysaccharide-induced stimulation of CD11b/CD18 expression on neutrophils. Evidence of specific receptor-based response and inhibition by lipid A-based antagonists. J Immunol 147: 3072–3079

    CAS  PubMed  Google Scholar 

  • Madigan MT (1992) The family Heliobacteriaceae. In: Balows A, Trüper H, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp 1981–1992. Springer, Heidelberg

    Google Scholar 

  • Masoud H, Lindner B, Weckesser J and Mayer H. (1990) The structure of the lipid A component of Rhodocyclus gelatinosus Dr2 lipopolysaccharide. Syst Appl Microbiol 13: 227–233

    CAS  Google Scholar 

  • Masoud H, Urbanik-Sypniewska T, Lindner B, Weckesser J and Mayer H. (1991a) The structure of the lipid A component of Sphaerotilus natans. Arch Microbiol 156: 167–175

    CAS  Google Scholar 

  • Masoud H, Mayer H, Kontrohr T, Holst O and Weckesser J (1991b) The structure of the core region of the lipopoly-saccharide from Rhodocyclus gelatinosus Dr2. Syst Appl Microbiol 14: 222–227

    CAS  Google Scholar 

  • Mathison JC, Tobias PS, Wolfson E and Ulevitch RJ (1992) Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of Gram-negative LPS. J Immunol 149: 200–206

    CAS  PubMed  Google Scholar 

  • Mayer H (1984) Significance of lipopolysaccharide structure for questions of taxonomy and phylogenetical relatedness of Gramnegative bacteria. In: Haber E (ed) The Cell Membrane. Its Role in Interaction with the Outside World, pp 71–83. Plenum Publishing Corporation, New York

    Google Scholar 

  • Mayer H and Weckesser J (1984) ‘Unusual’ lipidA’: Structures, taxonomical relevance and potential value for endotoxin research. In: Rietschel ET (ed) Handbook of Endotoxin, Vol 1, Chemistry of Endotoxin, pp 221–247. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Mayer H, Bock E and Weckesser J (1983) 2.3-Diamino-2.3-dideoxglucose containing lipid A in the Nitrobacter strain X14. FEMS Microbiol Lett 17: 93–96

    Article  CAS  Google Scholar 

  • Mayer H, Salimath PV, Holst O and Weckesser J (1984) Unusual lipid A types in phototrophic bacteria and related species. Rev Infect Diseases 6: 542–545

    CAS  Google Scholar 

  • Mayer H, Tharanathan RN and Weckesser J (1985) Analysis of lipopolysaccharides of Gram-negative bacteria. Meth Microbiol 18: 157–207

    CAS  Google Scholar 

  • Mayer H, Masoud H, Urbanik-Sypniewska T and Weckesser J (1989) Lipid A composition and phylogeny of Gram-negative bacteria. Bull Japan Federation Culture Collections 5: 19–25

    Google Scholar 

  • Mayer H, Campos-Portuguez SA, Busch M, Urbanik-Sypniewska T and Bhat UR (1990a) Lipid A variants-or, how constant are the constant regions in lipopolysaccharides? In: Nowotny A, Spitzer JJ and Ziegler EJ (eds) Cellular and Molecular Aspects of Endotoxin Reactions, pp 111–120. Elsevier Science Publications, Amsterdam

    Google Scholar 

  • Mayer H, Krauss JH, Yokota A and Weckesser J (1990b) Natural variants of lipid A. In: Friedman H, Klein W, Nakano M and Nowotny A (eds) Endotoxin, pp 45–70. Plenum Publishing, New York

    Google Scholar 

  • Mayer H, Rau H, Campos-Portuguez S, Kuhn HM, Tobias PS and Freudenberg MA (1992) Differences and correlations between lipid A and lipid A variants in serological specificity, LBP reactivity and lethality. Second Conference of the International Endotoxin Society. Aug. 17–20, 1992, Vienna, Austria

    Google Scholar 

  • Meissner J, Fischer U and Weckesser (1987) The lipopolysaccharide of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum. Arch Microbiol 149: 125–129

    CAS  Google Scholar 

  • Meissner J, Jürgens UJ, Weckesser J (1988a) Chemical analysis of peptidoglycans from species of Chromatiaceae and Ectothiorhodospiraceae. Z Naturforsch 43c: 823–826

    Google Scholar 

  • Meissner J, Jürgens UJ and Weckesser J (1988b) Chemical analysis of peptidoglycans from species of Chromatiaceae and Ectothiorhodospiraceae. Z Naturforsch 43c: 823–826

    Google Scholar 

  • Meissner J, Pfennig N, Krauss JH, Mayer H and Weckesser J (1988c) Lipopolysaccharides of Thiocystis violacea, Thiocapsa pfennigii, and Chromatium tepidum, species of the family Chromatiaceae. J Bacteriol 170: 3217–3222

    CAS  PubMed  Google Scholar 

  • Meissner J, Borowiak D, Fischer U, Weckesser J (1988d) The lipopolysaccharide of the phototrophic bacterium Ectothiorhodospira vacuolata. Arch Microbiol 149: 245–248

    CAS  Google Scholar 

  • Meissner J, Krauss JH, Jürgens UJ, and Weckesser J (1988e) Absence of a characteristic cell wall lipopolysaccharide in the phototrophic bacterium Chloroflexus aurantiacus. J Bacteriol 170: 3213–3216

    CAS  PubMed  Google Scholar 

  • Messner P and Sleytr UB (1992) Crystalline bacterial cellsurface layers. Adv Microb Physiol 33: 213–275

    CAS  PubMed  Google Scholar 

  • Moran AP, Zähringer U, Seydel U, Scholz D, Stütz P and Rietschel ET (1991) Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O: 2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose and 2,3-diamino-2,3-dideoxy-D-glucose. Eur J Biochem 198: 459–469

    Article  CAS  PubMed  Google Scholar 

  • Murray RGE, Brenner DJ, Colwell RR, De Vos P, Goodfellow M, Grimont PAD, Pfennig N, Stackebrandt E and Zavarzin GA (1990) Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40: 213–215

    Google Scholar 

  • Nestel U, Wacker T, Woitzik D, Weckesser J, Kreutz W and Welte W (1989) Crystallization and preliminary X-ray analysis of porin from Rhodobacter capsulatus. FEBS Lett 242: 405–408

    Article  CAS  PubMed  Google Scholar 

  • Newton JW (1968) Linkages in the walls of Rhodospirillum rubrum and its bacilliform mutants. Biochim Biophys Acta 165: 534–537

    CAS  Google Scholar 

  • Nikaido H (1992) Porins and specific channels of bacterial outer membranes. Molec Biol 6: 435–442

    CAS  Google Scholar 

  • Oelze J, Golecki JR, Kleinig H and Weckesser J (1975). Characterization of two cell-envelope fractions from chemotrophically grown Rhodospirillum rubrum. Antonie van Leeuwenhoek 41: 273–286

    CAS  PubMed  Google Scholar 

  • Olsen GJ and Woese CR (1993) Ribosomal RNA: A key to phylogeny. FASEB J 7: 113–123

    CAS  PubMed  Google Scholar 

  • Omar AS, Flammann HT, Golecki JR and Weckesser J (1983a). Detection of capsule and slime polysaccharide layers in two strains of Rhodopseudomonas capsulata. Arch Microbiol 134: 114–117

    CAS  Google Scholar 

  • Omar AS, Flammann HT, Borowiak D and Weckesser J (1983b) Lipopolysaccharides of two strains of the phototrophic bacterium Rhodopseudomonas capsulata. Arch Microbiol 134: 212–216

    CAS  PubMed  Google Scholar 

  • Omar AS, Weckesser J and Mayer H (1983c) Different polysaccharides in the external layers (capsule and slime of the cell envelope of Rhodopseudomonas capsulata Sp 11. Arch Microbiol 136: 291–296

    Article  CAS  PubMed  Google Scholar 

  • Pietsch K, Weckesser J, Fischer U and Mayer H (1990) The lipopolysacccharides of Rhodospirillum rubrum, Rhodospirillum molischianum, and Rhodopila globiformis. Arch Microbiol 154: 433–437

    Article  CAS  Google Scholar 

  • Qureshi N, Honovich JP, Hara H, Cotter RJ and Takayama K (1988) Location of fatty acids in lipid A obtained from lipopolysaccharide of Rhodopseudomonas sphaeroides ATCC 17023. J Biol Chem 263: 5502–5504

    CAS  PubMed  Google Scholar 

  • Qureshi N, Takayama K, Meyer KC, Kirkland TN, Bush A, Chen L, Wang R and Cotter RJ (1991) Chemical reduction of 3-oxo and unsaturated groups in fatty acids of diphosphoryl lipid A from the lipopolysaccharide of Rhodopseudomonas sphaeroides. J Biol Chem 266: 6532–6538

    CAS  PubMed  Google Scholar 

  • Qureshi N, Takayama K, Hofman J, Zuckerman SH (1993) Diphosphoryl lipid A obtained from the nontoxic lipopolysaccharide of Rhodopseudomonas sphaeroides is an LPS antagonist and an inducer of corticosteroids. In: Levin J, Alving CR, Munford RS, Stütz PL (eds) Bacterial Endotoxin: Recognition and Effector Mechanisms, pp 361–371. Excerpta Medica, Amsterdam

    Google Scholar 

  • Radziejewska-Lebrecht J, Feige U, Mayer H and Weckesser J (1981) Structural studies on the heptose-region of lipopolysaccharides from Rhodospirillum tenue. J Bacteriol 145: 138–144

    CAS  PubMed  Google Scholar 

  • Raetz CRH (1992) Biosynthesis of lipid A. In: Morrison DC and Ryan JL (eds) Bacterial Endotoxic Lipopolysaccharides, Vol I, Molecular Biochemistry and Cellular Biology, pp 67–80. CRC Press, Boca Raton

    Google Scholar 

  • Rau H, Yokota A, Sakane T and Mayer H (1993) Isolation and chemical characterization of lipopolysaccharides from four Aquaspirillum species (Aquaspirillum itersonii subsp. nipponicum IFO 13615, Aquaspirillum polymorphum IFO 13961, Aquaspirillum aquaticum IFO 14918, Aquaspirillum metamorphum IFO 13960 and Aquaspirillummetamorphum IFO 13960 mutant strain 12–3). J Gen Appl Microbiol 39: 547–557

    CAS  Google Scholar 

  • Rietschel ET, Brade L, Schade U, Seydel U, Zähringer U, Kusumoto S and Brade H (1987) Bacterial endotoxin: Properties and structure of biologically active domains. In: Schrinner E, Richmond MH, Seibert G and Schwarz U (eds) Surface Structures of Microorganisms and their Interactions with the Mammalian Host, pp 1–41. Proc. Workshop Conf., Hoechst. Verlag Chemie, Weinheim

    Google Scholar 

  • Rietschel ET, Brade L, Lindner B and Zähringer U (1992) Biochemistry of lipopolysaccharides. In: Morrison DC and Ryan JL (eds) Bacterial Endotoxic Lipopolysaccharides, Vol I, Molecular Biochemistry and Cellular Biology, pp 3–41. CRC Press, Boca Raton

    Google Scholar 

  • Rock CS and Lowry SF (1991) Tumor necrosis factor-α J Surgical Res 51: 434–445

    CAS  Google Scholar 

  • Roppel J, Mayer H and Weckesser J (1975) Identification of a 2,3-diamino-2,3-dideoxyhexose in the lipid A component of lipopolysaccharides of Rhodopseudomonas viridis and Rhodopseudomonas palustris. Carbohyd Res 40: 31–40

    CAS  Google Scholar 

  • Rózalski A and Kotelko K (1985) Comparison of lipopolysaccharides of Rhodomicrobium vannielii grown in photo-and chemotrophic conditions. Archivum Immunologiae et Therapiae Experimentalis 33: 387–395

    PubMed  Google Scholar 

  • Salimath PV, Weckesser J, Strittmatter W and Mayer H (1983) Structural studies on the non-toxic lipid A from Rhodopseudomonas sphaeroides ATCC 17023. Eur J Biochem 136: 195–200

    Article  CAS  PubMed  Google Scholar 

  • Salimath PV, Tharanathan RN, Weckesser J and Mayer H (1984) The structure of the polysaccharide moiety of Rhodopseudomonas sphaeroides ATCC 17023 lipopolysaccharide, Eur J Biochem 144: 227–232

    Article  CAS  PubMed  Google Scholar 

  • Schiltz E, Kreusch A, Nestel U, Schulz GE (1991) Primary structure of porin from Rhodobacter capsulatus. Eur J Biochem 199: 587–594

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer E, Weckesser J, Warth R and Mayer H (1982) Peptidoglycan of Rhodopseudomonas viridis: Partial lack of N-acetyl substitution of glucosamine. J Bacteriol 149: 151–155

    CAS  PubMed  Google Scholar 

  • Schumann RR (1990) Function of the lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: A short review. Res. Immunol 143: 11–15

    Google Scholar 

  • Stackebrandt E, Murray RGE and Trüper HG (1988a). Proteobacteria classis nov., a name for the phylogenetic taxon that includes the ‘purple bacteria and their relatives’. Int J Syst Bacteriol 38: 312–325

    Google Scholar 

  • Stackebrandt E, Embley M and Weckesser J (1988b) Phylogenetic, evolutionary, and taxonomic aspects of phototrophic eubacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 201–215. Plenum Publishing Corporation, New York

    Google Scholar 

  • Strittmatter W, Weckesser J, Salimath PV and Galanos C (1983) Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J Bacteriol 155: 153–158

    CAS  PubMed  Google Scholar 

  • Takada H and Kotani S (1992) Structure-function relationships of lipid A. In: Morrison DC and Ryan JL (eds) Bacterial Endotoxic Lipopolysaccharides, Vol I, Molecular Biochemistry and Cellular Biology, pp 107–134. CRC Press, Boca Raton

    Google Scholar 

  • Takayama K, Qureshi N, Beutler B and Kirkland TN (1989) Diphosphoryl lipid A from Rhodopseudomonas sphaeroides ATCC 17023 blocks induction of cachectin in macrophages by lipopolysaccharide. Infect Immun 57: 1336–1338

    CAS  PubMed  Google Scholar 

  • Tadros MH, Drews G and Evers D (1982) Peptidoglycan and protein, the major cell wall constituents of the obligate halophilic bacterium Rhodospirillum salexigens. Z Naturforsch 37c: 210–212

    CAS  Google Scholar 

  • Tharanathan RN, Salimath PV, Weckesser J and Mayer H (1985) The structure of lipid A from the lipopolysaccharide of Rhodopseudomonas gelatinosa 29/1. Arch Microbiol 141: 279–283

    Article  CAS  Google Scholar 

  • Weckesser J and Jürgens UJ (1988) Cell walls and external layers. Meth Enzymol 167: 173–186

    CAS  Google Scholar 

  • Weckesser J and Mayer H (1987) Lipopolysaccharide aus phototrophen Bakterien: Ein Beitrag zur Phylogenie und zur Endotoxin-Forschung. Forum Mikrobiologie 10: 242–248

    CAS  Google Scholar 

  • Weckesser J and Mayer H (1988) Different lipid A types in lipopolysaccharides of phototrophic and related nonphototrophic bacteria. FEMS Microbiol Rev 54: 143–154

    CAS  Google Scholar 

  • Weckesser J, Drews G and Ladwig R (1972) Localisation and biological and physicochemical properties of cell wall lipopolysaccharide of Rhodopseudomonas capsulata. J Bacteriol 110: 346–353

    CAS  PubMed  Google Scholar 

  • Weckesser J, Drews G and Mayer H (1979) Lipopolysaccharides of photosynthetic prokaryotes. Annu. Rev. Microbiol. 33: 215–239

    Article  CAS  PubMed  Google Scholar 

  • Weckesser J, Mayer H, Metz E and Biebl H (1983) Lipopolysaccharide of Rhodocyclus purpureus: Taxonomic implication. Int J Syst Bacteriol 33: 53–56

    CAS  Google Scholar 

  • Weckesser J, Zalman LS and Nikaido H (1984) Porin from Rhodopseudomonas sphaeroides. J Bacteriol 159: 199–205

    CAS  PubMed  Google Scholar 

  • Weibgen U, Russa R, Yokota A and Mayer H (1993) Taxonomic significance of the lipopolysaccharide composition of the three biovars of Agrobacterium tumefaciens. Syst Appl Microbiol 15: 177–182

    Google Scholar 

  • Weiss MS. and Schulz GE (1992) Structure of porin refined at 1.8 Å resolution. J Mol Biol 227: 493–509

    Article  CAS  PubMed  Google Scholar 

  • Weiss MS, Kreusch A, Schiltz E, Nestel U, Welte W, Weckesser J and Schulz GE (1991a) The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett 280: 379–382

    Article  CAS  PubMed  Google Scholar 

  • Weiss MS, Abele U, Weckesser J, Welte W, Schiltz E and Schulz GE (1991b) Molecular architecture and electrostatic properties of a bacterial porin. Science 254: 1627–1630

    CAS  PubMed  Google Scholar 

  • Welte W, Weiss MS, Nestel U, Weckesser J, Schiltz E and Schulz GE (1991) Prediction of the general structure of OmpF and PhoE from the sequence and structure of porin from Rhodobacter capsulatus. Orientation of porin in the membrane. Biochim Biophys Acta 1080: 271–274

    CAS  PubMed  Google Scholar 

  • Wilkinson BJ, Hindahl MS, Galbraith L and Wilkinson SG (1986) Lipopolysaccharide of Paracoccus denitrificans ATCC 13543. FEMS Microbiol Lett 37: 63–67

    Article  CAS  Google Scholar 

  • Williamson JM, Anderson MS and Raetz CRH (1991) Acyl-ACP specificity of UDP-GlcNAc acyltransferases from Gramnegative bacteria: Relationship to lipid A structure. J Bacteriol 173: 3591–3596

    CAS  PubMed  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH and Fox GE (1984a) The phylogeny of the purple bacteria: The alpha-subdivision. Syst Appl Microbiol 5: 315–326

    CAS  PubMed  Google Scholar 

  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops HP, Harms H and Stackebrandt E (1984b) The phylogeny of the purple bacteria: The beta-subdivision. Syst Appl Microbiol 5: 327–336

    CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH and Fox GE (1985) The phylogeny of purple bacteria: The gamma-subdivision. Syst Appl Microbiol 6: 25–33

    CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    CAS  PubMed  Google Scholar 

  • Woitzik D, Dierstein R and Weckesser J (1989) The lipoprotein and peptidoglycan of Rhodobacter sphaeroides. Z. Naturforsch 44c: 749–753

    Google Scholar 

  • Woitzik D, Weckesser J and Dierstein R (1989) Export of porin to the outer membrane of the phototrophic bacterium Rhodobacter capsulatus 37b4. Arch Microbiol 152: 196–200

    Article  CAS  Google Scholar 

  • Woitzik D, Weckesser J, Benz R, Stevanovic S, Jung G and Rosenbusch JP (1990) Porin of Rhodobacter capsulatus: Biochemical and functional characterization. Z Naturforsch 45c: 576–582

    Google Scholar 

  • Zahr M, Mayer H, Imhoff JF, Campos-Pardo V and Weckesser J (1992) Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila. Arch Microbiol 157: 499–504

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Weckesser, J., Mayer, H., Schulz, G. (1995). Anoxygenic Phototrophic Bacteria: Model Organisms for Studies on Cell Wall Macromolecules. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics